Example: Represent u(t,x,Q) by

$$u^{K}(t, x, Q) = \sum_{k=0}^{K} u_{k}(t, x) \Psi_{k}(Q)$$

where $\Psi_k(Q)$ are orthogonal polynomials.

Single Random Variable:

Let $\psi_k(Q)$ be orthogonal with respect to $\rho_Q(q)$ with $\psi_0(Q)=1$. Then

$$\mathbb{E}[\psi_0(Q)] = 1$$

and

$$\mathbb{E}[\psi_i(Q)\psi_j(Q)] = \int_{\Gamma} \psi_i(q)\psi_j(q)\rho_Q(q)dq$$
$$= \langle \psi_i, \psi_j \rangle_{\rho}$$
$$= \delta_{ij}\gamma_i$$

Normalization factor:

$$\gamma_i = \mathbb{E}[\psi_i^2(Q)] = \langle \psi_i, \psi_i \rangle_{\rho}$$

Random Process:

$$\mathbb{E}\left[u^{K}(t,x,Q)\right] = \mathbb{E}\left[\sum_{k=0}^{K} u_{k}(t,x)\psi_{k}(Q)\right]$$

$$= u_{0}(t,x)\mathbb{E}[\psi_{0}(Q)] + \sum_{k=1}^{K} u_{k}(t,x)\mathbb{E}[\psi_{k}(Q)]$$

$$= u_{0}(t,x)$$

$$\operatorname{var}[u^{K}(t,x,Q)] = \mathbb{E}\left[\left(u^{K}(t,x,Q) - \mathbb{E}[u^{K}(t,x,Q)]\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\sum_{k=0}^{K} u_{k}(t,x)\psi_{k}(Q) - u_{0}(t,x)\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\sum_{k=1}^{K} u_{k}(t,x)\psi_{k}(Q)\right)^{2}\right]$$

$$= \sum_{k=0}^{K} u_{k}^{2}(t,x)\gamma_{k}$$

Hermite Polynomials: $Q \sim N(0,1)$

$$H_0(Q) = 1$$
 , $H_1(Q) = Q$, $H_2(Q) = Q^2 - 1$
 $H_3(Q) = Q^3 - 3Q$, $H_4(Q) = Q^4 - 6Q^2 + 3$

with the weight

$$\rho_Q(q) = \frac{1}{\sqrt{2\pi}} e^{-q^2/2}$$

Normalization factor: $\gamma_i = \int_{\mathbb{R}} \psi^2(q) \rho_{\scriptscriptstyle Q}(q) dq = i!$

Legendre Polynomials: $Q \sim \mathcal{U}(-1,1)$

$$P_0(Q) = 1$$
 , $P_1(Q) = Q$, $P_2(Q) = \frac{3}{2}Q^2 - \frac{1}{2}$
 $P_3(Q) = \frac{5}{2}Q^3 - \frac{3}{2}Q$, $P_4(Q) = \frac{35}{8}Q^4 - \frac{15}{4}Q^2 + \frac{3}{8}$

with the weight

$$\rho_Q(q) = \frac{1}{2}$$

Multiple Random Variables:

Definition: (p-Dimensional Multi-Index): a p-tuple

$$\mathbf{k}' = (k_1, \cdots, k_p) \in \mathbb{N}_0^p$$

of non-negative integers is termed a p-dimensional multi-index with magnitude $|\mathbf{k}'| = k_1 + k_2 + \cdots + k_p$ and satisfying the ordering $\mathbf{j}' \leq \mathbf{k}' \Leftrightarrow j_i \leq k_i$ for $i = 1, \dots, p$.

Consider the p-variate basis functions

$$\Psi_{\mathbf{i}'}(Q) = \psi_{i_1}(Q_1), \cdots, \psi_{i_p}(Q_p)$$

which satisfy

$$\mathbb{E}[\Psi_{\mathbf{i}'}(Q)\Psi_{\mathbf{j}'}(Q)] = \int_{\Gamma} \Psi_{\mathbf{i}'}(q)\Psi_{\mathbf{j}'}(q)\rho_{Q}(q)dq$$
$$= \langle \Psi_{\mathbf{i}'}, \Psi_{\mathbf{j}'} \rangle_{\rho}$$
$$= \delta_{\mathbf{i}'\mathbf{i}'}\gamma_{\mathbf{i}'}$$

Multi-Index Representation:

$$u^{K}(t, x, Q) = \sum_{|\mathbf{k}'|=0}^{K} u_{\mathbf{k}'}(t, x) \Psi_{\mathbf{k}'}(Q)$$

Single Index Representation:

$$u^{K}(t, x, Q) = \sum_{k=0}^{K} u_{k}(t, x) \Psi_{k}(Q)$$

\overline{k}	$ \mathbf{k}' $	Multi-Index	Polynomial
0	0	(0,0,0)	$\psi_0(Q_1)\psi_0(Q_2)\psi_0(Q_3)$
1	1	(1,0,0)	$\psi_1(Q_1)\psi_0(Q_2)\psi_0(Q_3)$
2		(0, 1, 0)	$\psi_0(Q_1)\psi_1(Q_2)\psi_0(Q_3)$
3		(0, 0, 1)	$\psi_0(Q_1)\psi_0(Q_2)\psi_1(Q_3)$
4	2	(2,0,0)	$\psi_2(Q_1)\psi_0(Q_2)\psi_0(Q_3)$
5		(1, 1, 0)	$\psi_1(Q_1)\psi_1(Q_2)\psi_0(Q_3)$
6		(1, 0, 1)	$\psi_1(Q_1)\psi_0(Q_2)\psi_1(Q_3)$
7		(0, 2, 0)	$\psi_0(Q_1)\psi_2(Q_2)\psi_0(Q_3)$
8		(0, 1, 1)	$\psi_0(Q_1)\psi_1(Q_2)\psi_1(Q_3)$
9		(0, 0, 2)	$\psi_0(Q_1)\psi_0(Q_2)\psi_2(Q_3)$

Scalar Initial Value Problem

Problem:

$$\frac{du}{dx} = f(t, Q, u) , t > 0$$
$$u(0, Q) = u_0$$

Quantity of Interest:

$$y(t) = \int_{\Gamma} u(t, q) \rho_{Q}(q) dq$$

Finite-Dimensional Representation:

$$u^K(t,Q) = \sum_{k=0}^K u_k(t)\Psi_k(Q)$$

where

$$u_k(t) = \frac{1}{\gamma_k} \int_{\Gamma} u(t, q) \Psi_k(q) \rho_Q(q) dq$$

Weak Stochastic Formulation: For i=0, ..., K

$$0 = \left\langle \frac{du^K}{dt} - f, \Psi_i \right\rangle_{\rho}$$

$$= \int_{\Gamma} \left[\sum_{k=0}^K \frac{du_k}{dt}(t) \Psi_k(q) - f\left(t, q, \sum_{k=0}^K u_k(t) \Psi_k(q)\right) \right] \Psi_i(q) \rho_Q(q) dq$$

which is equivalent to

$$\mathbb{E}\left[\frac{du^{K}(t,Q)}{dt}\Psi_{i}(Q)\right] = \mathbb{E}\left[f\left(t,Q,u^{K}\right)\Psi_{i}(Q)\right]$$

Quadrature yields

$$\sum_{r=1}^{R} \Psi_{i}(q^{r}) \rho_{Q}(q^{r}) w^{r} \left[\sum_{k=0}^{K} \frac{du_{k}}{dt}(t) \Psi_{k}(q^{r}) - f\left(t, q^{r}, \sum_{k=0}^{K} u_{k}(t) \Psi_{k}(q^{r})\right) \right] = 0$$

Example: Consider

$$\frac{du}{dt} = -\alpha(\omega)u$$
$$u(0,\omega) = \bar{\beta}$$

where $\bar{\beta}$ is fixed and $\alpha \sim N(\bar{\alpha}, \sigma_{\alpha}^2)$ with $\bar{\alpha} > 0$. Here

$$\alpha = \alpha^N = \sum_{n=0}^N \alpha_n \psi_n(Q) \quad , \ \alpha_0 = \bar{\alpha}, \alpha_1 = \sigma_\alpha, \alpha_n = 0, n > 1$$
$$\beta = \beta^N = \sum_{n=0}^N \beta_n \psi_n(Q) \quad , \ \beta_0 = \bar{\beta}, \beta_n = 0, n > 0$$

Analytic solution:

$$u(t,Q) = \bar{\beta}e^{-(\bar{\alpha} + \sigma_{\alpha}Q)t}$$

Approximate solution: Find

$$u^K(t,Q) = \sum_{k=0}^K u_k(t)\psi_k(Q)$$

subject to

$$0 = \left\langle \frac{du^K}{dt} + \alpha^N u^K, \psi_i \right\rangle_{\rho}$$

$$= \int_{\mathbb{R}} \sum_{k=0}^K \frac{du_k}{dt}(t) \psi_k(q) \psi_i(q) \rho_Q(q) dq + \int_{\mathbb{R}} \alpha^N \sum_{k=0}^K u_k(t) \psi_k(q) \psi_i(q) \rho_Q(q) dq$$

which is equivalent to

$$\frac{du_i}{dt} = -\gamma_i \sum_{n=0}^{N} \sum_{k=0}^{K} \alpha_n u_k(t) e_{ink}$$

where

$$\gamma_i = \mathbb{E}[\psi_i^2(Q)] = \int_{\mathbb{R}} \psi_i^2(q) \rho_Q(q) dq$$

$$e_{ink} = \mathbb{E}[\psi_i(q)\psi_n(q)\psi_k(q)] = \int_{\mathbb{R}} \psi_i(q)\psi_n(q)\psi_k(q)\rho_Q(q)dq$$

Initial Conditions:

$$u_k(0) = \beta_k , k = 0, \cdots, K$$

$$u^{K}(0,Q) = \sum_{k=0}^{K} u_{k}(0)\psi_{k}(Q) = \beta = \sum_{n=1}^{N} \beta_{n}\psi_{n}(q)$$

Note: To evaluate QoI, we observe that

$$\mathbb{E}\left[u^K(t,Q)\right] = u_0(t)$$
$$\operatorname{var}[u^K(t,Q)] = \sum_{k=1}^K u_k^2(t)\gamma_k.$$

Exact Mean and Variance:

$$\bar{u}(t) = \int_{\mathbb{R}} \bar{\beta} e^{-(\bar{\alpha} + \sigma_{\alpha}q)t} \cdot \frac{1}{\sqrt{2\pi}} e^{-q^2/2} dq \qquad \text{var}[u] = \mathbb{E}\left[u^2(t)\right] - \bar{u}^2(t)$$
$$= \bar{\beta} e^{-\bar{\alpha}t} e^{\sigma_{\alpha}^2 t^2/2} \qquad = e^{-2\bar{\alpha}t} \bar{\beta}^2 \left(e^{2\sigma_{\alpha}^2 t^2} - e^{2\bar{\alpha}t} \bar{\beta}^2\right)$$

$$var[u] = \mathbb{E}\left[u^{2}(t)\right] - \bar{u}^{2}(t)$$
$$= e^{-2\bar{\alpha}t}\bar{\beta}^{2}\left(e^{2\sigma_{\alpha}^{2}t^{2}} - e^{-\sigma_{\alpha}^{2}t^{2}}\right)$$

Properties:

- Accuracy is optimal in L2 sense.
- Disadvantages
 - Method is intrusive and hence difficult to implement with legacy codes or codes for which only executable is available.
 - Method requires densities with associated orthogonal polynomials.
 These can sometimes be constructed from empirical histograms.
 - Method requires mutually independent parameters.

Stochastic Collocation

Strategy: Using either deterministic or stochastic techniques, generate M samples from parameter space and enforce

$$u(t, q^m) = u^K(t, q^m)$$

Vandemonde System:

$$\begin{bmatrix} \Psi_0(q^1) & \cdots & \Psi_K(q^1) \\ \vdots & & \vdots \\ \Psi_0(q^M) & \cdots & \Psi_K(q^M) \end{bmatrix} \begin{bmatrix} u_0(t) \\ \vdots \\ u_K(t) \end{bmatrix} = \begin{bmatrix} u(t,q^1) \\ \vdots \\ u(t,q^M) \end{bmatrix}$$

Issues: System typically ill-conditioned and dense

Alternative Strategy: Employ Lagrange basis functions which yield identity and

$$u_m(t) = u(t, q^m)$$
 for $m = 1, \cdots M$

Equivalent Formulation: Employ $\Psi_i(q) = L_k(q)$ and take $q^m = q^r$ to get

$$\frac{du_m}{dt}(t) = f(t, q^m, u_m) , m = 1, \cdots, M$$

Stochastic Collocation

Properties:

- Whereas motivated in the context of a Galerkin method, collocation is based on interpolation theory.
- Advantages
 - Method is nonintrusive in the sense that once M collocation points are specified, one solves M deterministic problems using existing software.
 - Method is applicable to general parameter distributions with correlated parameters.
 - Algorithms available in Sandia Dakota package.
- Disadvantages
 - Evaluation of QoI typically requires sampling from joint distribution, which may not be available.

Problem:

$$\frac{du}{dx} = f(t, Q, u) , t > 0$$

$$u(0, Q) = u_0$$

Finite-Dimensional Representation:

$$u^K(t,Q) = \sum_{k=0}^K u_k(t)\Psi_k(Q)$$

where

$$u_k(t) = \frac{1}{\gamma_k} \int_{\Gamma} u(t, q) \Psi_k(q) \rho_Q(q) dq$$

Discrete Projection (Pseudo-spectral):

$$u_k(t) = \frac{1}{\gamma_k} \sum_{r=1}^{R} u(t, q^r) \Psi_k(q^r) \rho_Q(q^r) w^r$$

Example: We revisit the spring model

$$m\frac{d^2z}{dt^2} + c\frac{dz}{dt} + kz = f_0 \cos(\omega_F t)$$
$$z(0) = z_0 , \frac{dz}{dt}(0) = z_1$$

with the response

$$y(\omega_F, Q) = \frac{1}{\sqrt{(k - m\omega_F^2)^2 + (c\omega_F)^2}}$$

where $Q \sim N(\bar{q}, V)$

Parameters:

$$m = \bar{m} \, \Psi_0(Q) + \sigma_m \Psi_1(Q) = \bar{m} + \sigma_m Q_1$$

$$c = \bar{c} \, \Psi_0(Q) + \sigma_c \Psi_2(Q) = \bar{c} + \sigma_c Q_2$$

$$k = \bar{k} \, \Psi_0(Q) + \sigma_k \Psi_3(Q) = \bar{k} + \sigma_k Q_3$$

where $\Psi_k(Q) = \psi_{k_1}(Q_1)\psi_{k_2}(Q_2)\psi_{k_3}(Q_3)$ are tensored Hermite polynomials.

Approximated Response:

$$y^K(\omega_F, Q) = \sum_{k=0}^K y_k(\omega_F) \Psi_k(Q)$$

where

$$y_{k}(\omega_{F}) = \frac{1}{\gamma_{k}} \int_{\mathbb{R}^{3}} y(\omega_{F}, q) \Psi_{k}(q) \rho_{Q}(q) dq$$

$$\approx \frac{1}{\gamma_{k}} \sum_{r_{1}=1}^{R_{\ell_{1}}} \sum_{r_{2}=1}^{R_{\ell_{2}}} \sum_{r_{3}=1}^{R_{\ell_{3}}} y(\omega_{F}, q^{r}) \Psi_{k}(q^{r}) \rho_{Q}(q^{r}) w_{\ell}^{r}$$

and

$$\rho_Q(q) = \left(\frac{1}{\sqrt{2\pi}}\right)^3 e^{-m^2/2} e^{-c^2/2} e^{-k^2/2}$$

Note:

$$\bar{y}(\omega_F) = y_0(\omega_F)$$

$$\operatorname{var}\left[y^K(\omega_F, Q)\right] = \sum_{k=1}^K y_k(\omega_F)\gamma_k$$

Results:

Discrete Projection

Properties:

- Advantages
 - Like collocation, the method is nonintrusive and hence can be employed with post-processing to existing codes. The method is often referred to as nonintrusive PCE.
 - Algorithms available in Sandia Dakota package.
- Disadvantages
 - Requires the construction of the joint density which often relies on mutually independent parameters.

Boundary Value Problems and Elliptic PDE

Model:

$$\mathcal{N}(u,Q) = F(Q) \quad , \ x \in \mathcal{D}$$
 $B(u,Q) = G(Q) \quad , \ x \in \partial \mathcal{D}$

Quantity of Interest:

$$y(x) = \int_{\Gamma} u(x, q) \rho_{\mathcal{Q}}(q) dq$$

Deterministic Weak Formulation: Find $u \in V$, which satisfies

$$\int_{\mathcal{D}} N(u,Q)S(v)dx = \int_{\mathcal{D}} F(Q)vdx \quad \text{for all } v \in V$$

Stochastic Weak Formulation: Find $u \in V \otimes Z$ that satisfies

$$\int_{\Gamma} \int_{\mathcal{D}} N(u,q) S(v(x)) z(q) \rho_{\mathcal{Q}}(q) dx dq = \int_{\Gamma} \int_{\mathcal{D}} F(q) v(x) z(q) \rho_{\mathcal{Q}}(q) dx dq$$

for all test functions $v \in V, z \in Z$

Boundary Value Problems and Elliptic PDE

Approximated Solution:

$$u^{K}(x,Q) = \sum_{k=0}^{K} u_{k}(x)\Psi_{k}(Q)$$
$$= \sum_{k=0}^{K} \sum_{j=1}^{J} u_{jk}\phi_{j}(x)\Psi_{k}(Q).$$

Galerkin Method:

$$\sum_{r=1}^{R} \Psi_i(q^r) \rho_Q(q^r) w^r \int_{\mathcal{D}} N\left(\sum_{k=0}^{K} \sum_{j=1}^{J} u_{jk} \phi_j(x) \Psi_k(q^r), q^r\right) S(\phi_\ell(x)) dx$$

$$= \sum_{r=1}^{R} \Psi_i(q^r) \rho_Q(q^r) w^r \int_{\mathcal{D}} F(q^r) \phi_\ell(x) dx$$

Quantity of Interest:

$$y(x) = \sum_{r=1}^{R} w^{r} \rho_{Q}(q^{r}) \sum_{k=0}^{K} \sum_{j=1}^{J} u_{jk} \phi_{j}(x) \Psi_{k}(q^{r})$$

Boundary Value Problems and Elliptic PDE

Collocation: Enforce

$$u(x, q^m) = u^K(x, q^m) = \sum_{j=1}^{J} u_{jm} \phi_j(x)$$

at M collocation points to yield M relations

$$\int_{\mathcal{D}} N\left(\sum_{j=1}^{J} u_{jm}\phi_j(x), q^m\right) S(\phi_{\ell}(x)) dx = \int_{\mathcal{D}} F(q^m)\phi_{\ell}(x) dx$$

for
$$\ell=1,\cdots,J$$

Quantity of Interest:

$$y = \sum_{r=1}^{R} w^{r} \rho_{Q}(q^{r}) \sum_{j=1}^{J} u_{jr} \phi_{j}(x)$$

$$= \sum_{r=1}^{R} w^r \rho_Q(q^r) \hat{u}_r(x)$$