Spectral Representation of Random Processes
Example: Represent u(t,x,Q) by
Kt x,Q) Zuk (t, 2)¥p(Q
where ¥ ((Q) are orthogonal polynomials.

Single Random Variable:
Let ¢ (@) be orthogonal with respect to p,(q) with 1 (Q) = 1. Then

Elo(Q)] =
and
B[y, = [ @it
— wzﬂbﬁ
= 045

Normalization factor:

vi = E[Y7 (Q)] = (Vi i),



Spectral Representation of Random Processes

Random Process:




Spectral Representation of Random Processes

Hermite Polynomials: Q ~ IN(0,1)
Ho(Q) =1 , Hi(Q =@ , H(Q) =@*-1
H3(Q)=Q%—-3Q , HiQ)=Q"-6Q%+3

with the weight
1

Pa(q) = Nor:

Normalization factor: ; =/¢2(q)pQ(q)dq=z’!
R

_2
o4 /2

Legendre Polynomials: @ ~ U(—1,1)

3 1

R =1, PQ=Q , Pz(Q)=§Q2—§
5} 3 35 15 3
PS(Q):§Q3_§Q ; P4(Q):§Q4—ZQ2+§7

with the weight

palq) = %



Spectral Representation of Random Processes

Multiple Random Variables:

Definition: (p-Dimensional Multi-Index): a p-tuple

K = (ky, - k) € NP

of non-negative integers is termed a p-dimensional multi-index with magnitude
k'| = k1 + ko + -+ + k, and satisfying the ordering j/ < k' < j; < k; for
i=1,--,p.

Consider the p-variate basis functions

\Iji’(Q) — wil (Ql)a e 7wip (Qp)
which satisfy
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Spectral Representation of Random Processes

uF(t2,Q) = ) we(t,2) Ui (Q)
uf Q) = ) un(t, z)Ur(Q)

Multi-Index Representation:
Single Index Representation:




Scalar Initial Value Problem

Problem:
du
— = I (t t >0
. ft,Q,u), t>
u(0,Q) = ug

Quantity of Interest:

) = [ ult.pala)da
r
Finite-Dimensional Representation:

K
K (1,0) = 3 ur () ¥(Q)
k=0

where

1

wn(t) = / ult, ) Vi(@)po(@)dq



Stochastic Galerkin Method

Weak Stochastic Formulation: For i=0, ..., K

(o)
:/F[ d;;’f()xpk (tqZuk )Tk (q )

k=0

Vi(q)pe(q)dg

which is equivalent to

i [duK(t, Q)
dt

Quadrature yields

w@)] “E[f (0. u") ¥,(Q)

R K K
> Wi pald e [ W) - S (t,qr,zuku)wk(qﬂ)] =0

r=1 k’:O



Stochastic Galerkin Method

Example: Consider
d_u
dt
u(0,w) =

where 3 is fixed and o ~ N (&, 02) with & > 0. Here

= —a(w)u

N
azozszoznwn(Q) , Qg = Q, 0 = 0q, 0 =0,n>1
n=0

N
5:6N:Z/Bn¢n(Q) 7602876n207n>0
n=0

Analytic solution:

u(t, Q) = Be(@to Q)



Stochastic Galerkin Method

Approximate solution: Find

K
= > ur(t)vr(@)
k=0
subject to
. du®™ N, K
0 <W Tty ‘”2>p
K du K
_ / >~ S Ovn(@)vila)pala)da + / o™ S (k@) i(a)pe(@)da
R k=0 R k=0
which is equivalent to Initial Conditions:
duz __lez&nuk €ink uk(O):Bk, k:O77K
n=0 k=0 since X« N
where uf(0,Q) = > ur(0)yr(Q) = 8= Butbn(q)
k=0 n=1

2(Q)] = / $2(@)po(@)dq

€ink :E[wz( )wn( /% wn )wk’( )pQ( )d



Stochastic Galerkin Method

Note: To evaluate Qol, we observe that
E [u™(t,Q)] = uo(t)

K
var[u® (t,Q)] = Y ui () nk
k=1

Exact Mean and Variance:

1
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Stochastic Galerkin Method

Properties:
« Accuracy is optimal in L2 sense.
« Disadvantages

» Method is intrusive and hence difficult to implement with legacy
codes or codes for which only executable is available.

= Method requires densities with associated orthogonal polynomials.
These can sometimes be constructed from empirical histograms.

= Method requires mutually independent parameters.



Stochastic Collocation

Strategy: Using either deterministic or stochastic techniques, generate M
samples from parameter space and enforce

u(t,q™) = u" (¢, q™)

Vandemonde System:

Issues: System typically ill-conditioned and dense
Alternative Strategy: Employ Lagrange basis functions which yield identity and
um (t) = u(t,q¢™) for m=1,---M

Equivalent Formulation: Employ ¥,(q) = Lx(q) and take ¢™ = ¢" to get

dum,
%(t):f(taqmvum) ) mzla 7M



Stochastic Collocation

Properties:

 Whereas motivated in the context of a Galerkin method, collocation is
based on interpolation theory.

« Advantages

= Method is nonintrusive in the sense that once M collocation points
are specified, one solves M deterministic problems using existing
software.

= Method is applicable to general parameter distributions with
correlated parameters.

= Algorithms available in Sandia Dakota package.

« Disadvantages

= Evaluation of Qol typically requires sampling from joint distribution,
which may not be available.



Discrete Projection Method

Problem:
du
t
. = f(t,Qu), t>0
u(0,Q) = ug

Finite-Dimensional Representation:

= > u(t)¥5(Q)
k=0
where
wi(t) = $ / ult, ) Vi(q)po(@)dq

Discrete Projection (Pseudo-spectral):

u(t,q")V(q
%; ")pe(q ) w"



Discrete Projection Method

Example: We revisit the spring model

d? d
mdtj + Cdi + kz = fo cos(wpt)
dz
2(0) = zp , %(0) =2

with the response
1

V (k= mwE)? + (cwr)?

y(va Q) —

where Q ~ N(q, V)
Parameters:
m=m¥o(Q) +0m¥1(Q) =M + 01,Q1
cVo(Q) +0.V2(Q) =Cc+0.Q
k=k¥o(Q)+ 0p¥s3(Q) =k + 01Q3
where V4 (Q) = ¥, (Q1)¥k, (Q2)Yk, (Q3) are tensored Hermite polynomials.



Discrete Projection Method

Approximated Response'

®(wr, Q) Zyk wr) Yk (Q

where
1
e (wr) = % / y(wr @) ¥n(a)po(q)da
Ry, Re, R,
S‘ Y y(wr, ¢ Uk(G7)pe(d")wy
and 1= 17’2 17‘3 1
1 3 2 2 2
po(q) = <—\/ﬁ) e~ /2emC 2=k /2
Note:

J(wr) = yo(wr)

B wr, Q)] =) yplwr)

var [y

1



Discrete Projection Method

Results:
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Discrete Projection

Properties:
« Advantages

= Like collocation, the method is nonintrusive and hence can be
employed with post-processing to existing codes. The method is
often referred to as nonintrusive PCE.

= Algorithms available in Sandia Dakota package.
« Disadvantages

» Requires the construction of the joint density which often relies on
mutually independent parameters.



Boundary Value Problems and Elliptic PDE
Model:

N(u,Q)=F(@Q) ,ze€D
B(u,Q) =G(Q) , x€0dD

Quantity of Interest:

@)= [ ule,pala)da
r
Deterministic Weak Formulation: Find v € V', which satisfies

/Nu Q)S d:U—/ F(Q)vdx forallveV

Stochastic Weak Formulation: Find ©v € V ® Z that satisfies

/F/DN(U,Q)S(U(m))Z(Q)pQ(Q)dwdq:ALF(Q)U($)Z(Q)pQ(Q)dmdq

for all test functionsv e V,z € Z



Boundary Value Problems and Elliptic PDE

Approximated Solution:

K
K (2,Q) = 3 (@) ¥i(Q)
k=0

= ) uind;(x)Vi(Q).

k=0 j5=1

Galerkin Method:

R
> Wil(q")po(q")w” /DN<ZZujkébj(x)‘l’k(f)’qr>5(¢€($)>dx

k=0 j=1



Boundary Value Problems and Elliptic PDE

Collocation: Enforce
J
u(z, ™) = u(x,q™) =) ujmd;(x)
j=1

at M collocation points to yield M relations

/D N (Zumqﬁj(x),qm) S(¢u(x))dz = /D F(q™)py(x)da
fore=1,---,J

Quantity of Interest:
R J

y=> wpolq")d  ujrd;(x)

= Z w" po(q" )i ()

r=1



