
Development and Approximation of Rod Models 

“He has Van Gogh’s ear for music,” Billy Wilder!



Motivation: Terfenol-D Transducer 

Questions: 
• Are inputs uniform along rod length? 

• How can this be determined? 

• What magnetomechanical behavior must 
be incorporated in models? 



Uniform Inputs: Spring Model 

Spring Model: Consider magnetic field inputs H(t) 

Questions: 
•  Can we compute an analytic solution? 

•  What numerical techniques can we use? 

•  How do we know if numerical techniques are converged? 

Note: 
•  Appropriate analytic and numerical techniques will depend, in part, 
on nature of M(H).  



Nonuniform Inputs: Rod Model 
Force Balance: 

Note: 

Constitutive Relations: 

Strategy: Multiply by  and take limit to get 



Rod Model (Strong Formulation) 
Rod Model: 

Boundary Conditions: 

Initial Conditions: 

Issues: 



Rod Model: Weak Formulation 

State Space: in 

Space of Test Functions: 

Integration by Parts: 



Rod Model: Weak Formulation 

Model: 

for all  

Note: For conservative case, weak formulation can also be derived using 
energy principles. 



Rod Model: Strong and Weak Formulations 
Rod Model: 

Boundary Conditions: 

Weak Formulation: 

for all  



Weak Formulation: Energy Principles 
Issues: Need conservative problem; take c = f = k` = c` = m` = 0
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Weak Formulation: Energy Principles 

‘Action’ Integral: 
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Weak Formulation: Energy Principles 

Hamilton’s Principle: 

Weak Formulation: 

Note: Use integration by parts to show equivalence to strong formulation 
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Approximation Techniques for the Rod Model: Galerkin 

Linear Basis: 

Approximate Solution: 

System: 



Approximation Techniques for the Rod Model: Galerkin 

2nd-Order Vector System: 



Approximation Techniques for the Rod Model: Galerkin 

Matrices: Constant coefficients 

First-Order System: 

where 

Note: Codes available at http://www4.ncsu.edu/~rsmith/Smart_Material_Systems/Chapter8/ 



Approximation Techniques for the Rod Model: Finite Element 

Local Basis Elements: Take 

Motivating Problem:  



Approximation Techniques for the Rod Model: Finite Element 
`Action’ Integral: 

Here 

where 

K: Kinetic Energy 
U: Potential Energy 

Thus 



Approximation Techniques for the Rod Model: Finite Element 

Hamilton’s Principle: See “String and Membrane” lectures 

Local System:  



Approximation Techniques for the Rod Model: Finite Element 

Global Matrices: Consider two subregions so  

and 

where 

Note: Second row obtained by summing 



Finite Difference Techniques for the Rod Model 
Consider first 

Grid: 

System:  

Initial Conditions: 



Finite Difference Techniques for the Rod Model 
Now consider 

Question: What is finite difference scheme? 


