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Appendix C

Legendre Transforms,

Calculus of Varations, and

Mechanics Principles

C.1 Legendre Transforms

Legendre transforms map functions in a vector space to functions in the dual space.
From a theoretical perspective, they play a fundamental role in the construction
of dual Banach spaces in functional analysis and the concepts of tangential coor-
dinates and projective duality in algebraic geometry. Within the realm of model
development for smart systems, Legendre transforms are employed when defining
thermodynamic potentials and establishing the correspondence between Lagrangian
and Hamiltonian frameworks for dynamic systems.

Definitions

A function f is termed convex if

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y)

for all x and y within the domain and all α, 0 < α < 1 — see Figure C.1. The
definition is geometric and does not require that f be differentiable. If sufficiently
smooth, however, f will be convex if and only if f ′′(x) ≥ 0.

(Lf)(p)

x

(b)(a)

y=xp

f’ =p)( px

Figure C.1. Convex functions f which are (a) differentiable throughout the domain
and (b) nondifferentiable at points in the domain.
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438 Appendix C. Legendre Transforms, Calculus of Variations, Mechanics Principles

Let f : R
1 → R

1 be a convex function. The Legendre transform g(p) = (Lf)(p)
is defined by

(Lf)(p) = sup
x

[xp− f(x)].

Note that this specifies x = g(p) as a function of p. If f is differentiable, the
Legendre transform can be expressed as

(Lf)(p) = max
x

[xp− f(x)]

= xpp− f(xp)

where xp solves
p = f ′(xp). (C.1)

The existence and uniqueness of xp in this case is due to the convexity of f .
If we employ a dot product rather than the scalar product, the analogous

definition
(Lf)(p) = sup

x
[x · p− f(x)] (C.2)

holds for convex f : R
n → R

1.

Properties

Two properties of the Legendre transform are of fundamental importance for
both analysis and applications: (i) it maps convex functions to convex functions,
and (ii) the Legendre transform is self-dual or an involution. The first plays a
fundamental role in the optimization of energy relations since it dictates the manner
through which minimum energy states for one energy definition are related to those
of its transform. The second property states that L(Lf) = f . For differentiable
functions, this follows from the property that if p and x are related by p = f ′(x),
then x = g′(p). Proofs and ramifications of these properties can be found in [15].

Further attributes of the Legendre transform in 1-D are illustrated by the
following examples.

Example 1. Let f(x) = x2. From the condition p = 2x, it follows that

g(p) = (Lf)(p) =
p2

2
− p2

4
=
p2

4
.

Example 2. Let f(v) = 1

2
mv2 denote the kinetic energy for a particle of mass m.

The necessary condition (C.1) yields the momentum equation

p = mv.

The Legendre transform in this case is

g(p) =
p2

2m
.
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C.2. Principles from the Calculus of Variations 439

Further ramifications of this relation for Hamiltonian mechanics formulations will
be provided in Section C.3.

Example 3. Consider the elastic Helmholtz energy relation

ψ(ε) =
1

2
Y ε2

which results from (2.18) when polarization is neglected and strains ε are restricted
to 1-D. The negative Legendre transform is

−(Lψ)(σ) = −
[
σ2

Y
− 1

2

( σ
Y

)2
]

= −1

2
sσ2

where σ is an applied stress and s = 1

Y
is the 1-D compliance. Comparison with

(2.22) illustrates that
G(σ) = −(Lψ)(σ)

defines the elastic Gibbs energy for the system. Similarly, it is shown in Section 2.2.3
that G(E) = −(Lψ)(E) for the Helmholtz energy ψ(P ) = 1

2
αP 2.

C.2 Principles from the Calculus of Variations

To provide fundamental relations used when establishing the Lagrange mechan-
ics framework in Section C.3, we summarize selected principles pertaining to the
calculus of variations. Additional details can be found in [15, 307,505].

Gateaux and Fréchet Differentials

Calculus of variations is concerned with the extrema of functionals so we
begin with a summary of differential theory for vector spaces. Throughout this
discussion, X is a vector space, Y is a normed space, and T : D ⊂ X → Y is a
(possibly nonlinear) transformation. For the case Y = R, the transformation is a
real-valued functional which we will denote by J .

Definition C.2.1. Consider x ∈ D ⊂ X and arbitrary η ∈ X. If the limit

δT (x; η) = lim
ǫ→0

1

ǫ
[T (x+ ǫη) − T (x)]

exists for each η ∈ X, T is said to be Gateaux differentiable at x and δT (x; η) is
termed the Gateaux differential of T at x with increment or perturbation η.

For functionals J , the Gateaux differential, when it exists, is

δJ(x; η) =
d

dǫ
J(x + ǫη)

∣∣
ǫ=0

.

Note that for each fixed x ∈ D, δJ(x; η) is a functional with respect to η ∈ X .
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440 Appendix C. Legendre Transforms, Calculus of Variations, Mechanics Principles

Definition C.2.2. T is said to be Fréchet differentiable at x ∈ D in the normed
space X if for each η ∈ X, there exists δT (x; η) ∈ Y which is linear, continuous
with respect to η, and satisfies

lim
‖η‖→0

‖T (x+ η) − T (x) − δT (x; η)‖
‖η‖ = 0.

When it exists, δT (x; η) is termed the Fréchet differential of T at x with increment η.

The Gateaux differential generalizes the concept of directional derivatives
whereas the Fréchet differential generalizes the definition of differentiability. Be-
cause the Gateaux differential requires no norm on X , it cannot be directly used to
establish continuity and is significantly weaker than the Fréchet differential. This
is illustrated by the calculus example

f(x, y) =

{
0 , (x, y) ∈ Ω1 = {(x, y) | y 6= x2 or x = y = 0}
1 , (x, y) ∈ Ω2 = {(x, y) | y = x2 and x 6= 0, y 6= 0}.

All directional derivatives exist at (0, 0) but the function is both discontinuous and
nondifferentiable at that point.

We note that the existence of the Fréchet differential implies the existence of
the Gateaux differential in which case the two will be equal.

Extrema of Functionals

The following theorem establishes a necessary condition for a functional to
have an extremum (minimum or maximum) at the point x0.

Theorem C.1. Let the functional J : X → R have a Gateaux differential δJ(x; η).
If J has an extremum at x0, then δJ(x0; η) = 0 for all η ∈ X.

Proof. If J has an extremum at x0, it follows that the function J(x0 + ǫη) of the
real variable ǫ has an extremum at ǫ = 0. This implies that

d

dǫ
J(x0 + ǫη)

∣∣
ǫ=0

= 0

and hence δ(x0; η) = 0. 2

Points x0 at which extrema occur are termed stationary points. We note that in
the context of mechanics, Theorem C.1 is often referred to as Hamilton’s principle
or Hamilton’s principle of least motion.

Euler–Lagrange Equations

Consider the problem of finding a function x which minimizes the functional

J =

∫ t1

t0

L[x(t), ẋ(t), t]dt. (C.3)
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C.2. Principles from the Calculus of Variations 441

The function L is assumed to be continuous in x, ẋ, t and have continuous partial
derivatives with respect to x and ẋ. We also assume that the endpoints x(t0) and
x(t1) are fixed.

To specify the admissible class of solutions, we consider variations of the form

x̂(t) = x(t) + ǫη(t)

where η satisfies
(i) η ∈ C1[t0, t1]

(ii) η(t0) = η(t1) = 0.
(C.4)

The first criterion guarantees the continuity of solutions and their temporal deriva-
tives whereas the second guarantees that

x̂(t0) = x(t0) , x̂(t1) = x(t1)

in accordance with the condition of fixed endpoints. The second condition is de-
picted in Figure C.2.

The Gateaux differential is

δJ(x; η) =
d

dǫ

∫ t1

t0

L (x+ ǫη, ẋ+ ǫη̇, t) dt
∣∣
ǫ=0

=

∫ t1

t0

∂L
∂x

(x, ẋ, t)η(t)dt +

∫ t1

t0

∂L
∂ẋ

(x, ẋ, t)η̇(t)dt

which can be verified to be a Fréchet differential. Under the assumption that d
dt

∂L
∂ẋ

exists and is continuous, integration by parts and application of Theorem C.1 yields

δJ(x; η) =

∫ t1

t0

[
∂L
∂x

(x, ẋ, t) − d

dt

∂L
∂ẋ

(x, ẋ, t)

]
η(t)dt+

∂L
∂ẋ

(x, ẋ, t)η(t)

∣∣∣∣
t1

t0

=

∫ t1

t0

[
∂L
∂x

(x, ẋ, t) − d

dt

∂L
∂ẋ

(x, ẋ, t)

]
η(t)dt

= 0

which must hold for all η satisfying the admissibility conditions (C.4). Because η is
continuous, it follows that the optimal x must satisfy the Euler–Lagrange equation

d

dt

∂L
∂ẋ

(x, ẋ, t) − ∂L
∂x

(x, ẋ, t) = 0. (C.5)

t t

+

0 1

x

εηx

Figure C.2. Admissible variations in the trajectory x.
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442 Appendix C. Legendre Transforms, Calculus of Variations, Mechanics Principles

A derivation of (C.5) which relaxes the a priori continuity condition on d
dt

∂L
∂ẋ

is
provided in [307].

Example 4. Let x = R and take L(x, ẋ, t) =
√

1 + ẋ2 so that

J =

∫ t1

t0

√
1 + ẋ2dt

defines the length of the curve between the endpoints x(t0) and x(t1). Here ∂L
∂x

= 0

and ∂L
∂ẋ

= ẋ√
1+ẋ2

so the Euler–Lagrange equation is

d

dt

(
ẋ√

1 + ẋ2

)
= 0.

Integration yields ẋ = c1 and hence x(t) = c1t + c2. As expected, the length is
minimized by a straight line with c1 and c2 determined by x(t0) and x(t1).

C.3 Classical, Lagrangian and Hamiltonian
Mechanics

We summarize here basic tenets of classical, Lagrangian and Hamiltonian mechanics
to provide aspects of the framework employed when constructing constitutive and
structural models for smart material systems.

Classical Mechanics

Classical or Newtonian mechanics can be described as the physics of forces
or moments acting on a body. To simplify the discussion, we consider only forces
acting on a point particle of mass m and refer the reader to [15] for discussion
regarding more complex systems. We let r = r(x1, x2, x3, t) denote the position of
the particle and v = ṙ denote its velocity.

One of the cornerstones of classical mechanics is Newton’s second law

F =
d

dt
(mv) (C.6)

which states that the change in momentum p = mv is equal to the sum of all
applied forces. When the mass is time invariant, this yields the familiar relation

F = ma.

Three scalar quantities which are fundamental for quantifying the static and
dynamic response of the body are the work, kinetic energy and potential energy.
The work dW caused by a force F acting for a distance dr is

dW = F · dr
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C.3. Classical, Lagrangian and Hamiltonian Mechanics 443

so the total work required to move a particle from point P1 to point P2 along a
path γ is

W =

∫

γ

F · dr.

The kinetic energy K is quantified by the quadratic form

K =
1

2
m|v|2 =

1

2
v · v.

The change in potential energy is defined in terms of the work required to move the
particle from P1 to P2 in a conservative force field — hence

∮
F · dr = 0 for any

closed path. If we denote the potential energy at the endpoints by U1 and U2, then

U2 − U1 = −W.

For conservative forces F, the potential energy is related to the force by the gradient
relation

F = −∇U. (C.7)

In 1-D, one can integrate (C.7) to obtain

U(x) = −
∫ x

x0

F (s)ds;

however, in 2-D and 3-D this is not always possible. The negative sign in these
relations can be motivated by the observation that if F denotes the force due to
gravity, the potential energy increases as the particle is lifted.

The total energy is the sum

H = K + U

= 1

2
mṙ · ṙ + U

of the kinetic and potential energies. For conservative forces in 3-D, it is observed
that

∂H
∂t

= mr̈ · ṙ +

3∑

i=1

∂U

∂ri

dri

dt

= (mr̈ − F) · ṙ
= 0.

This expresses the law of energy conservation for conservative systems.

Lagrangian Mechanics

The development of Lagrangian theory for mechanical systems is based on the
observation that variational principles form the basis for several of the fundamental
laws obtained from Newtonian principles — e.g., force and moment balancing. To
illustrate, consider the functional (C.3),

J =

∫ t1

t0

L(r, ṙ, t)dt,
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444 Appendix C. Legendre Transforms, Calculus of Variations, Mechanics Principles

where the Lagrangian

L = K − U

is taken to be the difference between the kinetic and potential energies. It was
shown in (C.5) that the extremum satisfies the Euler–Lagrange equations

d

dt

∂L
∂ṙi

− ∂L
∂ri

= 0

for i = 1, . . . , 3. Noting that U = U(r) and K = 1

2
m

∑3

i=1
ṙ2i , it follows that

∂L
∂ri

= −∂U
∂ri

,
∂L
∂ṙi

= mṙi

where the latter relation defines the momentum in terms of the Lagrangian. Hence
the Euler–Lagrange equations yield

mr̈ = F

which is precisely Newton’s second law.
Until now, we have employed rectangular coordinates when summarizing fun-

damental physical principles. For many systems, however, other coordinates may
be more natural — e.g., polar or spherical. Hence it is common to employ a minimal
number of generalized coordinates

q = (q1, . . . , qn)

required to specify the motion of a particle, body, or system. The following def-
inition generalizes several of the concepts previously discussed in the context of a
point mass in rectangular coordinates.

Definition C.3.1. All relations hold for i = 1, . . . , n.

r = r(q1, . . . , qn, t) Position vector for the body

q̇i =
dqi

dt
Generalized velocities

L(q, q̇, t) = K − U Lagrangian

A =

∫ t1

t0

L(q, q̇, t) dt Action integral

∂L
∂qi

Generalized forces

∂L
∂q̇i

= pi Generalized or conjugate momenta

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0 Euler–Lagrange equations
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We note that in rectangular coordinates, the generalized momenta pi are pre-
cisely the linear momenta mẋi whereas they are the angular momenta in polar
coordinates. For arbitrary choices of generalized coordinates, the physical interpre-
tation of pi is less direct.

Details regarding the physics embodied in the Lagrangian framework can be
found in [15] and additional theory is provided in [319].

Hamiltonian Mechanics

Whereas Lagrangian mechanics is based on a variational interpretation of
physical principles, the Hamiltonian framework relies on total energy principles. In
the former, the Lagrangian

L(q, q̇, t) = K(q̇) − U(q, t),

defined in terms of generalized coordinates and their derivatives, provides the fun-
damental function used to quantify physical properties. In the Hamiltonian frame-
work, the Hamiltonian

H(q,p, t) = q̇ · p− L(q, q̇, t), (C.8)

where pi = ∂L
∂q̇i

are conjugate or generalized momenta, is the fundamental quantity.

From (C.2), it is observed that H is the Legendre transform of L.
The differential of (C.8) is

dH =

n∑

i=1

[
pidq̇i + q̇idpi −

∂L
∂qi

dqi −
∂L
∂q̇i

dq̇i

]
− ∂L
∂t
dt

=

n∑

i=1

[pidq̇i + q̇idpi − ṗidqi − pidq̇i] −
∂L
∂t
dt

=

n∑

i=1

[q̇idpi − ṗidqi] −
∂L
∂t
dt

(C.9)

where the second step results from the definition pi = ∂L
∂q̇i

and identity ṗi = ∂L
∂qi

resulting from the Euler–Lagrange equations. Equating (C.9) with the total differ-
ential

dH =

n∑

i=1

[
∂H
∂qi

dqi +
∂H
∂pi

dpi

]
+
∂H
∂t

dt

yields Hamilton’s equations

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

,
∂H
∂t

= −∂L
∂t

, i = 1, . . . , n.

Note that the first-order Hamilton’s equations are equivalent to the second-order
Euler–Lagrange equations.
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Example 5. To illustrate properties of the Hamiltonian and Hamilton’s equations
of motion, we consider the 1-D motion of a mass m in response to a conservative
force F . In this case

L(x, ẋ, t) =
1

2
mẋ2 − U(x)

and p = ∂L
∂ẋ

= mẋ so that

H(x, p) = mẋ2 −
(

1

2
mẋ2 − U(x)

)

= K(ẋ) + U(x)

=
p2

2m
+ U(x).

Hence it is observed that H is the sum of the kinetic and potential energies which
is true in general for conservative systems. Furthermore, Hamilton’s equations are

∂H
∂p

=
p

m
= ẋ

∂H
∂x

=
∂U

∂x
= −ṗ.

The first expression simply relates the generalized momentum to the velocity and
the second is Newton’s second law (C.6).

Whereas the Lagrangian framework has the advantage of a variational basis,
the Hamiltonian perspective is advantageous for certain applications of perturbation
theory (celestial mechanics) and the characterization of complex systems arising in
statistical mechanics and ergotic theory. It has also proven fundamental in the de-
velopment of theories for optics and quantum mechanics. Further details regarding
the physics and theory of Hamiltonian mechanics can be found in [15, 319].


