## MA 574 - PROJECT 3

## Due: Friday, March 29

(1) Consider a rod of length $L$ with a fixed end at $x=0$ as depicted in Figure 1. Let $\rho, Y, c$ respectively denote the density, Young's modulus and internal damping coefficient and let $u(t, x)$ denote the longitudinal displacements. The rod decreases from a thickness $2 h$ at $x=0$ to a thickness of $h$ at the free end and has uniform width $b$. Moreover, the rod has a mass $m_{L}$ at $x=L$ along with a restraining spring with stiffness $k_{L}$ that exerts a restoring force proportional to displacements $u(t, L)$.
(a) Balance forces to obtain a strong formulation of the model. Be sure to specify boundary conditions.
(b) Integrate by parts to obtain a corresponding weak formulation. Specify the space of test functions.
(c) Determine an appropriate basis and finite element solution to (b). Determine the resulting matrix vector system in second-order and first-order form. You should specify the components in your mass and stiffness matrices but you do not need to numerically evaluate the integrals.
(d) Consider the undamped rod, $c=0$, with $m_{L}=k_{L}=0$. Determine the kinetic and potential energies and use Hamiltonian (energy) principles to derive a weak formulation of the model. How does it compare with the model that you derived in (b)?


Figure 1: Geometry of the rod for Problem 1.
(2) Consider the weak formulation

$$
\int_{0}^{\ell} \rho A \frac{\partial^{2} u}{\partial t^{2}} \phi d x+\int_{0}^{\ell}\left[Y A \frac{\partial u}{\partial x}+C A \frac{\partial^{2} u}{\partial x \partial t}\right] \frac{d \phi}{d x}=-\left[k_{\ell} u(t, \ell)+c_{\ell} \frac{\partial u}{\partial t}(t, \ell)+m_{\ell} \frac{\partial^{2} u}{\partial t^{2}}(t, \ell)\right] \phi(\ell),
$$

which holds for all $(\phi, \phi(\ell)) \in V$. Using the linear hat functions defined in class, this yields the first-order system

$$
\begin{aligned}
& \frac{d z}{d t}=A z(t) \\
& z(0)=z_{0} .
\end{aligned}
$$

Using the values $\rho=2.7 \mathrm{~g} / \mathrm{cm}^{3}, Y=70 \mathrm{GPa}, C=10 \mathrm{MPa}, A=1 \mathrm{~cm}^{2}, k_{\ell}=10 \mathrm{MPa}$, $c_{\ell}=10 \mathrm{~Pa}, m_{\ell}=1 \mathrm{~g}$, and $\ell=10 \mathrm{~cm}$, construct the matrix $A$ and compute its eigenvalues. Do all of them have negative real part? Now construct the matrix $A$ when the right hand side is positive and discuss the sign of the eigenvalues.

