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ABSTRACT 

This paper outlines a model for a corner-supported, thin, 
rectangular bimorph actuated by a two-dimensional array of 
segmented, orthotropic PVDF laminates; it investigates the 
realization and measurement of such a bimorph.  First, a model 
is derived to determine the deflected shape of an orthotropic 
laminate for a given distribution of voltages over the actuator 
array.  Then, boundary conditions are realized in a laboratory 
setup to approach the theoretical corner-supported boundary 
condition.  Finally, deflection measurements of actuated 
orthotropic PVDF laminates are performed with Electronic 
Speckle Pattern Interferometry and are compared to the model 
results. 

NOMENCLATURE 
A  Energy expansion diagonal matrix with kth 

diagonal component Ak, [N/m] 
actA  Actuation expansion matrix, [N/V]  

a Vector of first expansion coefficients with kth 
component ak, [m] 

a Length of bimorph in x direction, [m] 
B  Energy expansion diagonal matrix with kth 

diagonal component Bk, [N/m] 
actB  Actuation expansion matrix, [N/V] 

b Vector of second expansion coefficients with 
kth component bk, [m] 

b Length of bimorph in y direction, [m] 
C  Energy expansion matrix with jkth component 

Cjk, [N/m] 
cp Coefficient of pth Zernike polynomial, [m] 

d31, d32 Piezoelectric strain constants, [m/V] 
D11, D12, D22, D66 Plate stiffness constants, [N·m] 
De Bonding layer stiffness constant, [N·m] 
Ds Electrode layer stiffness constant, [N·m] 
Dact Actuator stiffness constant, [N·m/V] 
G12 Orthotropic shear modulus of actuator layers, 

[Pa] 
h  Shortest distance between electrodes, [m]   
he Thickness of epoxy bonding layer, [m] 
hp Thickness of actuator layer, [m] 
hs Thickness of electrode layer, [m] 
imax Number of actuator segments 
k Mode number 
kmax Number of modes included in calculation 
mk number of half sinusoids of mode k in the x 

direction 
nk number of half sinusoids of mode k in the y 

direction 
N Number of Zernike fit data points 
V Vector of voltages with ith component Vi, [V] 
w(x,y) Deflection, [m] 
x Lengthwise coordinate, [m] 

ii
xx 21 ,  x position of right, left of segment i, [m] 

Y11, Y22 Orthotropic Young's moduli of actuator 
layers, [Pa] 

Ye Young's modulus of bonding layer, [Pa] 
Ys Young's modulus of electrode layer, [Pa] 
y Widthwise coordinate, [m] 

ii
yy 21 ,  y positions of bottom, top of segment i, [m] 

Zp pth Zernike polynomial  
z Through-thickness coordinate, [m] 
 
γj , χjk Orthogonality parameters 
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ν12, ν21 Orthotropic Poisson ratios of actuator layers 
νe Poisson ratio of bonding layer 
νs Poisson ratio of electrode layers 
 
INTRODUCTION 

Thin, flexible piezoelectric bimorphs can be used as 
optical reflectors and radio antennae. The need for very large 
space-based aperture reflectors in small lightweight packages 
has given rise to a concept where a bimorph sheet mirror is 
rolled before launch, deployed in orbit, and then adaptively 
actuated into the desired shape using a computed distribution of 
electric field.  In this design, rectangular sheets offer an area 
advantage over circular sheets.  With rectangular reflectors, the 
corner-supported boundary condition offers certain advantages 
over the edge-supported boundary conditions.  Corner-
supported adaptive structures allow for natural actuation into 
parabolic geometries, greater flexibility, and larger achievable 
deflections when compared to the more commonly studied 
edge-supported geometries.  Moreover, with a simple uniform 
distributed electric field, corner supports results in actuation 
into a paraboloid, which is the most important geometry for 
reflectors. 

Polyvinylidene fluoride (PVDF) has been identified as a 
flexible piezoelectric material suitable for reflector shape 
control (Jenkins, 2000; Washington, 1996).  The process of 
polarizing piezoelectric PVDF involves stretching extruded 
thin polymer sheets, thereby aligning molecular chains in the 
stretch direction. PVDF film has orthotropic electromechanical 
properties mainly because of unidirectional stretching in the 
fabrication (Vinogradov, 2002).  In shape control applications 
where PVDF is the actuated surface and a symmetric material 
response is preferred, the orthotropic nature of PVDF needs to 
be considered. 

This paper outlines a model for a corner-supported, thin, 
rectangular bimorph actuated by a two-dimensional array of 
segmented, orthotropic PVDF laminates and it investigates the 
realization and measurement of such a bimorph.  In Section 2, a 
model is derived to determine the deflected shape of an 
orthotropic laminate for a given distribution of voltages over 
the actuator array.  In Section 3, boundary conditions are 
established for a fabricated PVDF laminate in a laboratory 
setup and deflection measurements are performed with 
Electronic Speckle Pattern Interferometry (ESPI).  The 
experimental results are compared to the model results.  
Finally, in Section 4, parabolic deflection of the actuated 
bimorph is demonstrated with a Zernike polynomial analysis. 

 

 

 

y1 

x 

y 

z 

hp
he

Neutral (z=0) 
plane 

PVDF Actuator

Epoxy 

PVDF Actuator 

Segmented 
electrodes  

ith
 Segment x2 i

a 

b 

ix1 

i

i

y2 

h 

hs 

Electrode 

Electrode 

 

Figure 1:  PVDF Bimorph with Segmented Electrodes 

2. A METHOD FOR CALCULATING THE DEFLECTION 
OF AN ORTHOTROPIC LAMINATE 

Figure 1 is a sketch of the flexible mirror, which is 
modeled as five layers.  The top and bottom layers are metal 
electrodes. The thickness of these layers is hs. The second and 
fourth layers are piezoelectric PVDF of thickness hp.  The 
middle layer is a bonding layer made of material such as epoxy 
of thickness he.  The electrodes are segmented as shown in the 
figure.  Each segment will be actuated with a certain electric 
field.  The three-layer laminate is fabricated such that the 
polarization of the top piezoelectric layer is the opposite of the 
polarization of the bottom piezoelectric layer.  Furthermore, the 
bottom PVDF layer is oriented 90° with respect to the top 
PVDF layer so that the polymer stretching direction for the 
bottom layer is along the y-axis.  As shown in Massad et al. 
(2005), the 90° orientation of the orthotropic material allows 
the laminate to actuate collectively as an isotropic material.  

Electric voltage Vi is applied on the top surface of the top 
layer, and the bottom of the bottom layer is grounded.  On 
segment i, this voltage results in an electric field Ei = Vi/h, 
where h is the shortest distance between the electrodes.  The 
electric field Ei does not change signs throughout the whole 
thickness of the laminate. When the top layer expands as a 
result of Ei, the bottom layer contracts, thereby creating 
bimorph bending.  This section summarizes a method derived 
in Massad et al. (2005) to calculate the deflection of the 
laminate for a given distribution of segment voltages.   

We write the deflection w(x,y) of a corner-supported plate 
as (Reed et al., 1965; Sumali et al., 2004)  
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The indices mj and nj are non-negative- and positive integers, 
respectively.  The coefficients aj and bj resulting from a given 
distribution of segment voltages can be obtained using the 
following technique.  

First, compute plate stiffness constants  
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and D22 = D11.  The contributions from the bonding- and 
electrode layers are 
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respectively.  Additionally, compute the actuator stiffness 
constant 
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Then, compute the following constants for each index j:  
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In addition, where kj  n m ≠  and jk  n m ≠ ,  
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Otherwise, Cjk = 0.  The orthogonality parameters are  

 
 



 =

=
otherwise

mj
j 1

02
γ  (12) 

 
and 

 
 ( )[ ] ( )[ ].1111 −−−−= ++ kjkj mnnm

jkχ  (13) 

 
Finally, the actuation constants are calculated over the i-th 

actuator region ( ) ( )
iiii

yyxx 2121 ,, ×∈  depicted in Figure 1. 
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and 
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Next, form the matrix maxmax jj ×ℜ∈C  containing Cjk, and 
the diagonal matrices maxmax jj ×ℜ∈BA,  containing Aj and Bj, 
respectively.  Also form maxmax ijactact ×ℜ∈BA ,  containing 

iact act
jh

D A  and iact act
jh

D B , respectively, and form the vector of 

given voltages maxiℜ∈V .  Finally, solve the linear system  
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for the unknowns maxjℜ∈ba,  containing the coefficients aj 
and bj.  Once these coefficients are obtained, Eqs. (1) and (2) 
give the deflection of the bimorph.  

The method outlined in this section was applied to a 
bimorph with properties listed in Table 1.  The predicted 
deflection is shown in the left part of Figure 2.  In the 
experiment described in Section 3, a single-segmented bimorph 
was used to implement a voltage distribution that was uniform 
throughout the bimorph.  As shown in Massad et al.(2004), a 
uniform actuation voltage distribution results in paraboloid 
shape.  The paraboloid is the most important shape for the 
intended optical reflector application.  

Table 1:  Bimorph parameters. 

Layer Actuator Bonding Electrode 
Material PVDF Epoxy Silver ink 
Thickness [µm] hp=52 he=120 hs=18 

Y11=2.70 
Y22=2.50 

Modulus [GPa] 
  

G12=0.935 
Ye =1.20 Ys =0.81 

ν12=0.326 νe=0.350 νs=0.350 Poisson Ratio 
ν21=0.302   

d31=23   Piezoelectric 
constants [pm/V] d32=2.3   
x Length [mm] 83 
y Length [mm] 83 
No. of segments in x 1 
No. of segments in y 1 

 

 

3. EXPERIMENTAL INVESTIGATION 

3.1 Experimental Setup 
The bimorph described in Table 1 was fabricated and then 

attached to a frame between two plates of glass as shown on the 
right side of Figure 3.  The corners of the bimorph were 
fabricated with small tabs that were fixed to the frame.  The 
deflection was measured using ESPI with an out-of-plane 
measurement resolution better than 45 nm.  This high 
sensitivity causes two experimental complications:  vibration 
sensitivity and limited total deformation measurement per 
voltage step (i.e., only a limited number of fringes may be 
measured per step).  The fixture addresses the vibration 
concerns by providing protection from parasitic vibrations and 
acoustic noise that hinder the fringe measurement. A total 
actuation voltage of 300 V was applied through the electrodes 
in approximately 5 V steps to limit the number of fringes 
obtained per step.   

 

 
Figure 3:  ESPI system and bimorph experimental setup. 

3.2 Measured Deflections 
The ESPI results from each step were summed to yield the 

total distortion plot.  The results for 300 V actuation are shown 
Figure 2.  Qualitatively, the measured deflection appears to be 
similar to the predicted analytical deflection.  The most 
4 Copyright © 2005 by ASME Figure 2:  Bimorph out-of-plane deformation from simulation (left) and experimental results (right). 



significant differences are in the edge deflections.  The finite 
size and stiffness of the tabs and pinned condition of the tabs is 
a likely source of the reduced deflection of the fabricated 
bimorph.  In addition, it was observed that edge deflections are 
highly sensitive to pretension in the bimorph due to fixturing.  
Also, measurement showed that the thickness at numerous 
points on the bimorph was not uniform.  The following section 
quantifies the similarity between the measured deflection and 
the intended paraboloid shape.  

4. PARABOLOID NATURE OF THE DEFLECTION 

4.1 Zernike Polynomial Fit 
Previous work has shown numerically that uniform 

actuation results in paraboloid shape (Massad et al., 2004).  A 
convenient way to examine the paraboloid nature of an optical 
reflector is to express deflection in the Zernike basis.  In the 
case of the deflection in the experiment, the measured 
deflection wmeas is expressed as a weighted sum of orthogonal 
Zernike polynomial basis functions Zp  
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The Zernike expansion is in a polar coordinate system, which is 
related to the rectangular coordinate system of the measured 
data as follows.  
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Figures 4-5 give the definitions and illustrations of the 12 

lowest-order Zernike basis functions Zp (p = 1, ..., 12).  Other 
Zernike functions used here can be deduced from the ones 
shown in the figures. For example, the tetrafoil 0o function is 
the tetrafoil 45o function rotated 45o. In this analysis, the 
domain of the Zernike basis functions is limited to the circle 

[ ] [ ]( )π,φr 20,1,0 ∈∈ .  Recall that the rectangular bimorph spans 
the physical domain [ ] [ ]( )byax ,0,,0 ∈∈ .  Therefore, the corners 
of the bimorph are not included in the Zernike series expansion 
of the deflection. The corners of the bimorph are used for 
mechanical support and will not be used in the optics. Another 
reason for limiting the fit to the circular domain will be shown 
below after the discussion on the fitting procedure.  
 

 

 

 
Figure 4:  Definitions and illustrations of Zernike basis 
functions 1-6 used in expressing the measured deflections. 

 

 
Figure 5:  Definitions and illustrations of Zernike basis 
functions 7-12 used in expressing the measured deflections. 

 
The Zernike coefficients cp in Eq. (17) are obtained via 

least squares.  First, a cost function is expressed as  
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where fit
nw  is the Zernike expansion deflection from Eq. (17) 

evaluated at the n-th discretization point of the domain, meas
nw  

is the corresponding measured deflection, and N is the total 
number of discretization points.  Minimizing JZern with respect 
to the expansion coefficients cp results in a system of pmax linear 
equations  
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that can be solved for cp.  The matrix in the above equation will 
be diagonal provided that the fit data is limited to the circular 
sub-domain [ ] [ ]( )π,φr 20,1,0 ∈∈  of the bimorph, because the 
Zernike polynomials are orthogonal in the unit circle. For 
future analytical studies, this orthogonality offers some 
advantage of limiting the fit to the circular sub-domain.  

Figure 6 shows the Zernike expansion coefficients cp for 
the measured deflection as functions of the applied voltage.  
The piston, tilt-x and tilt-y components have been removed 
from the data. It is clear that the deflections consist mainly of 
the “defocus” Z5 term in Figure 4, which is the paraboloid 
component.  The largest distortion from the paraboloid shape 
comes from the tetrafoil 0o term, which means that the largest 
errors are around the corners. This suggests that the four corner 
supports are not perfect.  

4.2 Focal Length as a Function of Actuation Voltage 
One of the most important characteristics of optical 

reflectors is the focal length. For a circular parabola of diameter 
a, the focal length can be shown to be related to the coefficient 
c5 of the defocus Zernike by   

 .
32 5

2

c
aLf =  (24) 

Thus, for the bimorph tested here the actuation voltage 
controlled the focal length from Lf = ∞ for V = 0 to Lf = 2.34 m 
for V = 300 V.  

6. CONCLUSION 
In this paper, a method was outlined and used to compute 

the deflection of a bimorph reflector actuated with a uniformly 
distributed voltage.  The deflection caused by a uniform 
voltage profile was predicted to be of a paraboloid shape.  A 
bimorph was fabricated, mounted, and tested with ESPI.  The 
predicted deflection agreed qualitatively with the measured 
deflection.  Other shapes can be realized and will be analyzed 
and tested in future investigations, however improvements in 
 

bimorph fabrication and boundary condition realization must 
be sought. 
 

 
Figure 6:  Measured deflections in terms of Zernike 
polynomial coefficients. 
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