
MA 574 – PROJECT 1

Due: Friday, February 1

(1) In class, we linearized about the static velocity u0 = 0. For the 1-D case, derive Euler’s equation,
the continuity equation, and the equation of state if you linearize about u0 6= 0; i.e., consider
perturbations u(t, x) = u0 + û(t, x). Can you derive a wave equation posed solely in terms of p̂, û or
a potential φ?

(2) Here we are going to investigate some of the principles associated with a noise cancelling headset.
As detailed in the paper “Engineering Silence: Active Noise Cancellation,” headsets can eliminate
low frequency noise by inverting acoustic waves measured by a microphone on the headset. This can
be accomplished using a simple configuration of operational amplifiers (op-amps). We are going to
numerically simulate aspects of this process.

Download the file noise_data.mat which contains a signal y sampled at a rate Fs. This signal
is very familiar piece corrupted by noise comprised of two frequencies:

Noise = A1 sin(ω1t+ φ) +A2 sin(ω2t+ φ).

You need to determine the amplitudes A1, A2, frequencies ω1, ω2 and phase φ, and invert the signal
to determine the piece which you can play using the command sound(y,Fs).

You should start by using the sample rate Fs to determine an appropriate time vector. You can
then estimate the phase by plotting the initial signal as a function of time. It is probably easiest
to next determine the frequencies which can be accomplished using the MATLAB fft command. If
you check the documentation for that command, you find the following example:

t = 0:0.001:0.6;

x = sin(2*pi*50*t)+sin(2*pi*120*t);

y = x + 2*randn(size(t));

plot(1000*t(1:50),y(1:50))

title(’Signal Corrupted with Zero-Mean Random Noise’)

xlabel(’time (milliseconds)’)

Y = fft(y,512);

Pyy = Y.* conj(Y)/512;

f = 1000*(0:256)/512;

figure(2)

plot(f,Pyy(1:257))

title(’Frequency content of y’)

xlabel(’frequency (Hz)’)

Here you are taking a 512-point FFT with a sample rate of 1000 (e.g., dt = 0.001). You should
modify this for your sample rate Fs and determine the frequencies in your signal. You may need
to numerically experiment to obtain the correct magnitudes A1, A2 associated with the frequencies
ω1, ω2. Once you have done so, you can invert the signals and play the piece.



(3) We are all familiar with the Doppler effect in which the perceived frequency of sound changes
when the sound source or receiver are moving relative to the medium. Here we assume 1-D wave
motion and let fo and fe respectively denote the observed and emitted frequencies. Let u and v
denote the speed of the source and observer relative to the medium and c = 343 m/s denote the
speed of sound at 20 oC. The positions of the source and receiver (observer) are denoted by S and
R.

(a) Consider first the case when the receiver is stationary. Let S and R denote the positions of the
source and receiver when both are fixed and let S′ denote the position of the moving source. Show
that SR − S′R = u∆t from which it follows that λefe∆t − λofe∆t = u∆t where λo and λe are the
observed and emitted wavelengths. Use this to show that

fo = feλe/λo =
c

c− u
fe.

(b) Use similar analysis to show that if the source is fixed and the receiver is moving with velocity
v, then

fo =
c− v
c

fe.

When both are moving, the observed and emitted frequencies are related by the equation

fo =
c− v
c− u

fe.

(c) At the winter olympics, you attend a ski jumping competition where you are able to observe from
the end of the ramp. While there, you note with your perfect pitch that one skier’s scream changes
from D above Middle C to B flat below Middle C as he goes off the jump. How fast is he going if
you take the speed of sound at -5 oC to be 328.25 m/s?

(4) Write a MATLAB script to play the first four measures of Beethoven’s 5th symphony based on
tones of the notes with the duration of each note dictated by the rhythm. You can find the notes on
Wikipedia.


