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Example 1: HIV Model for Characterization and Control Regimes
HIV Model:

Compartments: 

Notes: 21 parameters 
[Adams, Banks et al., 2005, 
2007] 
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Example: HIV Model for Characterization and Treatment Regimes
HIV Model: Several sources of uncertainty including viral measurement techniques
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Figure 2: Patient 6 CD4+ T-cell and viral load data, including censor points (lines at L̄1 =
400, L̄2 = 50) for viral load, and periods of on-therapy (solid lines on axis) and periods of oÆ-
therapy (dashed line on axis).

Of the 45 patients considered in this paper, sixteen (those numbered 2, 4, 5, 6, 9, 10, 13, 14, 15,
23, 24, 26, 27, 33, 46, and 47) spend 30–70% time oÆ treatment. Of these only patients 9, 15, and
47 do not spend appreciable time oÆ treatment during the early half of their observation period.

Due to the linear range limits described above, the clinical viral load assays eÆectively have
lower and upper limits of quantification. The upper limit is typically readily handled by repeatedly
diluting the sample until the resulting viral load measurement is in range and then scaling. The
lower limit, or left censoring point, however, directly influences the observed data. When a data
point is left-censored (below the lower limit of quantification), the only available knowledge is that
the true measurement is between zero and the limit of quantification L̄? for the assay. Those at
hand have two limits of quantification, L̄1 = 400 copies/ml for the standard and L̄2 = 50 copies/ml
for the ultra-sensitive assay. These are illustrated in sample data from patient 6 shown in Figure
2, where censored data points are those appearing identically on the horizontal censoring lines
L̄1 = 400, L̄2 = 50. A statistical methodology for handling this type of censored data is described
below in Section 3.2.

The observation times and intervals vary substantially between patients. The sample data in
Figure 2 also reveal that observations of viral load and CD4 may not have been made at the
same time points, so in general for patient number j we have CD4+ T-cell data pairs (tij1 , y

ij

1 ), i =
1, . . . , N

j

1 and (potentially diÆerent) viral RNA data pairs (tij2 , y

ij

2 ), i = 1, . . . , N

j

2 .

6

Example: Upper and lower limits to assay sensitivity 

UQ Questions: 
• What are the uncertainties in parameters that cannot be directly measured?

• What is optimal treatment regime that is “safe” for patient?

• What is expected viral load? Issue: very often requires high-dimensional 
integration!

• e.g., E[V (t)] =
Z

R21
V (t , q)⇢(q)dq

Experimental results are believed by everyone, except for the person who ran the 
experiment, source anonymous, quoted by Max Gunzburger, Florida State University. 



Model Calibration and Uncertainty Propagation
Sources of Uncertainty:

• Model

• Parameters

• Sensor measurements 

• Initial conditions

Strategy:
• Quantify uncertainty in parameters
• Propagate uncertainty through model

Parameters: Reduced set

Point Estimates: Ordinary least squares 

Note: Scaling critical since parameter values vary by 8 orders of magnitude.

Example: HIV model
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Model Calibration and Predictions
Optimization Results: 

Data and Prediction of Immune Effector Response E:
Note: Point estimates but no 
quantification of uncertainty in:

• Model

• Parameters
• Data

Goals: 
• Replace point estimates with 

distributions.

• Construct credible and prediction 
intervals.

• Natural in a Bayesian framework

bE � d1 k2 �1 Kb

0.30 0.68 9.1 ⇥ 10-3 1.22 ⇥ 10-4 9.95 ⇥ 103 88.5



Example 2: Sinko-Streifer Model
Motivation: Consider use of mosquitofish Gambusia Affinis to control mosquitos. 
Modeling required to answer the following questions:

• How many fish should be stocked in each paddy?

• How should the fish be initially stocked? All at once or periodically?

• How should they be stocked to augment control already provided by 
endemic fish without highly damaging the local fish populations?



Example: Sinko-Streifer Model
Notation and Assumptions:

• u(t , x): Number of fish of size x at time t

• µ: Death rate

Flux Balance:
u(t , x) is a “density” and rate is �(t , x) = g(t , x)u(t , x)

@u

@t

+
@�

@x

= - deaths ) @u

@t

+
@(gu)

@x

= -µu

• Growth rate of same-sized individuals is same and denoted by g(t , x)

dx

dt

= g(t , x)

Model:

@u

@t

+
@(gu)

@x

= -µu

g(t , x)u(t , x)
��
x=x0

=

Z
x1

x0

k(t , ⇠)u(t , ⇠)d⇠

u(0, x) = �(x)
Later Talk: Dirk Husmeier

UQ Issues:
• How do we represent

• How do we propagate uncertainties 
through PDE? 

• How do we construct surrogate 
models?

g(t , x) or g(x)



Steps in Uncertainty Quantification

Note: Uncertainty quantification requires synergy between statistics, mathematics 
and application area. 



Uncertainty Propagation
Setting:
• We assume that we have determined distributions for parameters

• e.g., Bayesian inference (Brian Reich), prior experiments, expert opinion

Goal: Construct statistics for quantities of interest

• e.g., Expected viral load in HIV patient with 
appropriate uncertainty intervals

• Note: Often involves moderate to high-
dimensional integration 
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Ṫ2 = �2 - d2T2 - (1 - f")k2VT2
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Uncertainty Propagation
Issues:
• Uncertainty propagation and computation of statistical quantities of interest 
much more difficult for PDE models.

• e.g. Sinko-Streifer model: 
u(t , x): Number of fish of size x at time t

@u

@t

+
@(gu)

@x

= -µu

g(t , x)u(t , x)
��
x=x0

=
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Random Field Representation:

g(x) =
pX

j=1

q

j

�
j

(x)

Quantity of Interest:

E[u(t , x)] =

Z

Rp

u(t , x , q)⇢(q)dq

Issues: 
• How do we efficiently propagate input 

uncertainties through models?  Surrogate 
models.

• How do we approximately integrate in 
moderate to high dimensions; e.g., p = 10-
60? Monte Carlo sampling, sparse grid 
quadrature



Forward Uncertainty Propagation: Linear Models

Linear Models: Analytic mean and variance relations

Example: Linear stress-strain relation 

⌥i = Eei + E2e
3
i + "i , i = 1, . . . , n

Let E,E2 and var(E), var(E2) denote parameter means and variance. Then

Model Statistics:

E[Eei + E2e
3
i ] = Eei + E2e

3
i

var[Eei + E2e
3
i ] = e2i var(E) + e6i var(E2) + 2e4i cov(E,E2)

Response Statistics: Assume measurement errors uncorrelated from model 
response.

E[⌥i] = Eei + E2e
3
i

var[⌥i] = e2i var(E) + e6i var(E2) + 2e4i cov(E,E2) + var("i)

Problem: Models are almost always nonlinearly parameterized



Forward Uncertainty Propagation: Sampling Methods

Advantages:
• Applicable to nonlinear models.

• Parameters can be correlated and non-Gaussian.

• Straight-forward to apply and convergence rate is independent of number of 
parameters.

• Can directly incorporate both parameter and measurement uncertainties.

Disadvantages:
• Very slow convergence rate: 

• 100-fold more evaluations required to gain additional place of accuracy.

• This motivates numerical analysis techniques.

O‘ (1/
p
M) where M is the number of samples.

Strategy 1: Randomly sample from parameter and measurement error 
distributions and propagate through model to quantify response uncertainty.  



Uncertainty Propagation
Sampling-Based Approaches:
• Quadrature: Monte Carlo, Latin hypercube, Sobol’

• Interval definitions and construction

• Prediction intervals for HIV model via DRAM algorithm

Numerical Analysis-Based Approaches:
• Stochastic Galerkin, stochastic collocation, discrete projection

• Regression-based methods with sparsity control (LASSO)



Numerical Quadrature
Motivation: Computation of expected values requires approximation of integrals

E[u(t , x)] =

Z

Rp

u(t , x , q)⇢(q)dq

Numerical Quadrature:

Questions: 
• How do we choose the quadrature points and weights?

– E.g., Newton-Cotes; e.g., trapezoid rule

Z
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#

qr = a + hr , h =
b - a
R - 1

E[V (t)] =
Z

R6
V (t , q)⇢(q)dq

Example: HIV model



Numerical Quadrature
Motivation: Computation of expected values requires approximation of integrals

E[u(t , x)] =

Z

Rp

u(t , x , q)⇢(q)dq

Numerical Quadrature:

Questions: 
• How do we choose the quadrature points and weights?

– E.g., Newton-Cotes, Gaussian algorithms

Z

Rp
f (q)⇢(q)dq ⇡

RX

r=1

f (qr)wr

x
jxj−1 ba

xx x
xa b



Numerical Quadrature
Numerical Quadrature:

Questions: 
• Can we construct nested algorithms to improve efficiency?

– E.g., employ Clenshaw-Curtis points

Z
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f (q)⇢(q)dq ⇡
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Numerical Quadrature
Questions: 
• How do we reduce required number of points while maintaining accuracy?

Tensored Grids: Exponential growth Sparse Grids: Same accuracy

p R` Sparse Grid R Tensored Grid R = (R`)p

2 9 29 81

5 9 241 59,049

10 9 1581 > 3⇥ 109

50 9 171,901 > 5⇥ 1047

100 9 1,353,801 > 2⇥ 1095



Numerical Quadrature
Problem: 
• Accuracy of methods diminishes as parameter dimension p increases

• Suppose

• Tensor products:

• Quadrature errors:

Take R` points in each dimension so R = (R`)p
total points

Newton-Cotes: E ⇠ O‘ (R-↵
` ) = O‘ (R-↵/p)

Gaussian: E ⇠ O‘ (e-�R`) = O‘
⇣

e-� ppR
⌘

Sparse Grid: E ⇠ O‘
⇣
R-↵

log (R)(p-1)(↵+1)
⌘

f 2 C↵([0, 1]p)



Numerical Quadrature
Problem: 
• Accuracy of methods diminishes as parameter dimension p increases

• Suppose

• Tensor products:

• Quadrature errors:

• Alternative: Monte Carlo quadrature  

Take R` points in each dimension so R = (R`)p
total points

Newton-Cotes: E ⇠ O‘ (R-↵
` ) = O‘ (R-↵/p)

Gaussian: E ⇠ O‘ (e-�R`) = O‘
⇣

e-� ppR
⌘
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⇣
R-↵
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• Advantage: Errors independent of dimension p

• Disadvantage: Convergence is very slow!  



Numerical Quadrature
Problem: 
• Accuracy of methods diminishes as parameter dimension p increases

• Suppose

• Tensor products:

• Quadrature errors:

• Alternative: Monte Carlo quadrature  

Take R` points in each dimension so R = (R`)p
total points

Newton-Cotes: E ⇠ O‘ (R-↵
` ) = O‘ (R-↵/p)

Gaussian: E ⇠ O‘ (e-�R`) = O‘
⇣

e-� ppR
⌘

Sparse Grid: E ⇠ O‘
⇣
R-↵

log (R)(p-1)(↵+1)
⌘

f 2 C↵([0, 1]p)
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R
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✓
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◆

• Advantage: Errors independent of dimension p

• Disadvantage: Convergence is very slow!  

Conclusion: For high enough 
dimension p, monkeys 
throwing darts will beat 
Gaussian and sparse grid 
techniques! Will Cousins, 
former student of Pierre 
Gremaud.



Monte Carlo Sampling Techniques
Issues: 
• Very low accuracy and slow convergence

• Random sampling may not “randomly” cover space …

Samples from Uniform Distribution
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Monte Carlo Sampling Techniques
Issues: 
• Very low accuracy and slow convergence

• Random sampling may not “randomly” cover space …

Samples from Uniform Distribution Sobol’ Points

Sobol’ Sequence: Use a base of two to form successively finer uniform partitions 
of unit interval and reorder coordinates in each dimension.
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Quasi-Monte Carlo Sampling Techniques
Issues: 
• Very low accuracy and slow convergence

• Random sampling may not “randomly” cover space …

Samples from Uniform Distribution Sobol’ Points
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Monte Carlo Sampling Techniques
Example: Use Monte Carlo sampling to approximate area of circle

Quasi-Monte Carlo:
• Recent SAMSI Program on Quasi-Monte Carlo and High Dimensional 

Sampling Methods in Applied Math in 2017-18

Strategy:

Ac

As
=

⇡r 2

4r 2 =
⇡

4

• Count M points in circle

• Randomly sample N points in square ) approximately N
⇡

4

in circle

) Ac =
⇡

4
As

) ⇡ ⇡ 4M
N



Confidence, Credible and Prediction Intervals
Note: 
• We now know how to compute the mean response for the QoI. 

• How do we compute appropriate intervals? 

Susceptible

Infectious

Recovered

dS

dt
= �N � �S � �IS , S(0) = S0

dI

dt
= �IS � (r + �)I , I(0) = I0

dR

dt
= rI � �R , R(0) = R0

SIR Model:



Confidence, Credible and Prediction Intervals
Data: ⌥ = [⌥1, · · · ,⌥n] of iid random observations

90% Confidence Intervals 90% Credible Interval 

Confidence Interval (Frequentist): 
A 100⇥ (1� ↵)% confidence interval for a

Credible Interval (Bayesian): A 100⇥ (1� ↵) % credible interval is that having
probability at least 1� ↵ of containing q.

Strategy: Sample out of parameter density  ⇢Q(q)

fixed, unknown parameter q0 is a random interval [Lc(⌥), Uc(⌥)], having

probability at least 1� ↵ of covering q0 under the joint distribution of ⌥.



Confidence, Credible and Prediction Intervals
Data: ⌥ = [⌥1, · · · ,⌥n] of iid random observations

Prediction Interval: 
A 100⇥ (1� ↵)% prediction interval for a future observable

⌥n+1 is a random interval [Lc(⌥), Uc(⌥)] having probability at least 1�↵ of

of containing ⌥n+1 under the joint distribution of (⌥,⌥n+1).

Example: Consider linear model 

⌥i = q0 + q1xi + "i , i = 1, · · · , n

Prediction 
interval

Credible 
interval



Example: HIV Model

Parameter Chains and Densities:

Model: Ṫ1 = �1 - d1T1 - (1 - ")k1VT1

Ṫ2 = �2 - d2T2 - (1 - f")k2VT2
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Propagation of Uncertainty – HIV Example
Parameter Densities:

Samples from Chain Data, Credible Intervals and 
Prediction Intervals

Non-Gaussian Credible and 
Prediction Intervals

Techniques:
• Sample from parameter and 
observation error densities to construct 
mean response, credible intervals, and 
prediction intervals for QoI.

• Slow convergence rate O‘ (1/
p

M)



Use of Prediction Intervals: Nuclear Power Plant Design

e.g., Dittus—Boelter Relation

Subchannel Code (COBRA-TF): numerous closure relations, ~70 parameters

i.e., [0, 0.046], [0, 1.6], [0,0.8]
Industry Standard: Employ conservative, uniform, bounds  

Bayesian Analysis: Employ conservative bounds as priors

Note: Substantial reduction in parameter uncertainty

Nu = 0.023Re0.8Pr0.4
Nu: Nusselt number

Re: Reynolds number

Pr : Prandtl number

2� ⇡ 0.0035 2� ⇡ 0.06 2� ⇡ 0.03



Use of Prediction Intervals: Nuclear Power Plant Design
Strategy: Propagate parameter uncertainties through COBRA-TF to  

determine uncertainty in maximum fuel temperature

Notes: 
• Temperature uncertainty reduced 
from 40 degrees to 5 degrees 

• Can run plant 20 degrees hotter, 
which significantly improves efficiency

Ramification: Savings of 10 billion dollars per year for US power plants
Issues:

• We considered only one of many closure relations

• Nuclear regulatory commission takes years to change requirements and codes

Good News: We are now working with Westinghouse to reduce uncertainties. 



Practicum Problem

SIR Model:

Note:
• Run either the 3 or 4 parameter model and compute the prediction intervals.

Website:
• http://www4.ncsu.edu/~rsmith/RTG_BIOMATH18/

Monte Carlo Quadrature:
• Run rand_points.m to observe uniformly sampled and Sobol’ points.

• Run pi_approx.m with different values of N to see if you observe convergence 
rate of 1/

p
N

dS
dt

= �N - �S - �kIS , S(0) = S0

dI
dt

= �kIS - (r + �)I , I(0) = I0

dR
dt

= rI - �R , R(0) = R0



Steps in Uncertainty Quantification

Challenge:
• How do we do uncertainty quantification for computationally expensive models?

• Example: 

– We have a computational budget of 5000 model evaluations.

– Bayesian inference and uncertainty propagation require 120,000 evaluations.



Surrogate Models: Motivation
Example: Consider the heat equation

Notes:
• Requires approximation of PDE in 3-D

• What would be a simple surrogate? 

t

1 x , y , z

with the response

Boundary Conditions

Initial Conditions

y(q) =

Z 1

0

Z 1

0

Z 1

0

Z 1

0
u(t , x , y , z)dxdydzdt

@u

@t

=
@2

u

@x

2 +
@2

u

@y

2 +
@2

u

@z

2 + f (q)



Surrogate Models: Motivation
Example: Consider the heat equation

with the response

Boundary Conditions

Initial Conditions

y(q) =

Z 1

0

Z 1

0

Z 1

0

Z 1

0
u(t , x , y , z)dxdydzdt

@u

@t

=
@2

u

@x

2 +
@2

u

@y

2 +
@2

u

@z

2 + f (q)

Question: How do you construct a 
polynomial surrogate?
• Regression

• Interpolation

t

1 x , y , z

Surrogate: Quadratic
ys(q) = (q - 0.25)2 + 0.5



Surrogate Models
Recall: Consider the model

Question: How do you construct a 
polynomial surrogate?
• Interpolation

• Regression
M=7
k=2

with the response

Boundary Conditions

Initial Conditions

y(q) =

Z 1

0

Z 1

0

Z 1

0

Z 1

0
u(t , x , y , z)dxdydzdt

@u

@t

=
@2

u

@x

2 +
@2

u

@y

2 +
@2

u

@z

2 + f (q)

t

1 x , y , z

Surrogate: Quadratic
ys(q) = (q - 0.25)2 + 0.5



Data-Fit Models
Notes:
• Often termed response surface models, 
surrogates, emulators, meta-models.

• Rely on interpolation or regression.

• Data can consist of high-fidelity simulations 
or experiments.

• Common techniques: polynomial models, 
Gaussian process (Dirk Husmeier), 
orthogonal polynomials.

Statistical Model: 

y = f(q)

Strategy: Consider high fidelity model 

with M model evaluations

Surrogate:

Note:  k(Q) orthogonal with respect to

inner product associated with pdf

e.g., Q ⇠ N(0, 1): Hermite polynomials

Q ⇠ U(-1, 1): Legendre polynomials

yK (Q) = fs(Q) =
KX

k=0

↵k k(Q)

y = f (q)

ym = f (qm) , m = 1, ... , M

fs(q): Surrogate for f (q)

ym = fs(qm) + "m , m = 1, ... , M



Orthogonal Polynomial Representations
Representation:

yK (Q) =
KX

k=0

↵k k(Q)

Note:  0(Q) = 1 implies that

E[ 0(Q)] = 1

E[ i(Q) j(Q)] =

Z

�
 i(q) j(q)⇢(q)dq

= �ij�i

where �i = E[ 2
i (Q)]

Properties:

(i) E[yK (Q)] = ↵0

(ii) var[yK (Q)] =
KX

k=1

↵2
k�k

Note: Can be used for

• Uncertainty propagation

• Sobol-based global sensitivity 
analysis 

Issue:
• Stochastic Galerkin techniques (Polynomial Chaos Expansion – PCE)

• Nonintrusive PCE (Discrete projection)

• Stochastic collocation

• Regression-based methods with sparsity control (Lasso)

How does one compute ↵k , k = 0, ... , K ?

Note: Methods 
nonintrusive and 
treat code as 
blackbox.



Orthogonal Polynomial Representations:  
Nonintrusive PCE:

to obtain

Take weighted inner product of y(q) =
P1

k=0

↵k k(q)

↵k =
1
�k

Z

�
y(q) k(q)⇢(q)dq

Note: Sample points

↵k ⇡ 1
�k

RX

r=1

y(qr ) k(qr )wr

Note:
(i) Low-dimensional: Tensored 1-D 
quadrature rules – e.g., Gaussian

(ii) Moderate-dimensional: Sparse grid 
(Smolyak) techniques

(iii) High-dimensional: Monte Carlo or 
quasi-Monte Carlo (QMC) techniques

Regression-Based Methods with Sparsity Control (Lasso): Solve

Quadrature:

d = [y(q1) , ... , y(qm)]

{qm}Mm=1
e.g., SPGL1

• MATLAB Solver for large-scale 
sparse reconstruction

⇤ 2 RM⇥(K+1) where ⇤jk =  k(qj)

min

↵2RK+1

k⇤↵- dk2

subject to

KX

k=0

|↵k | 6 ⌧



Stochastic Collocation
Strategy: Consider high fidelity model 

with M model evaluations

Collocation Surrogate:

Note: Result:

ym

Lm(q) =
MY

j=0
j 6=m

q - q j

q m - q j =
(q - q 1) · · · (q - q m-1)(q - q m+1) · · · (q - q M)

(q m - q 1) · · · (q m - q m-1)(q m - q m+1) · · · (q m - q M)

Lm(q j) = �jm =

�
0 , j 6= m
1 , j = m

y = f (q)

ym = f (qm) , m = 1, ... , M

where Lm(q) is a Lagrange polynomial, which in 1-D, is represented by

Y M(q) =
MX

m=1

ymLm(q)

Y M(qm) = ym



Example: SIR Cholera Model
Model: 

dS
dt

= bN - �LS
BL

L + BL
- �HS

BH

H + BH
- bS

dI
dt

= �LS
BL

L + BL
+ �HS

BH

H + BH
- (�+ b)I

dR
dt

= �I - bR

dBH

dt
= ⇠I - �BH

dBL

dt
= �BH - �BL

Model Parameter Symbol Units Values
Rate of drinking BL cholera �L

1
week 1.5

Rate of drinking BH cholera �H
1

week 7.5 (⇤)

BL cholera carrying capacity L
# bacteria

m` 106

BH cholera carrying capacity H
# bacteria

m`
L
700

Human birth and death rate b 1
week

1
1560

Rate of decay from BH to BL � 1
week

168
5

Rate at which infectious individuals ⇠ # bacteria
# individuals·m`·week 70

spread BH bacteria to water
Death rate of BL cholera � 1

week
7

30
Rate of recovery from cholera � 1

week
7
5

δ

BH

BL

βH

βL

I RS
γ

ξ

χ



�L �H
L b � ⇠ �L �
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Example: SIR Cholera Model
Strategy: Employed collocation and discrete projection with sparse grids to 
compute time-dependent global sensitivity indices (Alexanderian and Gremaud) 

Conclusion: Sensitive indices
�: Recovery rate

�H : Rate of drinking BH cholera

L: BL carrying capacity; Note H = L/700

⇠: Rate at which BH bacteria spread
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δ

BH

BL

βH

βL

I RS
γ

ξ

χ

Example: SIR Cholera Model
Model: 

dS
dt

= bN - �LS
BL

L + BL
- �HS

BH

H + BH
- bS

dI
dt

= �LS
BL

L + BL
+ �HS

BH

H + BH
- (�+ b)I

dR
dt

= �I - bR

dBH

dt
= ⇠I - �BH

dBL

dt
= �BH - �BL

Model Parameter Symbol Units Values
Rate of drinking BL cholera �L

1
week 1.5

Rate of drinking BH cholera �H
1

week 7.5 (⇤)

BL cholera carrying capacity L
# bacteria

m` 106

BH cholera carrying capacity H
# bacteria

m`
L
700

Human birth and death rate b 1
week

1
1560

Rate of decay from BH to BL � 1
week

168
5

Rate at which infectious individuals ⇠ # bacteria
# individuals·m`·week 70

spread BH bacteria to water
Death rate of BL cholera � 1

week
7

30
Rate of recovery from cholera � 1

week
7
5



Concluding Remarks
Notes:
• UQ requires a synergy between engineering, statistics, 
and applied mathematics.

• Model calibration, model selection, uncertainty 
propagation and experimental design are natural in a 
Bayesian framework.

• Goal is to predict model responses with quantified and 
reduced uncertainties.

• Parameter selection is critical to isolate identifiable 
and influential parameters.

• Surrogate models critical for computationally intensive 
simulation codes.

• Codes and packages: Sandia Dakota, R, MATLAB, 
Python, nanoHUB.

• Prediction is very difficult, especially if it’s about the 
future, Niels Bohr.
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