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ABSTRACT 
Mirrors made of PVDF film are being considered for 
lightweight transportation and deployment in space. An array 
of electrodes can be used to distribute charges over the PVDF 
film for active shaping of the mirrors. This paper presents the 
derivation of a matrix that enables calculation of the shape of 
the two-dimensional mirror for any given electron 
distribution. Finite element simulation shows good agreement 
with a theoretical example. Furthermore, if a desired shape is 
given, the required voltage distribution can be computed using 
the singular value decomposition. Experiments were done in a 
vacuum vessel, where an electron gun was used to actuate a 
PVDF bimorph to a desired shape. Dynamic shape control is 
attainable at low frequencies. At higher frequencies, still 
significantly below structural resonance, actuation lag and 
parasitic DC offset can be significant problems that require 
future research to solve.  

 
NOMENCLATURE 
 
A Area, a symbol denoting domain of 

integration 
Ai Area of electrode segment, a symbol 

denoting domain of integration 
B Stiffness constant, N 
D Plate stiffness constant, Nm 
E Matrix of electric fields, V/m 
E Electric field along poled direction, V/m 
h Thickness of laminate, m  
ha Thickness of actuator layer, m 
I Number of actuator segments 
K Number of modes to control  
 1 
k Mode number 
kmax Number of modes included in calculation 
Ls Strain energy plus actuation energy, J 
MΛ Line moment due to piezoelectric actuation, 

N.  
mk number of half sinusoids of mode k in the x 

direction, no unit 
nk number of half sinusoids of mode k in the y 

direction, no unit 
P Strain energy contribution, Eq. (7) 
Q Actuation matrix, Eq. (18) 
R Actuation matrix, Eq. (26) 
R+ Multiplier matrix from SVD (Eq. 49) 
S Singular value matrix from SVD 
T Stress, Pa 
U Left unitary matrix from SVD 
U Strain energy, J  
V Right unitary matrix from SVD 
V Applied voltage, V 
W Matrix of deflections, m 
w(x,y) Deflection, m 
x Lengthwise coordinate, m 
Y Young's modulus, Pa 
y Widthwise coordinate, m 
z Through-thickness coordinate, m 
 
ε Strain, dimensionless 
εΛ Strain due to piezoelectric actuation, 

dimensionless 
εtol Low threshold in SVD 
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φ Matrix of shape functions 
φ Shape function 
η Modal coefficient 
η̂  Desired modal coefficient  

η~  Achieved modal coefficient 

λ Wavelength of Light, m 
ν Poisson's ratio, dimensionless 
σ Singular value, component of S 
σΛ Stress due to piezoelectric actuation, Pa 
 
Subscripts and superscripts 
a Pertaining to actuator layer 
analytical Computed analytically 
FEM Computed by FEM 
k Mode number 
i Segment number 
T Transpose 
Λ Resulting from piezoelectric actuation 
 
Terms 
Bimorph Substrate with a PVDF layer on top and 

another PVDF layer on the bottom.  
Lidar Light ranging and detection 
FEM Finite Element Model 
NGST Next Generation Space Telescope 
Pixel Smallest unit area of control 
PVDF (PolyVinyliDene Fluoride) a piezoelectric 

polymer 
RMS Root Mean Square 
SVD Singular Value Decomposition 
 

1. INTRODUCTION 
This paper discusses a thin film mirror made of a PVDF 

bimorph actuated by an electron gun. The motivation for the 
work is the advancement of low-mass space-based optical 
systems. The general trend in space-based optical systems is 
toward high performance at reduced system mass and launch 
volume.  High performance translates directly to large 
aperture optical systems.  This drives the need to package 
large diameter optics in packages small enough to stow atop a 
small booster rocket.  NASA’s immediate goal for NGST is a 
primary collector with an areal density of less than 15 kg/m2.  
The NASA Gossamer initiative has the goal of 1 kg/m2 
primary mirrors. 

Achieving these dramatic reductions in overall system 
launch size and mass while maintaining resolution and 
 2 
sensitivity requires the development of very lightweight, large 
aperture space-based optics.  While many researchers are 
considering on-orbit assembly of rigid optical mirror segments 
to circumvent geometric limitations imposed by launch 
vehicles, the cost penalties associated with their volumetric 
and weight constraints limit the aperture diameter to 
approximately 10 meters.  Therefore, ultra large apertures will 
likely only be obtained using deployable thin-skin mirror 
technology.  Ultra large deployable thin-skin mirrors may 
offer orders of magnitude improvement in resolution and 
sensitivity over what is achievable today, yet many 
technological barriers must be overcome to make this 
approach a viable alternative for future system designs. 

Functional thin-film large aperture systems have the same 
surface tolerance requirements as any other optical system.  
Imaging systems today have surface qualities on the order of 
ten nanometers.  Other light based concepts like Lidar systems 
have a more relaxed tolerance of 700nm RMS with 2.4µm 
peak to valley (Warren, 1990). Such tolerances are unlikely to 
be achieved by design and fabrication. Even if they were, 
disturbances will drive the mirrors out of tolerance. Therefore, 
active shape control is required for shape correction. In such 
control systems, a distributed array of actuators is needed. If 
conventional actuators such as piezoelectric stack pushers are 
used, then the large number of actuators in the array, the mass 
of the actuators and power supplies, and the bulk of cables to 
the actuators will defeat the purpose of light-weight reflectors.  

Piezoelectric laminate actuators and electron guns offer a 
very attractive solution this problem, having previously been 
demonstrated to selectively adjust discrete surface areas 
(Henson et al., 2001). One electron gun can distribute charges 
over a wide array of piezoelectric patches on the reflector. The 
patches expand or contract according to the charges, thereby 
changing the shape of the reflector.  

The idea of using piezoelectric actuators to control the 
shape of a thin film mirror has been explored for over a 
decade (Tabata et al., 1992; Ueba et al., 1994; Tabata and 
Natori, 1996; Paradies et al., 1996; Chellabi et al., 1997; 
Yoon and Washington, 1998; Paradies and Hertwig, 1999; 
Maji and Starnes, 2000). Electron guns have been shown to be 
effective in controlling one-dimensional piezoelectric 
laminates (Martin et al., 2000). The work discussed in this 
paper extends the use of the electron gun to controlling the 
shape of two-dimensional piezoelectric laminates. The theory 
will be developed for flat plates. However, the application can 
be extended to shape correction of paraboloid and other 
common reflector shapes.  

The presentation starts with a simplified analytical model 
that describes how electric fields create curvature in the thin 
film. A finite element analysis is then shown to support the 
analytical example. Finally, a laboratory experiment is 
presented to prove the concept of using an electron gun to 
create electric fields in the film. In this phase of the work, the 
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experiment was performed to assess the strengths and 
limitations of the electron-gun-actuated piezoelectric sheet 
mirror concept with dynamic control.  

2. RELATIONSHIP BETWEEN SEGMENT VOLTAGE 
DISTRIBUTION AND LAMINATE DEFLECTION 

Figure 1 is a sketch of the flexible mirror, which is 
modeled as three layers. The top and bottom layers are 
piezoelectric PVDF. The middle layer is a bonding layer made 
of material such as epoxy. The PVDF layers have silver 
electrodes with negligible thickness. The electrodes are 
segmented as shown in Figure 2. Each segment will be 
bombarded with electrons from an electron gun until a certain 
electric field is induced in the part of the laminate under the 
segment. This section presents a simplified method to predict 
the deflection of the laminate for any given distribution of 
segment voltage.   
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Figure 1 PVDF Bimorph with Segmented Electrodes 
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Figure 2 Electrode Segment Numbering system. nx = 
number of segments in the x direction; ny = number of 
segments in the y direction.  

 
The deflection of the laminate is assumed to be a linear 

combination of basis functions 
 3 
 ∑
∞

=

=
0

),(),(
k

kk yxyxw ηφ  (1) 

where the set of φk forms a basis of admissible functions for 
the boundary conditions. For example, if all four edges of the 
laminate are simply supported, then we can use  
 

 )/sin()/sin(),( bynaxmyxmn ππφ =  (2) 
 

where m and n are the number of half sinusoids in the 
lengthwise and the widthwise direction, respectively. The 
basis functions in this paper will be called the mode shape 
functions. (This term is borrowed from dynamics even though 
this section will not consider dynamic effects.) In a two-
dimensional structure like the rectangular laminates 
considered here, the mode shapes have two indices m and n. 
To shorten the notation and facilitate derivation, m and n are 
collapsed into one index k in ascending order of the natural 
frequency that would result if the laminate vibrated in mode 
(m,n).  This renumbering method is shown in Fig. 3 for a 
particular aspect ratio. For example, for k = 1, the 
corresponding mk and nk are 1 and 1, respectively. For k = 4, 
the corresponding mk and nk are 3 and 1, respectively, an so on 
as illustrated in Fig. 3.  
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Figure 3 Reducing mode indices m, n into one index k.  

 
The strain energy in the laminate when the laminate is 

deflected as above is  
 

 ∫ ∫ ∫
−

=
a b h

h
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0 0
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2
1 Tε  (3) 

 
Under the Kirchoff-Love assumption (Soedel, 1993), the 
strain can be expressed in terms of the curvatures  
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If the Poisson's ratios of all the laminae are approximately 
equal, the stress can be related to the strain by 
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Substitution of Eq. (4) and Eq. (5) into Eq. (3) results in the 
strain energy contribution of mode-k 
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which evaluates to  
 

 

dA
yx

yx

y
yx

x
yx

y
yx

x
yxP

k

kk

A

kk
k

⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
−+

∂
∂

∂
∂

+

⎪⎩

⎪
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

= ∫

22

2

2

2

2

2

2

22

2

2

2

),()1(2

),(),(2

),(),(
1

1

φν

φφν

φφ
ν

 (7) 

 
The resistance of the panel to bending can be defined with a 
plate stiffness constant  

 ∫
−=

=
2/

2/

2)(
h

hz

dzzzYD  (8) 

The strain energy can now be expressed in terms of Eq. (1) 
and Eq. (6)  

 ∑
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=

=
1

25.0
k

kkPDU η  (9) 

The above equation expresses the strain energy in the 
deflected laminate in terms of "modal coordinates" ηk, the 
plate stiffness D, and a set of constants Pk that depends on the 
"mode shapes" φ .  
 4 

k

The actuation from the piezoelectric material can be 
modeled as an induced bending moment (Crawley and de 
Luis, 1987)  

 ∫ ΛΛ =
piezo

dzzσM  (10) 

where piezo denotes that the integration is to be done only 
over the lamina that has piezoelectric action. The actuated 
stress σΛ is related to the actuation strain εΛ by 
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The actuation strain εΛ is a product of the piezoelectric 
constant and the applied electric field 
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where the electric field is the voltage divided by the thickness 
of the actuator layer 
 
 aii hVE /=  (13) 
 

In the above three equations, it has been assumed that the 
piezoelectric effects are linear. This assumption is valid over a 
broad range of excitation. The actuation moment in Eq. (10) 
can also be written as  
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The strain energy in the laminate under actuator segment i 
(Figure 2) is  
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where κ is the curvature of the deflection from Eq. (1)  
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(Membrane forces are excluded from Eq. (15) because their 
contribution to strain energy is negligible (Tzou and Fu, 
1994), especially for bimorph symmetric actuation.) 
Inspection of  Eq. (14), (15) and (16) suggests that a constant 
can be defined to save space in writing the expression for the 
effect of actuator segment i on deflection mode k. This 
constant is  
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or, after multiplying out,  
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To save space in writing expressions of strain energies, define 
an “actuator stiffness” constant similar to the one in Eq. (8) 
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The above constant quantifies how stiff the actuator is to work 
against the stiffness D of the entire laminate. With the above 
notation, the actuation energy of actuator segment i can be 
written concisely as 
 

 ∑
=

−=
max

1

)(
k

k
kikiiA BEiE ηQ  (20) 

 
Consider only the part of the laminate that is covered by 

actuator i. The strain energy in that part, from Eq. (9), is  
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 5 
In this part of the laminate, the sum of the strain energy and 
the actuation energy is 
 

 )()()( iEiUiL As +=  (22) 
 

Substituting Eq. (20) and (21) to the above equation results in 
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The kth modal coefficient resulting from the actuation by the ith 
segment, denoted by ηki, can therefore be determined by 
minimizing Ls(i) with respect to ηki. Zeroing the derivative of 
Ls(i) with respect to ηki results in  
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Therefore, the kth modal coefficient resulting from the 
actuation by the ith segment is  
 

 ikiki ER=η  (25) 
 
where  
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The last two equations and Eq. (1) enable us to calculate how 
much deflection will be realized by actuator segment i with a 
given electric field Ei.  
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where ηki is from Eq. (25). The total deflection due to all 
actuators can be obtained by superposition.  
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or, substituting Eq. (25) and (27) into the last equation,  
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Thus, in matrix notation, the deflection caused by the actuator 
electric field distribution E is  
 

 ERΦ ),(),( yxyxw T=  (30) 
 

where the mode shape matrix Φ is  
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Matrix R is composed of the ki components from Eq. (26).  
Vector E contains the electric fields of the actuators according 
to the actuator numbering method shown in Fig. 2.  

3. NUMERICAL EXAMPLE OF ACTUATION 
As an example, consider a three-layer laminate shown in 

Fig. 1, with the following properties: Length a = 71 mm; 
width b = 71 mm; number of segments lengthwise = 2; 
number of segments widthwise = 2; Thickness: PVDF layers 
ha = 52µm; Epoxy bonding layer h2 = 28µm; Young's moduli: 
PVDF layers Ya = 2.9(10)9 Pa; Epoxy bonding layer Y2 = 
1.06(10)9 Pa; Poisson's ratio ν = 0.35 for all layers; 
Piezoelectric constants d31 = d32 = 23(10)-12 m/V. The laminate 
is simply supported along all four edges. The actuator 
segments are energized with a voltage distribution shown in 
Fig. 4(a).  

The theory developed in the previous section will now be 
used to calculate the resulting deflection of the laminate. The 
plate stiffness according to Eq. (8) and Fig. 1 is  
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or, after the integration,   
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In the bimorph laminate that we use here, the voltage in the 
lower actuator layer is equal and opposite to the voltage in the 
upper actuator layer. Therefore, the two piezoelectric layers 
reinforce each other’s bending actuation, and the B constant in 
Eq. (19) is  
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where the domain of the integration includes both 
piezoelectric actuator layers. The above integration results in  
 
 ( )aaa hhhYB += 2  (35) 

 
The matrix Q is calculated by inserting the mode shape 

function for the simply supported laminate,  
 
 )/sin()/sin( bynaxm kkk ππφ =  (36) 
 

into Eq. (18). This results in   
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for each mode k and actuator number i. Edge positions xright i,  
xleft i, ytop i, and ybottom i are as shown in Fig. 2. Likewise, P is 
calculated by inserting the mode shape function into Eq. (7) 
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Next, the R matrix is calculated from Eq. (26). Finally, the 
deflection of the laminate is computed using (30).  

The resulting deflection is shown in Fig. 4(b).  Observation 
of the actuator voltage distribution in Fig. 4(a) and the 
resulting deflection in Fig. 4(b) suggests that the curvature of 
the deflection under each actuator segment is roughly 
proportional to the voltage in that segment. This agrees with 
the formulation that the piezoelectric actuators create 
deflection by inducing curvature. The product BQ in Eq. (27) 
is a measure of the actuator authority. The product PR is a 
measure of the structure’s resistance to bending.  
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(a) 

 
(b) 
  

Figure 4  Electrode Voltage Distribution and Resulting 
Shape. 

4. CALCULATING VOLTAGE DISTRIBUTION FOR A 
DESIRED DEFLECTION SHAPE 

The above example shows that the deflection for a given 
electrode electric field (or voltage) distribution can be 
computed relatively easily. In the practical application, the 
laminate is designed to control the shape of a mirror by 
energizing the actuator segments with electric fields. 
Therefore, the important problem is how to determine the 
required voltage distribution to achieve a desired shape. This 
 7 
problem is the inverse of the actuation problem solved in 
section 2. As an example, let it be desired to shape the mirror 
into a certain deflected shape that can be expressed in terms of 
sinusoidal basis functions as 
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The transformation of the deflection function from physical 
coordinates into the "modal" coordinate could be done by 
several techniques such as two-dimensional Fourier series. In 
the above example, the deflection shape can be expressed as 
the modal coefficients, i.e.,  

 
 [ ]L005.0012310ˆ 6 −=η  (40) 
 

We would like to determine the actuator voltage distribution 
that results in the above shape.  

Equations (25) and (26) show that the modal coefficients 
resulting from an electric field distribution E is  
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where kmax is the number of modal coefficients to control, and 
imax is the number of actuator segments. If kmax = imax, then the 
electric field distribution vector can be obtained by simply 
inverting R 
 
 η̂1−= RE  (42) 
 

In general, kmax is not equal to imax. The best set of electric 
fields (hence actuator voltages) can be solved for by 
minimizing the least-squares difference between the desired 
modal coefficients and the achievable modal coefficients  
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Setting  

 [ ] imax100 ×=
∂

L
E
J  (44) 

results in the normal equations, which means that the electric 
field distribution could be obtained by  

 [ ] η̂
1 TT RRRE

−
=   (45) 
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However, the product in the square bracket is usually ill 
conditioned. Therefore, normal equations often result in large 
computational errors. An example of enormous computational 
error is shown in Fig. 5.   
 

 
Figure 5 Enormous Error Resulting from Normal 
Equations. 

 
One way to solve the above problem is the Singular Value 

Decomposition (SVD). With this method, the R matrix is 
decomposed into  

 
 VSUR =  (46) 

 
where U and V are unitary matrices, and the diagonal 
rectangular matrix 
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contains the singular values. From the above three matrices, 
we compute another matrix  
 

 ∑
>

+ =
toljjj jj

kjij
ik

UV
R

εσ
σ

whereall

 (48) 

 
The threshold εtol can be determined numerically by inspection 
from the computation. Finally, the electric field distribution 
can be obtained by  

 
 η̂+= RE  (49) 
 
The SVD technique is applied to the problem shown in 

Fig. 5, in which normal equations had caused enormous error. 
The voltage distribution resulting from SVD is shown in Fig. 
6(b). The resulting deflection shape shown in Fig. 6(c) is very 
close to the desired deflection shape in Fig. 6(a).  

5. COMPARISON WITH FINITE ELEMENT MODELS  
Numerical methods have been used in previous work to 

calculate laminate deflection due to segmented piezoelectric 
actuators. (For example, Agrawal et al. (1994) developed a 
finite difference solution to the problem.) In this paper, we 
constructed a finite element model with ANSYSTM according 
to the numerical example presented in Section 3. The Epoxy 
bonding layer in that example is 71 mm long but only 28 µm 
thick. Piezoelectric elements are available in ANSYSTM as 
solid elements and not as plate or shell elements. To keep the 
aspect ratio of all elements between 1 and 2, a very fine mesh 
was therefore created even though the geometry of the model 
is very simple. The voltage distribution in Fig. 7(a) is applied 
to the piezoelectric elements corresponding to the segments. 
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(a) 

 
(b) 

 
(c) 

 

Figure 6 Desired Shape, Voltage Distribution, and 
Achieved Shape.  
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 The resulting actuated shape is shown in Fig. 7(b). The 

corresponding analytical shape computed with the technique 
in Section 4 is  shown in Fig. 7(c). The maximum deflection 
computed by the theoretical method is 5.7% larger than the 
maximum deflection computed by FEM. The similarity 
between the shapes of the deflections can be quantified by the 
“cosine of the angle” between the deflection matrices, 
expressed as  

)(tr)(tr

)(tr
)cos(

FEM
T

analytical
T

FEM
T

FEManalytical

analytical

WWWW

WW
=θ  (50) 

 
This cosine will be unity if one matrix is a scalar multiple of 
the other, and zero if the two matrices are orthogonal. For the 
deflections in Fig. 7 with a grid of 32 x 32 points, cos(θ) = 
0.95, which means that the deflection shape computed by the 
analytical method is very similar to the deflection shape 
computed by FEM.  
 

6. EXPERIMENTAL ACTUATION WITH ELECTRON 
GUN 

The voltage or electric field for controlling the shape of 
the thin mirror will be applied with an electron gun that 
deposits electrons on the mirror's electrode segments. Previous 
work by Henson et al. (2001) and Martin et al. (2001) have 
shown the feasibility of this electron-gun-actuation concept 
and the success in using it to control quasi-static tip 
displacement of cantilever beams. Similar experiments were 
performed in this work to characterize the dynamics of PVDF 
bimorph under electron gun excitation. Although the theory 
developed above was for static actuation, the experiments 
described below were done to gain some insight into dynamic 
actuation with an electron gun.  
 
6.1 Experiment Setup 

Figure 8 is a schematic of the experiment setup. The major 
components of the experiment setup were a computer 
controller, a Keyence LK-2503 laser displacement sensor, an 
XYZ staging system, an electron gun, a power amplifier, and 
the PVDF bimorph. The PVDF bimorph and the electron gun 
were kept inside a vacuum chamber (about 10-7 torr).  The 
Keyence sensor was used to take point displacement 
measurements of the bimorph through a window on the 
chamber. (Although insufficient for the intended application, 
the 10-µm measurement resolution of the Keyence sensor was 
adequate for demonstration purposes.) The displacement 
sensor and the XYZ staging system were programmed to map 
the electron-actuated deflection profiles of the PVDF 
bimorph.  
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Figure 7 Finite Element Calculation of Deflection.  
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Figure 8 Setup for Electron Gun Experiment.  

The computer positioned the Keyence sensor relative to 
the bimorph through adjustments of the XYZ staging system.  
The deflection profile of the entire bimorph was mapped by 
coordinating the x-y position of the measurement system with 
the measured bimorph deflection (in the z direction) at that 
position.  

The electrodes covering the segments (called the pixel 
electrodes) of the bimorph receive a bombardment of 
electrons one electrode at a time. The energy level of the 
electron gun is kept constant for all segments. The flip side of 
the bimorph, where there is no electron bombardment, is 
covered entirely with a single back-voltage electrode. The 
back voltage from this electrode determines the electric field 
across the thickness of the bimorph in each targeted segment. 
The back voltage is controlled with a power amplifier. The net 
electric field in each segment is the electric field caused by the 
bombarding electrons minus the control field caused by the 
back voltage. Once the electron gun leaves pixel electrode 
number i to shoot the next electrode, the electric field across 
the thickness of segment i is locked in. Changing the back 
voltage for the next electrode does not alter the electric field 
in segment i. This electric field is unaffected by the change in 
the back voltage because there is neither deposition nor 
dissipation of electrons to or from the segment unless the 
segment is bombarded by electrons from the gun. The back 
voltage can be varied into positive or negative values. 

The electron gun and its power amplifier and the back 
voltage electrode were adjusted remotely through the 
computer. All these experiments were conducted in vacuum to 
prevent scattering of the electron stream and unintended 
dissipation of electrons from the bimorph.   

A 60 mm x 60 mm bimorph was mounted as a cantilever 
beam and actuated using a constant electron stream of 800 eV 
electrons at 13.95 µAmps. The Keyence sensor was used to 
measure real-time displacements of the bimorph at the tip 
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only. Sinusoidal voltages at frequencies ranging from 0.01 Hz 
to 5 Hz and amplitudes of 10 V to 500 V were used to vary 
the potential on the back electrode.  The fundamental natural 
frequency of the beam is approximately 20 Hz. Therefore, 
mechanical resonance had little effect, and the dynamics of 
the cantilever bimorph was determined mainly by the 
dynamics of the electron gun actuation.  

6.2 Experiment Result 
Figure 9 shows the tip displacement control response of 

the cantilever. The response shown is linear for higher 
amplitude control inputs at all frequencies.  Overall response 
magnitudes decrease with an increase in control input 
frequency. At low frequency (< 0.5 Hz) the system exhibits 
flat response across the range of control amplitudes. Figure 10 
shows the phase lag response for the same experiment.  As 
seen previously the lag response seems linear across the range 
of control amplitudes for all frequencies.  This is shown in 
their flat response across the range of input amplitudes.  As 
expected higher input frequencies induce higher phase lag.  
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Figure 9 Dynamic Effect of Frequency on Deflection 
Amplitude. 
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Figure 10 Phase Lag versus Amplitude. 

Further examination shows a strong correlation between 
the system’s “DC offset” actuation and the amplitude 
responses.  As the system responds to a sinusoidal control 
input, the deflection oscillates about a DC offset that appears 
to be related to the input frequency.  Figure 11 shows 
transitions from large oscillations with little DC offset, to 
small oscillations (almost zero amplitude) with high DC offset 
as the control frequency increases.  In dynamic control, this 
phenomenon might limit the control bandwidth to about 0.1 
Hz.  In the case of a large mirror application, each adjustment 
of the pixel-sized control area would be at this frequency.  To 
maintain steady state in a large mirror, the overall refresh rate 
across all the thousands of control pixels would be much 
higher.  
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Figure 11 Effects of Frequency on Offset and Deflection.  
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7. CONCLUSIONS 
The theory developed here for the two-dimensional 

actuation of bimorphs with piezoelectric segments and 
electron-gun excitation has been verifed with finite element 
analysis. Preliminary laboratory experiments explored the 
dynamics of the electron gun actuation.   

Control of the pixel bimorph concept is possible at low-
frequency (0.05Hz).  Overall the bimorph responds linearly to 
low-frequency input. As expected, response lag increases with 
frequency.  It was also shown that higher frequencies caused 
larger DC offsets.  Operating at low frequency minimizes both 
the DC offset and the response-lag, and maximizes the output 
amplitude response. Further research is needed before 
successful dynamic control can be done on the bimorph 
mirror. 
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