% Jordan E. Massad % Oct 18, 2004 % Define Model Material Parameters % % %MATPARAM %[mparams, cparams] = matparam(cs) %Input % n - null input. %Output % mparams - material parameters (see below) function mparams = matparam(n) mparams = zeros(19,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Material Parameters mparams(1) = 37.2e3; %EA [MPa] mparams(2) = 25.5e3; %EM [MPa] mparams(3) = 0.0300; %eT [] mparams(4) = 100.00; %dsig (Mean Gap Stress) [MPa] h = 1e0; %Convective Heat Transfer Coeff [W/m^2/K] mparams(5) = 2e-3*(1e3/5e2+1/7)*h; %Geometry-dependent HTC [MW/m^3/K] % Formula: surf_area/volume * h. rho = 6.45e3; %SMA density [kg/m^3] cv = 2.30e2; %Specific heat (constant volume) [J/(kg*K)] mparams(6) = rho*cv*1e-6; %pcv [MJ/m^3/K] mparams(7) = 11.0; %lamA [1e-6/K] Austenite Thermal Expansion mparams(8) = 6.6; %lamM [1e-6/K] Martensite Thermal Expansion mparams(9) = 100.0; %rhoA [1e-8 Ohm*m] Austenite Resistivity mparams(10) = 80.0; %rhoM [1e-8 Ohm*m] Martensite Resistivity mparams(11) = 248.56; %T_M [K] Measured MfT_lo mparams(14) = 293.0; %T_hi [K] Temperature for s_hi mparams(15) = 200.58; %s_lo [MPa] (scale measured tensile data to shear) mparams(16) = 243.0; %T_lo [K] Temperature for s_lo mparams(17) = 52^2; %Gap Variance [MPa^2] {52 default) mparams(18) = 55^2; %Effective Stress Variance [MPa^2] {45 default} mparams(19) = 0.1*mparams(6); %Specific Heat Difference (dc) [J/(kg*K)] % End of matparam.m