Lecture 5: Statistical Representation of Model Inputs

Example:
« Employ density function theory (DFT) to | ) ‘E'“‘”“'e"’
construct/calibrate continuum energy relations. \ @z
— e.g., Helmholtz energy Lead Titanate Zirconate (PZT)

‘LI)(P) = X1 P2 + (X11P4 + 06111P6
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Quantum-Informed Continuum Models

Objectives:

« Employ density function theory (DFT) to
construct/calibrate continuum energy relations.

— e.g., Helmholtz energy

V(P) = o1 P? 4 11 P* 4 441 P°
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P, (C/m?)
* Use UQ/SA to help bridge scales

Helmholtz Energy
from quantum to system

UQ and SA Issues:

* |s 6™ order term required to accurately Note:
characterize material behavior? : :
* Linearly parameterized

* Note: Determines molecular structure



Example 2: Pressurized Water Reactors (PWR)

Containment Structure

Pressurizer Steam
Gen

Condenser

Models:
Involve neutron transport, thermal-hydraulics, chemistry.
*Inherently multi-scale, multi-physics.

CRUD Measurements: Consist of low resolution images at limited number of locations.



Pressurized Water Reactors (PWR)

Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid

0
37 %Pr) + V- (arprvy) = —T Notes:
dv; - - Similar relations for gas
XiPr oy + XiPiVe - VVi+ V- 0F + &V - 0+ V and bubbly phases
= —F1 — F+T(vy—v,)/2+ a:psg « Surrogate models must
5 conserve mass, energy,
a_t((xfpfef) + V- (orprerVs + Th) = (Tg — Te)H + TeAq and momentum
—T,(H—agV-h)+h-VT —Tles + T;(s* — s7)] . Many parameters are
5 - spatially varying and
—p; (ﬁ LV (avs) + _) represented by random
ot Pf fields
Challenges:

« Codes can have 15-30 closure relations and up to 75 parameters.

« Codes and closure relations often "borrowed” from other physical phenomena;
e.g., single phase fluids, airflow over a car (CFD code STAR-CCM+)

« Calibration necessary and closure relations can conflict.

 Inference of random fields requires high- (infinite-) dimensional theory.



Representation of Random Inputs

Example 1: Consider the Helmholtz energy
Y(P) = &1 P? + o1 P* + o441 P°

with frequency-dependent random parameters
W(P, w, f) = oy (f, w)P? + o1 (f, w)P* + aqqq (f, w) PP

Challenge 1: Difficult to work with probabilities associated with random events
w € Q.

Solution: Every realization w € 2 yields a value g € Q C I'. Work in image of
probability space (I', B(I'), p(q)) instead of (2, F, P).

Challenge 2: How do we represent random fields; e.g.,
o4 (f, w) — that are infinite-dimensional?

Solution: Develop a representation and approximation framework



Example and Motivation
Example 2: Heat equation

01 0 01
= — | + —1 1
Y Ox (oc(x,w) ax) f(t,x) <x<1,t>0

rt,—1,w)=T(w), T(t1,w)=T(w) t>0
TO,x,w)=To(w) —1<x<1

Motivation: Consider
dp 9%p

— =0x—— ,0<x<L,t>0
ot ox? X

p(t,0) =p(t,L) =0 t>0

T(0,x) =po(x) O0<x<L




Motivation: Consider

o0 _ 9%
- T 0x2

p(t,0) =p(t,L) =0

T(0,x) = po(x)

Separation of Variables: Take

p(t, x) = T(t)X(x)

= X(x)T(t) = «X" (x)T(t)

X" (x)
X(x)
Then
X"(x)—cX(x)=0
X(0)=X(L)=0
and
T(t) = caT(t)

= T(t) = e

T
 «T(t)

, O0<x<L,t>0

O<x<L

Example and Motivation

>0

po(z)
=C

Note: Heat decays — Mathematical argument
L

L
J [XX" — cX?ldx = —J [(X)?+cX?]dx=0

0 0
If ¢ > 0, this implies that X(x) = k = 0.
Thus ¢ < 0 so we take ¢ = —A? where A > 0.



Motivation

Boundary Value Problem:
X"(x)—ecX(x) =0
X(0)=X(L)=0

Solution: X(x) = Acos(Ax) + Bsin(Ax)

Thus
X(L)=0= AL =nm
General Solution:
o(t, x) = Z B,e *Mt gin(A,x)
n=1
Initial Condition: po(X) Z By sin(Anpx)

L
= J Po(X) sin(Apx)dx = J Z B, sin(A,x) sin(Anx)dx

n=1

L
= B, = —J po(Xx) sin(A,x)dx



Motivation

Boundary Value Problem:
X"(x)—ecX(x) =0
X(0)=X(L)=0

General Solution:

o(t,x) = Z B,e M sin(A,x)

n=1

Initial Condition:

L
B, = EJ Po(X) sin(Apx)dx

L Jo
Example: po(x) = sin (W—LX)
B, = %LL sin (”—LX) sin (”LLX) dx

General Solution:

o(t,x) = g (/L) sin(7tx/L)

o~

Note Decay!



Random Field Representation

Random Fields: Strategy — Represent random field «(x, w) in terms of mean
function &(x) and covariance function c(x, y)

Finite-Dimensional: X ~ MVN(u, V), X = [Xj, ..., Xp]

var(X1 ) COV(X1 , Xg) .. ]
COV(X2, X1) var(Xg)

var(X,) |

Note: Infinite-dimensional for functions

Examples: Short versus long-range interactions

1. ¢c(x,y) = o?e XY/t Note: o normalizes

D = [—1,1]

Limiting Behavior:
(i) L — oo = c¢(x,y) = 1 Fully correlated so cannot truncated

(i) L— 0= c(x,y) = 8(x — y) Uncorrelated so easy to truncate



Random Field Representation

Examples:
2. ¢(x,y) = min(x, y) 1-D Wiener Process
» Used to model Brownian motion
« Can solve eigenvalue problem explicitly
3. c(x,y) = g2e (x—¥)°/2L Gaussian

MATLAB: covariance_exp.m, covariance_min.m, covariance_Gaussian.m

Properties of c(x,y):

1. Finite-dimensional: e.g., C =V symmetric and positive definite

C =dANd ' = pADT

A1 ¢’
= | ¢ P ;
I 1L Ao | L P
IR
= [Ad"AP] | | =D M (6™
I P | p=1




Random Field Representation

Mercer’s Theorem: (Infinite Dimensional) — If c(x,y) is symmetric and positive
definite, it can be expressed as

c(x,y) = Z An®n(X)Pn(y)
n=1
where

L; C(X, Y)bn(y)dy = Andon(x) for x € D

and

J Gn(X)bm(x)dx = dmn Note: Eigenfunctions are orthonormal
D

Karhunen-Loeve Expansion:

(X, w) = &(X) + ) v/ AaPa(X)Qn(w)
n=1



Random Field Representation

Karhunen-Loeve Expansion:

(X, w) = &(x) + Y v/AnPn(X)Qnlw
n=1

Statistical Properties: Take
(X, w) = &(x) + B(x, w)

where 3(x, w) has zero mean and covariance function ¢(x, y). Take

= Z V/Andn(X) Qn(w)
= B(x,w)p(y,w :ZZQn QW) VAARDA(X)Dm(y)

n=1 m=1

Recall: For random variables X,Y
cov(X, Y] = EXY] —E[X]E[Y]

Notation: E[Y]

(v) = jyp(y)dy



Random Field Representation

Statistical Properties: Because 3(x, w) has zero mean,
cix,y) = E[R(x, w)p(y, w)]
= (B(x,w)B(y,w))

= > ) (Qn(w)Qul(w)) VAARDn(X)Dim(y)

n=1 m=1

Since eigenfunctions are orthogonal,

Aeor (x) = LJ clx, y)brly)dy

Z Qn Qk \/ A )\k(bn
1

Multiplication by ¢¢(x) and integration yields Note:
= k=1 Qk(w)Q — 1
N[ @rb0bexI0x = 3 (Quf)Qulw)) VAR > (W) Qw))
D n—1 k0 = ((w)Q(w)) =0

= AMcdke = vV AkA (Qk (W) Qe (w)) = (Qk(w)Q(w)) = dke



Random Field Representation

Karhunen-Loeve Expansion:

(%, W) = &(X) + Y v/ AnPa(X)Qn(w)
n=1

where

L C(X, y)n(y)0y = Anbn(x) for x € D

Result: The random variables satisfy

(1) EQ, =0 Zero mean
(i) E[QnQm] = dmn Mutually orthogonal and uncorrelated

Question: How do we choose c(x,y) and compute solutions to

L) c(x,y)bnly)dy = Andn(x) for x € D



Common Choices for c(x,y)
1. Radial Basis Function:

cix,y)=e XL D =1[-11] Note: L is correlation length, which
quantifies smoothness or relation
SO between values of x and y.

|
J e YL (y)dy = Andrn(X)
—1

Analytic Solution:

ﬁ , if n is even,
7\n — 27 . .
m , if nis Odd7
( sin . .
(Wi X) , if nis even,
1_Sln£2Wn)
Wn
(bn(x) = cos(Vpx)
. . 1f nis odd
/1_|_S|n(2vn)
\ 2Vn

Note: w, and v, are the solutions of the transcendental equations

Lw+tan(w) =0 , for even n,
0

1— Lvtan(v) = , for odd n



Common Choices for c(x,y)

1. Radial Basis Function:
clx,y)=e ¥Vt | D =[11]

SO
|
J e /L (y)dy = Apcpn(X)
—1

Limiting Cases:

(i) e(x,y) =1 Fully correlated (L — o)

J (I)n(y)dy — And)n(x) = Ky
D

Recall: ¢(x,y) =1=) Aadn(x)Pn(y)

n=1
Take

b1(x) = d1(y) = ve

2
A =2
n=0forn=2,3,...

Note: L is correlation length

(i) c¢(x,y) =8(x—y) Uncorrelated (L — 0)

Then
(bn(x) — And)n(x)

= A, =1 foralln

Note: Because uncorrelated,
we cannot truncate series!



Construction of c(x,y)

Question: If we know underlying distribution w € €2, can we approximate the
covariance function c(x,y)? Yes ... via sampling!

Example: Consider the Helmholtz energy

95/% Prediction Interval
= 95% Credible Interval
% —Continuum Energy
= 100 —DFT Energy
D

(]

[

w

o P, w) = oty (w)P? + xy1 (W) P* + oty11(w) PP

and take x = Pfor x = P € [0, 1]

0 0.2 0.4 0.6 0.8
P, (C/m?)

Note: Assume we can evaluate o(x;, w*) for various polarizations x; = P; and
values w” from the underlying distribution

Required Steps:
« Approximation of the covariance function c(x,y)

« Approximation of the eigenvalue problem

L e, ) n(y)dy = Anbn(x) for x €D with J D (X) b (X)X = S1n
D



Construction of c(x,y)

Step 1: Approximation of covariance function c(x,y)

For Nyc Monte Carlo samples w*, covariance function approximated by
1 Nmc

Z OCC(Xs wk)CX,C(y, wk)
k=1

c(x,y) = ce(x, y) = T

where the centered field is
oo (X, W) = a(x, W) — ®(x)

and the mean is

Nmec

1 .
x(x)~ — » o(x,
Nuc jZ1 )



Construction of c(x,y)

Step 2 (Nystrom’s Method): Approximate eigenvalue problem

j c(X, ) n(y)dy = Anbn(x) for x € D with J n(X)brm(X)OX = S
D D

Consider composite quadrature rule with Ng,q points and weights {(x;, w;)}.

Discretized Eigenvalue Problem:

Nquad

Z C(X,',Xj)(])n(Xj)Wj — }\n(bn(xi) , I=1,..., Nquad
j=1

Matrix Eigenvalue Problem: Symmetric Matrix Eigenvalue Problem:
CWy = A, W'2CW'2dp = Andpy
where where
= dnlx) bn = W20, = by = W24,
Cj = c(x;, ) Grbn=1= bWy =1

W = diag(ws, ..., Wn,,q) W'/? = diag(\/wi, ..., v/ Whegyaq)



Algorithm to Approximate c(x,y)

Inputs:
(i) Quadrature formula with nodes and weights {(x;, w;)}

(i) Functions evaluations {a(x;, w*)}, j=1,...,Nguag » K =1, ..., Nic

Output: Eigenvalues, eigenvectors and KL modes

(1) Center the process

1 Nmc '
ot (X5, W*) = x(x;, W") — N D alxi, o)
J=1

fori=1,..., Nquag @and k = 1, ..., Nyc.

2) Form covariance matrix C = [Cj] that discretizes covariance function c¢(x, y)

1 Nuc
Ci— —— X;, W X;, W
if NMC—‘I;(XC(I(D)(XC(jw)

fori,j =1, ..., Nguaa-



Algorithm to Approximate c(x,y)

Output: Eigenvalues, eigenvectors and KL modes

(3) Let W = diag(wy, ..., wy

ae) @Nd solve

W1/20W1/2$n — An(T)n
forn=1,..., Nyuag-

(4) Compute the eigenvectors ¢, = W~/2¢),.

(5) Exploit the decay in the eigenvalues A, to choose a KL truncation level Ny,
and compute discretized KL modes Q,(w). Consider

Niw

(X, ) & &(X) + ) v/ Aatn(x)Qn(w
n=1

Nk

= (X, w) Zfd)n

)
VA

s Qulw) = JD o(X, ) bn(X)x

quad

O<’C )(_[5



Algorithm to Approximate c(x,y)

Output: Eigenvalues, eigenvectors and KL modes

(6) Sample wk and construct surrogate Q,(w*); e.g., polynomial, spectral poly-
nomial, Gaussian process.

Example: Consider the Helmholtz energy

95/% Prediction Interval
= 95% Credible Interval
% —Continuum Energy
= 100+ —DFT Energy
2

(]

[

w

OC(X, (,U) = 061((1))X2 + 061-|X4 + OC-|11X6

for x € [0, 1]

Mean Values: Based on DFT

0 0.2 0.4 0.6 0.8

x1 =—389.4, x4 =761.3, 411 = 61.5. P, (C/m?)
Distribution:
o = [oeq, 11, q11] ~ Ulloxre, oqr] X [oxoe, 0tor] X [oze, otarl)

where o1y = &1 —0.2x4, &1, = & + 0.2+ with similar intervals for o411 and o111

Eigenvalues: Ay = 417.88,A\» = 1.2 and A5 = 0.009 so truncate series at Ny, = 3

MATLAB: covariance construct.m




Example and Motivation

Example 2: Heat equation

07 0 07
_ - _ 1
5 dx <oc(x,w) ax) +f(t,x) ,—1<x<1,t>0

rt,—1,w)="T(w), T(t,1,w) =T (w) t>0
TO,x,w)=Tolw) —1T<x<1
Note: Well-posedness requires

0 < min < OC(X, w) < max

Take

(X, W) = Xmin + % (X)+ 01 VArdn(X)Qn(w)

Parameters: Q = [Ty, Tr, Ty, @1, ..., QNI



