Development and Approximation of Rod Models

"He has Van Gogh's ear for music," Billy Wilder

Motivation: Terfenol-D Transducer

Questions:
-Are inputs uniform along rod length?
-How can this be determined?
-What magnetomechanical behavior must be incorporated in models?

Uniform Inputs: Spring Model

Spring Model: Consider magnetic field inputs $\mathrm{H}(\mathrm{t})$

$$
\begin{aligned}
& m \frac{d^{2} u}{d t^{2}}+c \frac{d u}{d t}+k u=a_{2} M^{2}(H(t)) \\
& u\left(t_{0}\right)=u_{0} \\
& \frac{d u}{d t}\left(t_{0}\right)=u_{1}
\end{aligned}
$$

Questions:

- Can we compute an analytic solution?
- What numerical techniques can we use?
- How do we know if numerical techniques are converged?

Note:

- Appropriate analytic and numerical techniques will depend, in part, on nature of $M(H)$.

Nonuniform Inputs: Rod Model

Force Balance:

$$
\int_{x}^{x+\Delta x} \rho A \frac{\partial^{2} u}{\partial t^{2}}(t, s) d s=N(t, x+\Delta x)-N(t, x)+\int_{x}^{x+\Delta x} f(t, s) d s
$$

Strategy: Multiply by $\frac{1}{\Delta x}$ and take limit to get

$$
\rho A \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial N}{\partial x}+f
$$

Note: $N=\sigma A, \quad \varepsilon=\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}=\frac{\partial u}{\partial x}$

Constitutive Relations:

$$
\begin{aligned}
& \sigma=Y \varepsilon+c \frac{\partial \varepsilon}{\partial t}-a_{2} M^{2}(H) \\
& M(H)=\int_{0}^{\infty} \int_{-\infty}^{\infty} \mu\left(H_{c}, H_{I}\right) \bar{M}\left(H+H_{I} ; H_{c}\right) d H_{I} d H_{c}
\end{aligned}
$$

Rod Model (Strong Formulation)

Rod Model:

$$
\rho A \frac{\partial^{2} u}{\partial t^{2}}-Y A \frac{\partial^{2} u}{\partial x^{2}}-c A \frac{\partial^{3} u}{\partial x^{2} \partial t}=f-a_{2} A \frac{\partial\left(M^{2}(t)\right)}{\partial x}
$$

Boundary Conditions:

$$
\begin{aligned}
& u(t, 0)=0 \\
& N(t, \ell)=-k_{\ell} u(t, \ell)-c_{\ell} \frac{\partial u}{\partial t}(t, \ell)-m_{\ell} \frac{\partial^{2} u}{\partial t^{2}}(t, \ell)
\end{aligned}
$$

Initial Conditions:

$$
\begin{gathered}
u(0, x)=u_{0}(x) \\
\frac{\partial u}{\partial t}(0, x)=u_{1}(x)
\end{gathered}
$$

Issues:

Rod Model: Weak Formulation

State Space: $\xi(t)=(u(t, \cdot), u(t, \ell))$ in

$$
\begin{aligned}
& X=L^{2}(0, \ell) \times \mathbb{R} \\
& \left\langle\Phi_{1}, \Phi_{2}\right\rangle_{X}=\int_{0}^{\ell} \rho A \phi_{1} \phi_{2} d x+m_{\ell} \varphi_{1} \varphi_{2}
\end{aligned}
$$

Space of Test Functions:

$$
\begin{aligned}
& V=\left\{\Phi=(\phi, \varphi) \in X \mid \phi \in H^{1}(0, \ell), \phi(0)=0, \phi(\ell)=\varphi\right\} \\
& \left\langle\Phi_{1}, \Phi_{2}\right\rangle_{V}=\int_{0}^{\ell} Y A \phi_{1}^{\prime} \phi_{2}^{\prime} d x+k_{\ell} \varphi_{1} \varphi_{2}
\end{aligned}
$$

Integration by Parts:

$$
\int_{0}^{\ell} \rho A \frac{\partial^{2} u}{\partial t^{2}} \phi d x+\int_{0}^{\ell} N \frac{d \phi}{d x} d x-N(t, \ell) \phi(\ell)=\int_{0}^{\ell} f \phi d x
$$

Rod Model: Weak Formulation

Model:

$$
\begin{aligned}
& \int_{0}^{\ell} \rho A \frac{\partial^{2} u}{\partial t^{2}} \phi d x+\int_{0}^{\ell}\left[Y A \frac{\partial u}{\partial x}+c A \frac{\partial^{2} u}{\partial x \partial t}\right] \frac{d \phi}{d x} d x \\
&=\int_{0}^{\ell} f \phi d x+a_{2} A M^{2}(t) \int_{0}^{\ell} \frac{d \phi}{d x} d x \\
&-\left[k_{\ell} u(t, \ell)+c_{\ell} \frac{\partial u}{\partial t}(t, \ell)+m_{\ell} \frac{\partial^{2} u}{\partial t^{2}}(t, \ell)\right] \phi(\ell)
\end{aligned}
$$

for all $(\phi, \varphi)=(\phi, \phi(\ell)) \in V$

Note: For conservative case, weak formulation can also be derived using energy principles.

Rod Model: Strong and Weak Formulations

Rod Model:

$$
\rho A \frac{\partial^{2} u}{\partial t^{2}}-Y A \frac{\partial^{2} u}{\partial x^{2}}-c A \frac{\partial^{3} u}{\partial x^{2} \partial t}=f
$$

Boundary Conditions:

$$
\begin{aligned}
& u(t, 0)=0 \\
& N(t, \ell)=-k_{\ell} u(t, \ell)-c_{\ell} \frac{\partial u}{\partial t}(t, \ell)-m_{\ell} \frac{\partial^{2} u}{\partial t^{2}}(t, \ell)
\end{aligned}
$$

Weak Formulation:

$$
\begin{aligned}
& \int_{0}^{\ell} \rho A \frac{\partial^{2} u}{\partial t^{2}} \phi d x+\int_{0}^{\ell}\left[Y A \frac{\partial u}{\partial x}+c A \frac{\partial^{2} u}{\partial x \partial t}\right] \frac{d \phi}{d x} d x \\
& \quad=\int_{0}^{\ell} f \phi d x-\left[k_{\ell} u(t, \ell)+c_{\ell} \frac{\partial u}{\partial t}(t, \ell)+m_{\ell} \frac{\partial^{2} u}{\partial t^{2}}(t, \ell)\right] \phi(\ell)
\end{aligned}
$$

for all $(\phi, \varphi)=(\phi, \phi(\ell)) \in V$

Weak Formulation: Energy Principles

Issues: Need conservative problem; take $c=f=k_{\ell}=c_{\ell}=m_{\ell}=0$
Kinetic Energy: $K=\frac{1}{2} \int_{0}^{L} \rho A u_{t}^{2}(t, x) d x$
Potential Energy: $\quad U=\frac{1}{2} \int_{0}^{L} N \varepsilon d x=\frac{1}{2} \int_{0}^{L} \sigma A \varepsilon d x=\frac{1}{2} \int_{0}^{L} Y A u_{x}^{2}(t, x) d x$

Weak Formulation: Energy Principles

'Action’ Integral:

$$
\mathcal{A}[u]=\int_{t_{0}}^{t_{1}} \mathcal{L} d t
$$

where

$$
\mathcal{L}=\frac{1}{2} \int_{0}^{L}\left[\rho A u_{2}^{2}-Y A u_{x}^{2}\right] d x
$$

Hamilton's Principle:

$$
\delta \mathcal{A}[u ; \Phi]=\left.\frac{d}{d \varepsilon} \mathcal{A}[u+\varepsilon \Phi]\right|_{\varepsilon=0}=0
$$

Admissible variations:

$$
\widehat{u}(t, x)=u(t, x)+\varepsilon \eta(t) \phi(x)
$$

where
(i) $\eta\left(t_{0}\right)=\eta\left(t_{1}\right)=0$
(ii) $\quad \phi \in V=H_{0}^{1}(0, L)$

Weak Formulation: Energy Principles

Hamilton's Principle:

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon} \mathcal{A}[u+\varepsilon \Phi]\right|_{\varepsilon=0} & =\left.\frac{1}{2} \frac{d}{d \varepsilon} \int_{t_{0}}^{t_{1}} \int_{0}^{L}\left[\rho A\left(u_{t}+\varepsilon \dot{\eta} \phi\right)^{2}-Y A\left(u_{x}+\varepsilon \eta \phi^{\prime}\right)^{2}\right] d x d t\right|_{\varepsilon=0} \\
& =\left.\int_{t_{0}}^{t_{1}} \int_{0}^{L}\left[\rho A\left(u_{t}+\varepsilon \dot{\eta} \phi\right) \dot{\eta} \phi-Y A\left(u_{x}+\varepsilon \eta \phi^{\prime}\right) \eta \phi^{\prime}\right] d x d t\right|_{\varepsilon=0} \\
& =\int_{t_{0}}^{t_{1}} \int_{0}^{L}\left[\rho A u_{t} \dot{\eta} \phi-Y A u_{x} \eta \phi^{\prime}\right] d x d t \\
& =-\int_{t_{0}}^{t_{1}} \eta(t) \int_{0}^{L}\left[\rho A u_{t t} \phi+Y A u_{x} \phi^{\prime}\right] d x d t
\end{aligned}
$$

Weak Formulation:

$$
\int_{0}^{L} \rho A u_{t t} \phi d x+Y A \int_{0}^{L} u_{x} \phi^{\prime} d x=0 \quad \text { for all } \phi \in V
$$

Note: Use integration by parts to show equivalence to strong formulation

Approximation Techniques for the Rod Model: Galerkin

Linear Basis:

$$
\phi_{j}(x)=\frac{1}{h}\left\{\begin{array}{l}
x-x_{j-1}, \quad x_{j-1} \leq x<x_{j} \\
x_{j+1}-x, \quad x_{j} \leq x \leq x_{j+1} \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Approximate Solution:

$$
u^{N}(t, x)=\sum_{j=1}^{N} u_{j}(t) \phi_{j}(x)
$$

System:

$$
\begin{aligned}
& \sum_{j=1}^{N} \ddot{u}_{j}(t) \int_{0}^{\ell} \rho A \phi_{i} \phi_{j} d x+\sum_{j=1}^{N} \dot{u}_{j}(t) \int_{0}^{\ell} c A \phi_{i}^{\prime} \phi_{j}^{\prime} d x+\sum_{j=1}^{N} u_{j}(t) \int_{0}^{\ell} Y A \phi_{i}^{\prime} \phi_{j}^{\prime} d x \\
& \quad=\int_{0}^{\ell} f \phi_{i} d x-\left(k_{\ell} u_{N}(t) \phi_{N}(\ell)+c_{\ell} \dot{u}_{N}(t) \phi_{N}(\ell)+m_{\ell} \ddot{u}_{N}(t) \phi_{N}(\ell)\right) \phi_{N}(\ell)
\end{aligned}
$$

$$
\text { for } i=1, \cdots N
$$

Approximation Techniques for the Rod Model: Galerkin
2nd-Order Vector System:

$$
\mathbb{M} \ddot{\mathbf{u}}(t)+\mathbb{Q} \dot{\mathbf{u}}+\mathbb{K} \mathbf{u}(t)=\mathbf{f}(t)
$$

where $\mathbf{u}(t)=\left[u_{1}(t), \ldots, u_{N}(t)\right]^{T}$ and

$$
\begin{aligned}
& {[\mathbb{M}]_{i j}=\left\{\begin{array}{l}
\int_{0}^{\ell} \rho A \phi_{i} \phi_{j} d x, \quad, \quad N \text { or } j \neq N \\
\int_{0}^{\ell} \rho A \phi_{i} \phi_{j} d x+m_{\ell}, \quad i=N \text { and } j=N
\end{array}\right.} \\
& {[\mathbb{K}]_{i j}=\left\{\begin{array}{l}
\int_{0}^{\ell} Y A \phi_{i}^{\prime} \phi_{j}^{\prime} d x \quad, \quad i \neq N \text { or } j \neq N \\
\int_{0}^{\ell} Y A \phi_{i}^{\prime} \phi_{j}^{\prime} d x+k_{\ell}, \quad i=N \text { and } j=N
\end{array}\right.} \\
& {[\mathbb{Q}]_{i j}=\left\{\begin{array}{l}
\int_{0}^{\ell} c A \phi_{i}^{\prime} \phi_{j}^{\prime} d x \quad, \quad i \neq N \text { or } j \neq N \\
\int_{0}^{\ell} c A \phi_{i}^{\prime} \phi_{j}^{\prime} d x+c_{\ell}, \quad i=N \text { and } j=N
\end{array}\right.} \\
& {[\mathbf{f}]_{i}=\int_{0}^{\ell} f \phi_{i} d x}
\end{aligned}
$$

Approximation Techniques for the Rod Model: Galerkin

Matrices: Constant coefficients

$$
\mathbb{M}=\rho A h\left[\begin{array}{ccccc}
\frac{2}{3} & \frac{1}{6} & 0 & \cdots & 0 \\
\frac{1}{6} & \frac{2}{3} & \frac{1}{6} & & \\
& \ddots & \ddots & \ddots & \\
& & \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\
0 & \cdots & 0 & \frac{1}{6} & \frac{1}{3}+\frac{m_{\ell}}{h}
\end{array}\right], \mathbb{K}=\frac{Y A}{h}\left[\begin{array}{rrrcc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
0 & \cdots & 0 & -1 & 1+h k_{\ell}
\end{array}\right]
$$

First-Order System:

$$
\begin{aligned}
& \dot{\mathbf{z}}(t)=\mathbb{A} \mathbf{z}(t)+\mathbf{F}(t) \\
& \mathbf{z}(0)=\mathbf{z}_{0}
\end{aligned}
$$

where

$$
\mathbb{A}=\left[\begin{array}{cc}
0 & \mathbb{I} \\
-\mathbb{M}^{-1} \mathbb{K} & -\mathbb{M}^{-1} \mathbb{Q}
\end{array}\right] \quad, \quad \mathbf{F}(t)=\left[\begin{array}{c}
0 \\
\mathbb{M}^{-1} \mathbf{f}(t)
\end{array}\right]
$$

Note: Codes available at http://www4.ncsu.edu/~rsmith/Smart_Material_Systems/Chapter8/

Approximation Techniques for the Rod Model: Finite Element

Motivating Problem: $\quad \rho A \frac{\partial^{2} u}{\partial t^{2}}+Y A \frac{\partial^{2} u}{\partial x^{2}}=0$
Local Basis Elements: Take

$$
\begin{aligned}
u(t, x) & =a_{0}(t)+a_{1}(t) x \\
& =\varphi^{T}(x) \mathbf{a}(t)
\end{aligned}
$$

where $\mathbf{a}(t)=\left[a_{0}(t), a_{1}(t)\right]^{T}$ and $\boldsymbol{\varphi}(x)=[1, x]^{T}$. Then

$$
\begin{aligned}
& {\left[\begin{array}{l}
u_{\ell}(t) \\
u_{r}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & h
\end{array}\right]\left[\begin{array}{l}
a_{0}(t) \\
a_{1}(t)
\end{array}\right]} \\
& \Rightarrow \mathbf{u}(t)=\mathbb{T} \mathbf{a}(t)
\end{aligned}
$$

By observing that $\mathbf{a}(t)=\mathbb{S u}(t)$, where

$$
\mathbb{S}=\mathbb{T}^{-1}=\left[\begin{array}{rr}
1 & 0 \\
-\frac{1}{h} & \frac{1}{h}
\end{array}\right],
$$

it follows that displacements can be represented as

$$
u(t, x)=\phi^{T}(x) \mathbf{u}(t)
$$

where $\phi^{T}(x)=\left[1-\frac{x}{h}, \frac{x}{h}\right]$.

Approximation Techniques for the Rod Model: Finite Element

`Action’ Integral:

$$
\begin{aligned}
\mathcal{A} & =\int_{t_{0}}^{t_{1}}[K-U] d t \\
& =\int_{t_{0}}^{t_{1}} \frac{1}{2} \int_{0}^{h}\left[\rho A u_{t}^{2}(t, x)-Y A u_{x}^{2}(t, x)\right] d x d t
\end{aligned}
$$

K: Kinetic Energy
U: Potential Energy
Here

$$
u_{x}^{2}(t, x)=\mathbf{u}^{T}(t) \mathbb{S}^{T} \mathbb{D}(x) \mathbb{S} \mathbf{u}(t), u_{t}^{2}(t, x)=\dot{\mathbf{u}}^{T}(t) \mathbb{S}^{T} \mathbb{F}(x) \mathbb{S} \dot{\mathbf{u}}(t)
$$

where

$$
\mathbb{D}(x)=\boldsymbol{\varphi}_{x}(x) \boldsymbol{\varphi}_{x}^{T}(x)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \quad, \quad \mathbb{F}(x)=\boldsymbol{\varphi}(x) \boldsymbol{\varphi}^{T}(x)=\left[\begin{array}{cc}
1 & x \\
x & x^{2}
\end{array}\right]
$$

Thus

$$
\mathcal{A}[\mathcal{U}]=\int_{t_{0}}^{t_{1}} \frac{1}{2}\left[\dot{\mathbf{u}}^{T}(t) \mathbb{M}_{e} \dot{\mathbf{u}}(t)-\mathbf{u}^{T}(t) \mathbb{K}_{e} \mathbf{u}(t)\right] d t
$$

where $\mathcal{U}=(\mathbf{u}, \dot{\mathbf{u}})$ and

$$
\begin{array}{lll}
\mathbb{M}_{e}=\rho A \mathbb{S}^{T} \cdot \int_{0}^{h} \mathbb{F}(x) d x \cdot \mathbb{S} & , \quad \mathbb{K}_{e}=Y A \mathbb{S}^{T} \cdot \int_{0}^{h} \mathbb{D}(x) d x \cdot \mathbb{S} & M_{e}: \text { Local Mass Matrix } \\
\Rightarrow \mathbb{M}_{e}=\rho A h\left[\begin{array}{ll}
\frac{1}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{3}
\end{array}\right] \quad, \quad \mathbb{K}_{e}=\frac{Y A}{h}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] &
\end{array}
$$

Approximation Techniques for the Rod Model: Finite Element

Hamilton' s Principle: See "String and Membrane" lectures

$$
\left.\frac{d}{d \varepsilon} \mathcal{A}[\mathcal{U}+\varepsilon \Upsilon]\right|_{\varepsilon=0}=0
$$

where $\Upsilon=(\boldsymbol{\eta}, \dot{\boldsymbol{\eta}})$ and it is assumed that $\boldsymbol{\eta}\left(t_{0}\right)=\boldsymbol{\eta}\left(t_{1}\right)=0$. Here

$$
\begin{aligned}
& \mathcal{A}[\mathcal{U}+\varepsilon \Upsilon]=\int_{t_{0}}^{t_{1}} \frac{1}{2}\left[(\dot{\mathbf{u}}+\varepsilon \dot{\boldsymbol{\eta}})^{T} \mathbb{M}_{e}(\dot{\mathbf{u}}+\varepsilon \dot{\boldsymbol{\eta}})-(\mathbf{u}+\varepsilon \boldsymbol{\eta})^{T} \mathbb{K}_{e}(\mathbf{u}+\varepsilon \boldsymbol{\eta})\right] d t \\
& \Rightarrow \frac{d}{d \varepsilon} \mathcal{A}[\mathcal{U}+\varepsilon \Upsilon]=\int_{t_{0}}^{t_{1}} \frac{1}{2}\left[\dot{\boldsymbol{\eta}}^{T} \mathbb{M}_{e}(\dot{\mathbf{u}}+\varepsilon \dot{\boldsymbol{\eta}})+(\dot{\mathbf{u}}+\varepsilon \dot{\boldsymbol{\eta}})^{T} \mathbb{M}_{e} \dot{\boldsymbol{\eta}}\right. \\
&\left.-\boldsymbol{\eta}^{T} \mathbb{K}_{e}(\mathbf{u}+\varepsilon \boldsymbol{\eta})+(\mathbf{u}+\varepsilon \boldsymbol{\eta})^{T} \mathbb{K}_{e} \boldsymbol{\eta}\right] d t \\
&\left.\Rightarrow \frac{d}{d \varepsilon} \mathcal{A}[\mathcal{U}+\varepsilon \Upsilon]\right|_{\varepsilon=0}=\left.\int_{t_{0}}^{t_{1}}\left[\dot{\boldsymbol{\eta}}^{T} \mathbb{M}_{e} \dot{\mathbf{u}}-\boldsymbol{\eta}^{T} \mathbb{K}_{e} \mathbf{u}\right] d t \quad \text { (since } \dot{\mathbf{u}}^{T} \mathbb{M}_{e} \dot{\boldsymbol{\eta}}=\dot{\boldsymbol{\eta}}^{T} \mathbb{M}_{e} \dot{\mathbf{u}}\right) \\
&=-\int_{t_{0}}^{t_{1}} \boldsymbol{\eta}\left[\mathbb{M}_{e} \ddot{\mathbf{u}}+\mathbb{K}_{e} \mathbf{u}\right] d t \quad \text { (integration by parts) }
\end{aligned}
$$

Local System:

$$
\mathbb{M}_{e} \ddot{\mathbf{u}}(t)+\mathbb{K}_{e} \mathbf{u}=0
$$

Approximation Techniques for the Rod Model: Finite Element

Global Matrices: Consider two subregions so $h=\frac{\ell}{2}$. Here

$$
\mathbf{u}(t)=\left[u_{1 \ell}(t), u_{2 \ell}(t), u_{2 r}(t)\right]^{T}
$$

and

$$
\mathbb{M} \ddot{\mathbf{u}}+\mathbb{K} \mathbf{u}=0
$$

where

$$
\mathbb{M}=\rho A h\left[\begin{array}{lll}
\frac{1}{3} & \frac{1}{6} & 0 \\
\frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\
0 & \frac{1}{6} & \frac{1}{3}
\end{array}\right] \quad, \quad \mathbb{K}=\frac{Y A}{h}\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

Note: Second row obtained by summing

$$
\begin{aligned}
& \rho A h\left(\frac{1}{6} \ddot{u}_{1 \ell}+\frac{1}{3} \ddot{u}_{2 \ell}\right)+\frac{Y A}{h}\left(-u_{1 \ell}+u_{2 \ell}\right)=0 \\
& \rho A h\left(\frac{1}{3} \ddot{u}_{2 \ell}+\frac{1}{6} \ddot{u}_{2 r}\right)+\frac{Y A}{h}\left(u_{2 \ell}-u_{2 r}\right)=0
\end{aligned}
$$

after enforcing $u_{1 r}=u_{2 \ell}$ and $\ddot{u}_{1 r}=\ddot{u}_{2 \ell}$.

Finite Difference Techniques for the Rod Model

Consider first

$$
\begin{aligned}
& u_{t t}-K^{2} u_{x x}=F \\
& u(t, 0)=u(t, \ell)=0 \\
& u(0, x)=f(x), u_{t}(0, x)=g(x)
\end{aligned}
$$

Grid: $\Delta=\left\{\left(x_{i}, t_{j}\right) \mid x_{i}=i h, t_{j}=j k\right\}$

System: $m=K \frac{k}{h}$

$$
\begin{aligned}
& \frac{1}{k^{2}}\left[u_{i, j-1}-2 u_{i, j}+u_{i, j+1}\right]-\frac{K^{2}}{h^{2}}\left[u_{i-1, j}-2 u_{i, j}+u_{i+1, j}\right]=F\left(t_{j}, x_{i}\right) \\
& \Rightarrow u_{i, j+1}=m^{2}\left[u_{i+1, j}+u_{i-1, j}\right]+2\left(1-m^{2}\right) u_{i, j}-u_{i, j-1}+k^{2} F\left(t_{j}, x_{i}\right)
\end{aligned}
$$

Initial Conditions:

$$
\begin{aligned}
& g\left(x_{i}\right) \approx \frac{u_{i, 1}-u_{i,-1}}{2 k} \Rightarrow u_{i,-1}=u_{i, 1}-2 k g\left(x_{k}\right) \\
& \Rightarrow u_{i, 1}=\frac{m^{2}}{2}\left[f\left(x_{i+1}\right)+f\left(x_{i-1}\right)\right]+\left(1-m^{2}\right) f\left(x_{i}\right)+k g\left(x_{i}\right)+\frac{k^{2}}{2} F\left(t_{0}, x_{i}\right)
\end{aligned}
$$

Finite Difference Techniques for the Rod Model

Now consider

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x t}-K^{2} u_{x x}=F \\
& u(t, 0)=u(t, \ell)=0 \\
& u(0, x)=f(x), u_{t}(0, x)=g(x)
\end{aligned}
$$

Question: What is finite difference scheme?

