
Lecture 5: Statistical Representation of Model Inputs
Example: 

Lead Titanate Zirconate (PZT)

DFT Electronic Structure Simulation 

Helmholtz Energy

 (P) = ↵1P2 + ↵11P4 + ↵111P6

UQ and SA Issues:

• Is 6th order term required to accurately 
characterize material behavior?

• Note: Determines molecular structure

• Employ density function theory (DFT) to 
construct/calibrate continuum energy relations.

– e.g., Helmholtz energy
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Quantum-Informed Continuum Models

DFT Electronic Structure Simulation 

Broad Objective:

• Use UQ/SA to help bridge scales 
from quantum to system

Lead Titanate Zirconate (PZT)
 (P) = ↵1P2 + ↵11P4 + ↵111P6

UQ and SA Issues:

• Is 6th order term required to accurately 
characterize material behavior?

• Note: Determines molecular structure

Objectives:

• Employ density function theory (DFT) to 
construct/calibrate continuum energy relations.

– e.g., Helmholtz energy

Helmholtz Energy

Note:

• Linearly parameterized



Example 2: Pressurized Water Reactors (PWR)

Models:

•Involve neutron transport, thermal-hydraulics, chemistry.

•Inherently multi-scale, multi-physics.

CRUD Measurements: Consist of low resolution images at limited number of locations.



Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid 

Challenges: 

• Codes can have 15-30 closure relations and up to 75 parameters.

• Codes and closure relations often ”borrowed” from other physical phenomena; 
e.g., single phase fluids, airflow over a car (CFD code STAR-CCM+)

• Calibration necessary and closure relations can conflict. 

• Inference of random fields requires high- (infinite-) dimensional theory.

Notes:

• Similar relations for gas 
and bubbly phases

• Surrogate models must 
conserve mass, energy, 
and momentum

• Many parameters are 
spatially varying and 
represented by random 
fields
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Pressurized Water Reactors (PWR)



Representation of Random Inputs
Example 1: Consider the Helmholtz energy  

 (P) = ↵1P2 + ↵11P4 + ↵111P6

with frequency-dependent random parameters  
 (P,!, f ) = ↵1(f ,!)P2 + ↵11(f ,!)P4 + ↵111(f ,!)P6

Challenge 1: Difficult to work with probabilities associated with random events   
! 2 ⌦.

Solution: Every realization ! 2 ⌦ yields a value q 2 Q ⇢ �. Work in image of

Challenge 2: How do we represent random fields; e.g., 
↵1(f ,!) – that are infinite-dimensional?

Solution: Develop a representation and approximation framework 

probability space (�,B(�), ⇢(q)) instead of (⌦,F, P).



Example and Motivation
Example 2: Heat equation

Motivation: Consider
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@x2 , 0 < x < L , t > 0

⇢(t , 0) = ⇢(t , L) = 0 t > 0

T (0, x) = ⇢0(x) 0 < x < L
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T (t ,-1,!) = T`(!) , T (t , 1,!) = Tr (!) t > 0

T (0, x ,!) = T0(!) - 1 < x < 1



Example and Motivation
Motivation: Consider

@⇢

@t
= ↵

@2⇢

@x2 , 0 < x < L , t > 0

⇢(t , 0) = ⇢(t , L) = 0 t > 0

T (0, x) = ⇢0(x) 0 < x < L

Separation of Variables: Take

Then
X 00(x)- cX (x) = 0

X (0) = X (L) = 0

and
Ṫ (t) = c↵T (t)

) T (t) = �ec↵t

Note: Heat decays – Mathematical argument

If c > 0, this implies that X (x) = k = 0.
Thus c < 0 so we take c = -�2 where � > 0.
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Motivation
Boundary Value Problem: 

X 00(x)- cX (x) = 0

X (0) = X (L) = 0

Solution: X (x) = A cos(�x) + B sin(�x)

X (0) = 0 ) A = 0

X (L) = 0 ) �L = n⇡

Thus 
Xn(x) = Bn sin(�nx) , �n =
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Motivation
Boundary Value Problem: 

X 00(x)- cX (x) = 0

X (0) = X (L) = 0

Initial Condition: 

⇢(t , x) =
1X

n=1

Bne-↵�2
nt sin(�nx)

General Solution: 

Example:   ⇢0(x) = sin
⇣⇡x
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Note Decay!
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General Solution: 
⇢(t , x) = e-↵(⇡/L)2t sin(⇡x/L)



Random Field Representation

Random Fields: Strategy – Represent random field              in terms of mean 
function         and covariance function    

↵(x ,!)
↵(x)

Finite-Dimensional: 

V =

2

66664

var(X1) cov(X1, X2) · · ·
cov(X2, X1) var(X2)

...
...

var(Xp)

3

77775

Note: Infinite-dimensional for functions 

Examples: Short versus long-range interactions
Note:

Limiting Behavior:

D = [-1, 1]

c(x , y)

1. c(x , y) = �2e-|x-y |/L

(i) L ! 1 ) c(x , y) = 1 Fully correlated so cannot truncated

(ii) L ! 0 ) c(x , y) = �(x - y) Uncorrelated so easy to truncate

� normalizes



Random Field Representation

Examples:

Gaussian 

1-D Wiener Process 

• Used to model Brownian motion

• Can solve eigenvalue problem explicitly

Properties of c(x,y): 

1. Finite-dimensional: e.g., C = V symmetric and positive definite 

C = �⇤�-1 = �⇤�T
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2. c(x , y) = min(x , y)

3. c(x , y) = �2e-(x-y)2/2L2

MATLAB: covariance_exp.m, covariance_min.m, covariance_Gaussian.m



Random Field Representation
Mercer’s Theorem: (Infinite Dimensional) – If c(x,y) is symmetric and positive 
definite, it can be expressed as 

where 

and Z

D

�n(x)�m(x)dx = �mn

Karhunen-Loeve Expansion:

↵(x ,!) = ↵̄(x) +
1X

n=1

p
�n �n(x)Qn(!)

Note: Eigenfunctions are orthonormal

c(x , y) =
1X

n=1

�n�n(x)�n(y)

Z

D

c(x , y)�n(y)dy = �n�n(x) for x 2 D



Random Field Representation
Karhunen-Loeve Expansion:

↵(x ,!) = ↵̄(x) +
1X

n=1

p
�n �n(x)Qn(!)

Statistical Properties: Take

↵(x ,!) = ↵̄(x) + �(x ,!)

�(x ,!) =
1X

n=1

p
�n�n(x)Qn(!)

) �(x ,!)�(y ,!) =
1X

n=1

1X

m=1

Qn(!)Qm(!)
p
�n�m�n(x)�m(y)

Recall: For random variables X,Y

cov(X , Y ] = E[XY ]- E[X ]E[Y ]

Notation: E[Y ] = hY i =
Z

y⇢(y)dy

where �(x ,!) has zero mean and covariance function c(x , y). Take



Random Field Representation
Statistical Properties: Because �(x ,!) has zero mean,

Since eigenfunctions are orthogonal,

Multiplication by �`(x) and integration yields
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Random Field Representation

where 

Karhunen-Loeve Expansion:

↵(x ,!) = ↵̄(x) +
1X

n=1

p
�n �n(x)Qn(!)

Result: The random variables satisfy

(i) E[Qn] = 0

(ii) E[QnQm] = �mn

Zero mean 

Mutually orthogonal and uncorrelated  

Question: How do we choose c(x,y) and compute solutions to
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c(x , y)�n(y)dy = �n�n(x) for x 2 D

Z
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Common Choices for c(x,y)
1. Radial Basis Function:

so 

Note: L is correlation length, which 
quantifies smoothness or relation 
between values of x and y. 

Analytic Solution: 

�n =

� 2L
1+L2w2

n
, if n is even,

2L
1+L2v2

n
, if n is odd,

�n(x) =

8
>><

>>:

sin(wnx)q
1- sin(2wn)

2wn

, if n is even,

cos(vnx)q
1+ sin(2vn)

2vn

, if n is odd

Note: wn and vn are the solutions of the transcendental equations

Lw + tan(w) = 0 , for even n,
1 - Lv tan(v) = 0 , for odd n

Z 1
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e-|x-y |/L�n(y)dy = �n�n(x)

c(x , y) = e-|x-y |/L , D = [-1, 1]



Common Choices for c(x,y)
1. Radial Basis Function:

so 

Note: L is correlation length 

Limiting Cases: 

Recall: 

Then 

Take 

�n(x) = �n�n(x)

) �n = 1 for all n

Note: Because uncorrelated, 
we cannot truncate series! 

Z

D

�n(y)dy = �n�n(x) = kn

�1(x) = �1(y) =
p

2
2

�1 = 2
�n = 0 for n = 2, 3, ...

(i) c(x , y) = 1 Fully correlated (L ! 1)

c(x , y) = 1 =
1X

n=1

�n�n(x)�n(y)

(ii) c(x , y) = �(x - y) Uncorrelated (L ! 0)

c(x , y) = e-|x-y |/L , D = [-1, 1]
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Construction of c(x,y)
Question: If we know underlying distribution             can we approximate the 
covariance function c(x,y)?  Yes … via sampling! 

! 2 ⌦,

Example: Consider the Helmholtz energy

↵(P,!) = ↵1(!)P2 + ↵11(!)P4 + ↵111(!)P6

and take x = P for x = P 2 [0, 1]

Note: Assume we can evaluate                for various polarizations             and 
values       from the underlying distribution

↵(xj ,!k) xj = Pj
!k

Required Steps: 

• Approximation of the covariance function c(x,y)

• Approximation of the eigenvalue problem

with 
Z

D

�n(x)�m(x)dx = �mn

Z

D

c(x , y)�n(y)dy = �n�n(x) for x 2 D



Construction of c(x,y)
Step 1: Approximation of covariance function c(x,y)

For NMC Monte Carlo samples !k , covariance function approximated by

where the centered field is

↵c(x ,!k) = ↵(x ,!k)- ↵(x)

and the mean is

↵̄(x) ⇡ 1
NMC

NMCX

j=1

↵(x ,!j)

c(x , y) ⇡ cNMC (x , y) =
1

NMC - 1

NMCX

k=1

↵c(x ,!k)↵c(y ,!k)



Construction of c(x,y)
Step 2 (Nystrom’s Method): Approximate eigenvalue problem 

with  
Z

D

�n(x)�m(x)dx = �mn

Z

D

c(x , y)�n(y)dy = �n�n(x) for x 2 D

Consider composite quadrature rule with Nquad points and weights {(xj , wj)}.

Discretized Eigenvalue Problem:
NquadX

j=1

c(xi , xj)�n(xj)wj = �n�n(xi) , i = 1, ... , Nquad

Matrix Eigenvalue Problem:

CW�n = �n�n

where
�i

n = �n(xi)

Cij = c(xi , xj)

W = diag(w1, ... , wNquad )

Symmetric Matrix Eigenvalue Problem:

W 1/2CW 1/2e�n = �ne�n

where

W 1/2 = diag(
p

w1, ... ,
p

wNquad )

e�T
n
e�n = 1 ) �T

n W�1 = 1

e�n = W 1/2�n ) �n = W-1/2e�n



Algorithm to Approximate c(x,y)
Inputs:

(i) Quadrature formula with nodes and weights {(xj , wj)}

(ii) Functions evaluations {↵(xj ,!k)} , j = 1, ... , Nquad , k = 1, ... , NMc

Output: Eigenvalues, eigenvectors and KL modes

(1) Center the process

↵c(xi ,!k) = ↵(xi ,!k)-
1

NMC

NMCX

j=1

↵(xi ,!j)

for i = 1, ... , Nquad and k = 1, ... , NMC .

2) Form covariance matrix C = [Cij ] that discretizes covariance function c(x , y)

Cij =
1

NMC - 1

NMCX

k=1

↵c(xi ,!k)↵c(xj ,!k)

for i , j = 1, ... , Nquad .



Algorithm to Approximate c(x,y)
Output: Eigenvalues, eigenvectors and KL modes

(3) Let W = diag(w1, ... , wNquad ) and solve

W 1/2Cw1/2e�n = �ne�n

for n = 1, ... , Nquad .

(4) Compute the eigenvectors �n = W-1/2e�n.

(5) Exploit the decay in the eigenvalues �n to choose a KL truncation level NKL
and compute discretized KL modes Qn(!). Consider

↵(x ,!) ⇡ ↵̄(x) +
NKLX

n=1

p
�n�n(x)Qn(!)

) ↵c(x ,!) ⇡
NKLX

n=1

p
�n�n(x)Qn(!)

) Qn(!) =
1p
�n

Z
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↵c(x ,!)�n(x)dx

⇡ 1p
�n

NquadX

j=1

wj↵c(xj ,!)�j
n.

(1)



Algorithm to Approximate c(x,y)
Output: Eigenvalues, eigenvectors and KL modes

(6) Sample !k and construct surrogate eQn(!k); e.g., polynomial, spectral poly-
nomial, Gaussian process.

Example: Consider the Helmholtz energy
↵(x ,!) = ↵1(!)x2 + ↵11x4 + ↵111x6

for x 2 [0, 1]

Mean Values: Based on DFT

↵̄1 = -389.4 , ↵̄11 = 761.3 , ↵̄111 = 61.5.

Distribution:

↵ = [↵1,↵11,↵111] ⇠ U([↵1`,↵1r ]⇥ [↵2`,↵2r ]⇥ [↵3`,↵3r ])

where ↵1` = ↵̄1 - 0.2↵̄1,↵1r = ↵̄+ 0.2↵̄1 with similar intervals for ↵11 and ↵111

Eigenvalues: �1 = 417.88, �2 = 1.2 and �3 = 0.009 so truncate series at NKL = 3

MATLAB: covariance_construct.m



Example and Motivation
Example 2: Heat equation

Note: Well-posedness requires 

Take
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↵(x ,!)
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◆
+ f (t , x) , -1 < x < 1, t > 0

T (t ,-1,!) = T`(!) , T (t , 1,!) = Tr (!) t > 0

T (0, x ,!) = T0(!) - 1 < x < 1

0 < ↵min 6 ↵(x ,!) 6 ↵max

↵(x ,!) = ↵min + e↵̄(x)+
P1

n=1
p
�n�n(x)Qn(!)

Parameters: Q = [T`, TR , T0, Q1, ... , QN ]


