
What is R?

R is an open source platform for statistical computing.

It offers

I a general purpose interpreted programming language

I a vast library of subroutines, both built-in and contributed

I and a support community

all with an emphasis on data manipulation and statistical

inference.

R is maintained by a team of developers around the world.

1

Updated versions of the R core are released twice a year,

usually with minor improvements, enhancements, and bug

fixes.

I Not much has changed in the last several years.

User contributed add-on libraries are updated regularly, with

dozens of additions every month.

I For many these are what make R attractive.

2

What is R most like?

S/S-PLUS: a commercial software that pre-dates R.

I R began as an open source version of S, contributed to by

many of the original creators of S.

I R has essentially killed S, although its current owners

(TIBCO) continue to get mileage out of supporting both

softwares.

3

The modern language that R is most similar to is MATLAB.

Differences:

I R is free and open.

I R is object oriented; the MATLAB language is more

streamlined.

I MATLAB is faster out of the box.

I The MATLAB stats “toolbox” is weak.

I Other, more engineering-oriented MATLAB toolboxes,

e.g, for Signal Processing, are superior.

I MATLAB’s documentation is more professional.

I R’s contributed add-ons are of generally higher quality,

and are easier to navigate.

4

R has a richer feature set, and is more highly customizable,

than other statistical software suites. E.g.,

I SAS: great for Big Data

I STATA: popular with economists

I Minitab: what?

I Excel: perfect for making pie charts.

It is designed for tinkering, prototyping, simulating, high

performance computing, and sharing.

I R is a one-stop shop.

5

R is not

I as flexible as Python, but it is easier to learn

I a compiled language, but subroutines can be

I a spreadsheet, but it can interface with Excel

I a database, although it can interface with them

I a scripting language like Perl, although you can get by in

a pinch

I for application building, although it could be part of a

back-end or serve as a front-end

6

Obtaining R

http://cran.r-project.org

7

http://cran.r-project.org

I Binaries for Windows and Mac OSX are available for

download directly from CRAN.

I Full source code is available for compilation on any

machine.

I Many linux distributions (e.g., Ubuntu) provide binaries.

There are commercial services that will sell you

custom/optimized binaries

I e.g., Revolution Analytics

8

Interfaces

I Terminal (DOS/Unix/Linux/OSX); full-featured

9

I Windows GUI

... not more features than the terminal version, although the

built-in editor, file browser, and menus can at times be helpful.

10

It is not a fancy editor, and there is a window within a window.

11

I OSX GUI

... on par with the Windows one, but without windows within

windows, and the editor does syntax highlighting.
12

I Rstudio (http://www.Rstudio.com)

13

http://www.Rstudio.com

The R console

The console is the main way of interacting with R.

It allows you to type commands into R and see how the

system responds.

It may seem rudimentary but it is state of the art. Although

point-and-click has replaced command lines throughout much

of computing (think DOS), the console remains the best way

to analyze data.

It is not just an efficient way to interact with a computing

platform. It makes it easy to keep a record of everything you

do so you can recreate it later if needed.

14

R is waiting for your input ...

R version 2.15.2 (2012-04-09 r58957) -- "Trick or Treat"

Copyright (C) 2012 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

Platform: x86_64-apple-darwin11.3.0/x86_64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type ’contributors()’ for more information and

’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or

’help.start()’ for an HTML browser interface to help.

Type ’q()’ to quit R.

>

... at the command prompt “>”.

15

Basic Operations

When you enter an expression into the R console and press

Enter, R will evaluate it and display the results (if any).

At its most basic, R can be your calculator.

> 1 + 2 + 3

[1] 6

> 1 + 2*3

[1] 7

> (1 + 2)*3

[1] 9

The output in each case is a [1]-element vector.

16

Vectors are first-class citizens in R. They are formed by

I concatenation, e.g.,

> c(0,1,1,2,3,5,8)

[1] 0 1 1 2 3 5 8

I or by sequences, e.g.,

> 1:20

[1] 1 2 3 4 5 6 7 8 9 10 11 12

[13] 13 14 15 16 17 18 19 20

The brackets show the index of the first element of each row.

17

When you perform an operation on two vectors, R will match

their elements pairwise and return a vector.

> c(1,2,3,4) + c(10,20,30,40)

[1] 11 22 33 44

> c(1,2,3,4) * c(10,20,30,40)

[1] 10 40 90 160

> (1:4) - c(1,1,1,1)

[1] 0 1 2 3

18

If the vectors aren’t the same size, R will repeat the smaller

sequence multiple times.

> c(1,2,3,4) + 1

[1] 2 3 4 5

> 1/(1:5)

[1] 1.0000000 0.5000000 0.3333333

[4] 0.2500000 0.2000000

> c(1,2,3,4) + c(10,100)

[1] 11 102 13 104

> c(1:5) + c(10, 100)

[1] 11 102 13 104 15

Warning message:

In c(1:5) + c(10, 100) :

longer object length is not a multiple of shorter

object length

19

You can also enter expressions with characters:

> "Hello world."

[1] "Hello world."

This is called a character vector of length 1.

Here is one of length 2:

> c("Hello world", "Hello R interpreter")

[1] "Hello world"

[2] "Hello R interpreter"

20

Comments

You can add comments to your R code. Anything after # is

ignored:

> ## ... at the beginning of a line

> 1 + 2 + # ... in the middle

+ + 3

[1] 6

Editors may format the comments differently depending on

their multiplicity; R doesn’t care.

I Judicious commenting is an integral part of programming.

21

Functions

In R, the operations that do all the work are called functions.

I R is said to be a hybrid procedural and functional

programming language.

Most are of the form

f(arg1, arg2, ...)

where f is the name of the function, and arg1, arg2, ... are

the arguments,

I some of which may have default values.

22

A few example functions:

> exp(1)

[1] 2.718282

> cos(3.141593)

[1] -1

> cos(seq(-pi, pi, 1))

[1] -1.0000000 -0.5403023 0.4161468

[4] 0.9899925 0.6536436 -0.2836622

[7] -0.9601703

> log(1)

[1] 0

> log(exp(1))

[1] 1

23

When functions take more than one argument you can specify

them by name

> log(x=64, base=4)

[1] 3

> log(base=4, x=64)

[1] 3

Or, if you give the arguments in the default order, you can

omit the names.

> log(64, 4)

[1] 3

> log(4, 64)

[1] 0.3333333

24

Not all functions are of the form f(...).

Some are operators. For example, for addition we use the “+”

operator.

> 17+2

[1] 19

> 2^10

[1] 1024

> 3 == 4

[1] FALSE

25

Variables

R lets you assign values to variables and refer to them by

name.

I Once assigned, the R interpreter will substitute that value

in-place of the variable name when it evaluates an

expression.

> x <- 1

> y <- 2

> z <- c(x,y)

> z

[1] 1 2

26

The substitution is done at the time that the value is assigned,

not later when it is evaluated in an expression.

> y <- 4

> z

[1] 1 2

I R is provides no visual output when assigning, but

> print(y <- 4)

[1] 4

I You can use = and -> but I don’t recommend it.

> x = 2

> print(c(x,y) -> z)

[1] 2 4

27

Referring to members of vectors:

> b <- (1:12)^2

> b

[1] 1 4 9 16 25 36 49 64 81

[10] 100 121 144

> b[7]

[1] 49

> b[1:6]

[1] 1 4 9 16 25 36

> b[c(1,11,6)]

[1] 1 121 36

> b[b %% 3 == 0]

[1] 9 36 81 144

28

Puzzled about a compound expression?

I Break it into its constituent parts.

> b %% 3

[1] 1 1 0 1 1 0 1 1 0 1 1 0

> print(b30 <- b %% 3 == 0)

[1] FALSE FALSE TRUE FALSE FALSE TRUE

[7] FALSE FALSE TRUE FALSE FALSE TRUE

> b[b30]

[1] 9 36 81 144

Notice how indexing with logicals differs from integers.

29

Careful with = and ==.

> one <- 1

> two <- 2

> one = two

> one

[1] 2

> one <- 1

> one == two

[1] FALSE

30

Functions

A function in R is just another object that is assigned to a

symbol.

You can make your own functions in R, assign them a name,

and then call them like the built-in functions.

> f <- function(x,y) { c(x+1, y+1) }

> f(1, 2)

[1] 2 3

> f

function(x,y) { c(x+1, y+1) }

31

Loops and control

R has a several ways of repeating code, or branching execution

upon condition.

E.g.,

> fib <- rep(NA, 12)

> fib[1:2] <- 0:1

> for(i in 3:length(fib)) {

+ fib[i] <- fib[i-1] + fib[i-2]

+ }

> fib

[1] 0 1 1 2 3 5 8 13 21 34 55 89

32

Data Structures

You can construct more complicated data structures than just

vectors.

An array is a multidimensional vector.

I Arrays and vectors are stored (internally) in the same way,

but an array may be displayed and accessed differently.

I It is basically a vector that has an additional dimension

attribute.

33

> a <- array(c(1,2,3,4,5,6,7,

+ 8,9,10,11,12), dim=c(3,4))

> a

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

Particular cells can be reference via 2-d coordinates:

I first row, then column

> a[2,3]

[1] 8

34

A vector lacks that extra structure.

> as.vector(a)

[1] 1 2 3 4 5 6 7 8 9 10 11 12

And a matrix is just a two-dimensional array.

> m <- matrix(data=c(1,2,3,4,5,6,7,

+ 8,9,10,11,12), nrow=3, ncol=4)

> m

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

35

Arrays can have more than two dimensions.

w <- array(1:12, dim=c(2,3,2))

> w

, , 1

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

, , 2

[,1] [,2] [,3]

[1,] 7 9 11

[2,] 8 10 12

> w[1,3,2]

[1] 11

> w[1,3,]

[1] 5 11

> w[,,2]

[,1] [,2] [,3]

[1,] 7 9 11

[2,] 8 10 12

36

Arrays/vectors can be subset by other (integer) arrays/vectors.

I we just saw a couple of examples

> a[1:2,]

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

> a[c(1,3),]

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 3 6 9 12

37

List objects

Vectors, arrays, and matrices are data structures based on a

single underlying (e.g., numeric or character) type.

The most generic data structure for collecting mixed-type data

is a list.

Entries in a list can be entered and referenced by name and/or

by location, i.e., by number.

38

Here is an example of a list with two named components.

> e <- list(thing="hat", size=8.25)

> e

$thing

[1] "hat"

$size

[1] 8.25

You can access an item in a list multiple ways.

> e$thing

[1] "hat"

> e[[1]]

[1] "hat"

39

A list can even contain other lists.

> g <- list("lists within lists", e)

> g

[[1]]

[1] "lists within lists"

[[2]]

[[2]]$thing

[1] "hat"

[[2]]$size

[1] 8.25

40

Data frames

A data frame is a list that contains multiple named vectors

that are the same length.

I It is a lot like a spreadsheet or a database table

I It is stored like a matrix, but like a list it allows columns

to differ in type

I They are particularly good at representing experimental

data.

41

Here is an example list containing win/loss results for baseball

teams in the NL East in 2008:’

> teams <- c("PHI", "NYM", "FLA", "ATL", "WSN")

> w <- c(92, 89, 94, 72, 59)

> l <- 162 - w

> nleast <- data.frame(teams, w, l)

> nleast

teams w l

1 PHI 92 70

2 NYM 89 73

3 FLA 94 68

4 ATL 72 90

5 WSN 59 103

42

You can refer to the components of a data frame by name or

by column number.

> nleast$w

[1] 92 89 94 72 59

> nleast[,2]

[1] 92 89 94 72 59

You can use logical expressions to pick out particular rows:

> nleast[nleast$teams == "FLA",]

teams w l

3 FLA 94 68

43

Objects and classes

R is an object-oriented language, and so every object has a

class.

> class(teams)

[1] "character"

> class(w)

[1] "numeric"

> class(nleast)

[1] "data.frame"

> class(class)

[1] "function"

44

Some functions are associated with a specific class; these are

called methods.

When methods for different classes share the same name they

are called generic functions.

Generic functions serve two purposes.

1. They make it easy to guess the right function for a

unfamiliar class.

2. They make it possible to use the same code for objects of

different types.

45

For example, + is a generic function for adding objects.

I You can add numbers.

> 17 + 6

[1] 23

I And it probably does something sensible with other

objects, e.g., those of the date class.

> d <- as.Date("2009-08-08")

> class(d)

[1] "Date"

> d + 7

[1] "2009-08-15"

print() is another good example.

46

Charts, graphics and summaries

R has many ways to inspect/visualize data. Consider the cars

data provided in the base R library.

> cars

speed dist

1 4 2

2 4 10

3 7 4

...

> dim(cars)

[1] 50 2

> names(cars)

[1] "speed" "dist"

47

Each of 50 observations records the speed of the car and the

distance required to stop.

The generic summary() function is a useful first exploratory

data analysis (EDA) tool.

> summary(cars)

speed dist

Min. : 4.0 Min. : 2.00

1st Qu.:12.0 1st Qu.: 26.00

Median :15.0 Median : 36.00

Mean :15.4 Mean : 42.98

3rd Qu.:19.0 3rd Qu.: 56.00

Max. :25.0 Max. :120.00

48

For a visual summary, try a histogram.

> hist(cars$speed, main="")

cars$speed

F
re

qu
en

cy

0 5 10 15 20 25

0
5

10
15

49

Scatterplots are useful.

> plot(cars, xlab="Speed (mph)",

+ ylab="Stopping distance (ft)")

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
10

0
12

0

Speed (mph)

S
to

pp
in

g
di

st
an

ce
 (

ft)

50

Statistical modeling

There would appear to be a linear relationship between speed

and stopping distance. Lets check.

> cars.lm <- lm(dist~speed, data=cars)

This envokes an OLS fit to

disti = β0 + β1speedi + εi , εi
iid∼ N (0, σ2)

for i = 1, . . . , n.

I dist~speed is a formula encoding that model.

51

print() provides a brief summary of the fitted model:

> cars.lm

Call:

lm(formula = dist ~ speed, data = cars)

Coefficients:

(Intercept) speed

-17.579 3.932

I Those coefficients are β̂0 and β̂1.

I see print and print.lm

52

summary() provides more info.

> summary(cars.lm)

Call:

lm(formula = dist ~ speed, data = cars)

Residuals:

Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.5791 6.7584 -2.601 0.0123 *

speed 3.9324 0.4155 9.464 1.49e-12 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 15.38 on 48 degrees of freedom

Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438

F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

I see summary and summary.lm

53

Adding the line of best fit is easy, using another generic

function.

> abline(cars.lm)

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
10

0
12

0

Speed (mph)

S
to

pp
in

g
di

st
an

ce
 (

ft)

54

Finally, it helps to understand the full scope of uncertainties.

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
10

0
12

0

Speed (mph)

S
to

pp
in

g
di

st
an

ce
 (

ft)
fit
interval

(code in supplement) Also try plot(cars.lm).

55

Getting Help

R includes a help system to help you get information about

the core language and installed packages.

For help on fitting linear models, type:

> help(lm)

or equivalently

> ? lm

How the help interface looks depends on your GUI.

56

57

That R’s help is cryptic is a fair criticism.

I But there is some method to the madness.

I start with the examples, which are at the bottom.

I You can cut-and-paste, or

I use example(lm).

The “usage” section is where I look next, to see what the

arguments are and check the defaults.

I read the “details” section last or not at all.

58

You can search the help system for a topic, which is handy if

you don’t know (or have forgotten) the relevant function

name.

> help.search("regression")

or equivalently

> ?? regression

The search is based on keywords hidden in the documentation

system and sadly isn’t very helpful.

I You’re better off Googling.

59

R resources

Google really is the best place to start.

I Often, you end up being directed to R-sponsored pages

and discussion groups.

But if you’re looking for something more structured or more

polished, you can try:

I http://cran.r-project.org/manuals.html

I http://cran.r-project.org/other-docs.html

which are linked from the CRAN page.

60

http://cran.r-project.org/manuals.html
http://cran.r-project.org/other-docs.html

R packages

Packages are the life blood of R.

A package is a related set of functions, help files, and data

files that have all been bundled together.

R offers an enormous array of packages

I displaying graphics, statistical tests,

I machine learning, signal processing

I analyzing microarray data, modeling credit risk

Some are included in R; others are contributed by the public

and are available online via package repositories.

61

To use a package you need to load it into your current session.

The packages loaded by default are:

> (.packages())

[1] "stats" "graphics" "grDevices"

[4] "utils" "datasets" "methods"

[7] "base"

62

The full set that come with R are:

> (.packages(all.available=TRUE))

[1] "base" "boot" "class"

[4] "cluster" "codetools" "compiler"

[7] "datasets" "foreign" "graphics"

[10] "grDevices" "grid" "KernSmooth"

[13] "lattice" "MASS" "Matrix"

[16] "methods" "mgcv" "nlme"

[19] "nnet" "parallel" "rpart"

[22] "spatial" "splines" "stats"

[25] "stats4" "survival" "tcltk"

[28] "tools" "utils"

Also try library().

63

Packages are loaded with the library() function, supplying

the name of the desired package as an argument.

> library(rpart)

You can use the GUI too.

I Each works a little differently.

I A drawback is that you have to remember to re-do the

load in each new session; whereas the library() call can

be scripted.

64

65

Package Repositories

You will find thousands of R packages online. The two biggest

sources are:

I CRAN (Comprehensive R Archive Network)

http://cran.r-project.org

I Bioconductor, primary for genomic analysis

http://www.bioconductor.org

R-Forge (http://r-forge.r-project.org) is another

interesting place to look for R packages

I but it is more of a collaborative/works in progress site.

66

http://cran.r-project.org
http://www.bioconductor.org
http://r-forge.r-project.org

Packages can be installed in several ways; CRAN packages are

the easiest.

> install.packages("tgp", dependencies=TRUE)

...

Finding packages for your task can be challenging.

I There is an app for that.

I Use Google.

The GUIs are also an option.

I You only need to install a package once per machine.

67

68

“Homework”

I Write a function returning

f (x) = 1− x + 3x2 − x3, x ∈ [−0.5, 2.5].

I Plot the function over that range and note the critical

points. Check them against the truth (via calculus).

I Use an R library function to find those critical points

numerically, and check them against the plot/truth.

I How many iterations did it take to find each critical

point?

69

