Fluids Models

‘Water is fluid, soft and yielding. But water will wear away rock, which is rigid and
cannot yield. As a rule, whatever is fluid, soft and yielding will overcome whatever
is rigid and hard. This is another paradox: what is soft is strong” Lao-Tzu



Fluid Phenomena

Definition (Fluid): Any liquid or gas that cannot sustain a shearing force when at
rest and that undergoes a continuous change in shape when subjected to such a
stress. Compressed fluids exert an outward pressure that is perpendicular to the
walls of their containers. A perfect fluid lacks viscosity, but real fluids do not.

Comparison: A solid deforms only until the external and internal forces are

balanced. |

Chimera: Granular materials (e.g., sand) é )




Improved Aeronautic Designs

Research Topics:

Aircraft Design: Computational fluid dynamics (CFD) codes widely used in the

design of the Boeing 787.
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Research Topics: Improved Aeronautic Designs

Windmill Design: Improved airfoils yield substantially improved efficiency.




Research Topics: Biomedical Systems

Bloodflow: Diagnose and treat circulatory ailments; e.g., clots
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Research Topics: Improved Hydroelectric Designs
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Research Topics: Traffic Modeling and Control




Newton’s Law of Viscosity

Deformation Rate: Rate of change in distance between two neighboring points
moving with fluid divided by the distance between the points. That is, “change in
length per unit length per unit time.”

Strain: In solids, strain is the change in length per unit length.

Note: Deformation rate thus often referred to as strain rate.

Shear Stress: Stress applied parallel or tangential to face of material; e.g., slide
deck of cards.

Viscosity: Measure of the resistance of a fluid that is being deformed by a shear or
tensional stress. The study of viscosity is termed rheology.

« High viscosity: honey, magma

» Low viscosity: air, superfluids

« Units: Ns/m? or 1 Poise (P) =1 dyne s /cm# =1 g/(cm s)

* E.g., Lubricating oils (~100 centipoise), water (~1 centipoise), air (~10e3-
centipoise)



Newton’s Law of Viscosity

Newton’s Law of Viscosity: Consider a moving plate separated from fixed plate by
fluid. For a “Newtonian fluid”, the force required to move the plate is proportional to
the velocity and area and inversely proportional to distance between the plates.
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Relation:
Au
F=puA—
2 Ay
N Mdu
Tux = Wb—
Yy dy

Note: 7y IS the stress acting the y-surface
in the z-direction
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Experiments: Couette Viscometer
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Non-Newtonian Fluids

Newtonian Fluids: e.g., water, oils,
glycerin, air and other gases at low to

moderate shear rates

Bingham Fluids: exhibit yield stress;
e.g., paint, ketchup

Pseudo-Plastic Fluids: shear-thinning
fluids, often solutions of large,
polymeric molecules in solution with
smaller molecules; e.g., styling gel

Dilatant Fluids: shear-thickening fluids
which have increased viscosity at
higher rates; e.g., uncooked paste of
cornstarch and water, coupling fluids
used in 2-wheel/4-wheel drive vehicles

Time-Dependent Viscosity: viscosity
decreases with duration of stress;
e.g., honey under certain conditions
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Model Development: Shear Stresses

Stress Orientation: Ty TTyy
Stress Tensor: & Tyz
Yz Ty
-
Tzz €T >

VA

Sign Convention: Stress acting on coordinate plane having a positive outward
normal normal is positive if the stress itself also acts in the positive direction.
It is also considered positive if it acts in a negative direction on a surface with

negative outward normal. Ty

Note: Fluid at rest experiences

only pressure which is a normal Tzy

force that acts opposite to the Tmeﬁz Toz ) ApTpy

outward normal. >
Txy X




Momentum Balance: x-direction
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Momentum: x-component
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Conservation of Momentum
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Conservation of Momentum

Momentum: y-component

O(pv) 0 0, 4 0 OToy | OTyy , OTzy  Op

or [ax(pu"’) T, ) T g el + St B T e, By
Momentum: z-component

o(pw) 9, 9, 2 2} OTzz  OTyz 0Tz Op

ot {ax(p“w) T g, t g )+t 5t a6

Note: Combination with the continuity equation yields

Du
P Dt

Because stress is a tensor, this is not a simple divergence.

=—-Vp+V.-.7



Strain Rate Behavior

Goal: Generalize Newton’s law of viscosity for 3-D flows. As a prelude, we first
discuss the possible kinematics of a fluid element.

Translation
_\\
Rotation } Rigid body motion
Dilatation
Deformation motion
Shear Strain
=/

Viscous Effects: Angular deformation and dilatation



Strain Rate Behavior

Translation: Given by 4 = [u, v, w] y 4
Rotation: | | u|y o \ | ay
e Angular velocity on side Az: ol |
U|£B+A$ o U|x m" A ’ x+$>x
A$ u|y T
e Angular velocity on side Ay:
_u|y+Ay B u|y
Ay
e Average and take limit to obtain angular velocity:
1 (81} au)
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Shear Strain;:
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Strain Rate Behavior
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Dilatation: Increased volume
AulAtAyAz + AvAtAzAz + AwAtAzAy + O (At?)
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Incompressible Fluid: ¢ =0

 e.g., water, air at supersonic speeds
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Strain Rate Relations

Velocity Gradient Tensor:
8’(1,7;

0z = G +
Here
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Constitutive Relations

Stress-Strain Rate Relations:

Tij = 21€i5 + 04 AP 1, A: Viscosity coefficients
Define ¢ = A + £ to obtain
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Navier Stokes Equations

Strategy: Employ stress relations in momentum equations
ou; ou; Op 0 Ou; Ou; 2. Ou 0 Ouy
. — — 28—
p( ot T axj) dz: | 0z, [“ (axj T o 3 Jaxe)} T oz, (Caxe)
E.g., First component
ou ou ov ow B Op O ou 2 .
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Note: These equations are often simplified through various assumptions

* e.g., Bulk viscosity X typically neglected in dense gasses and liquids
 Incompressible fluids: ¢ = V - 4 = 0. If constant g,

Dil .



Euler and Burgers’ Equations

Euler Equations: Used when viscosity is negligible (inviscid fluids)

Du
g v
P Dy p

Inviscid Burgers’ Equation: Nonlinear equation illustrates formation of shocks

ou ou

o + ua_x —0 Quasilinear Form

ou 0 (1 4 .
n - . <2u ) =0  Conservation Form

Burgers’ Equation: Combines nonlinear behavior and dissipation. Provides a
simplified model for analysis and testing numerical methods
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Advection Equation

Advection Equation: Constant wave speed ¢ A

ut + cugy =0 T =T+ ct

u(0,z) = ¢(z)
= u(t,z) = ¢(x — ct) L

e Solution constant along characteristics: x — ct = z

Characteristics: Satisfy
z'(t) =c
z(0) = zg
Differentiation along characteristics yields

iu(t z(t)) = 8_u+8_ud_:c ion: i
7 = 5 b7 dt Conclusion: u(t, x) is constant along

characteristic in this case
= Ut + ClUg

= 0



Advection Equation
Advection Equation: Variable wave speed c(x)

Characteristic Equations:

2 (t) = cla(t))
z(0) = zg

Nonconstant Solution: Solution to differential equation

d

—ult,x(t) = —¢ (@)ut, z(t))

u(0,z) = ¢(x)



Inviscid Burgers Equation

Burgers Equation:

us +uu, =0

u(0,z) = ¢(z)
Characteristic Equations: Solutions:
o' (t) = u(t,z(t)) u'(t) = ug +uugy =0
z(0) = xo = u(t, z) = u(0,§)
= z(t) = £ +u(0, &)t Cu=1
t _
Example: / u=0
1, z <0 1
)=} 11—z, O<z<l1
0, x>0
<
A Z
— Question: How do we uniquel
é(c) ey

specify solution after t=17?




Rankine-Hugoniot Jump Condition

Conservation Relation: (Differential form)
ou g B

ot T or
Conservation Relation: (Integral form)

% Vuda:z—/sf-'ﬁ,ds

0

B
= %/ udr = —f(u(t, 8)) + f(u(t,a)) (1)

Goal: Determine a curve x = o (t) that characterizes the evolution of

the discontinuity. Take A
. t a(t)
lim  u(t,z) = uy
x—o(t)~ U
lim u(t,z) = u, o
x—o(t)t
Jump: [u] = ug — uy, o B

Note: Choose interval [a, 5] which contains o(t) at time ¢



Rankine-Hugoniot Jump Condition

Note:
o(t)” B
LHS of () % [/ u(t,z)dx —I—/ u(t,az)dw]

o(t)+

o(t)™ 1]
— / ut(t, z)dx + ueo + / u(t,x)dx —u.6 (Leibniz Rule)

o(t)+

= o — f@)|2" = F@)|]

From (7), this yields ! :
(1) y Previous Example: f(u) = 5“2 =0=3
[ujo = [f]
1
Shock Speed: o §(t o
A U= 1
_ flue) — f(ur) t “=0
Up — Up 1
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Entropy Condition

Example: Consider the inviscid Burgers equation with initial data

] 0,z2<0 A b(z
¢(x)_{1,:1:>0 (@)
,u’:OA u:l < |
< >

Note: No characteristics in the region {0 < z < t,t > 0}

Entropy Condition: Require Definition: A curve that satisfies
a(u,) < & < a(uy) u]é = [f]
& flluy) < s < f'(up) a(u,) < & < a(up)

is termed a shock. Resulting
solutions u are termed generalized
solutions.



Traffic Flow Example
Model:
pt + (pu)z =0
where p has units of cars/mile. To relate v and p, consider the expression
u(p) = Umax (1 — p/Pmax)
= f(p) = Pumax (1 — p/Pmax)

Characteristic Speed:

f'(p) = tmax (1 — 2p/pmax)

Shock Speed:
5 L) —fler) _ !1 ~ (pet pr)]
P — Pr Pmax
Entropy Condition:

f'(pe) > f'(pr) = pe < pr



Traffic Flow Example

Case 1: Initial density
]
_ ) p,z<0
p(tao)_{pr7$>0 1
Uy = §umax
where py; = %pmax and p, = pPmax-

Vehicle Trajectories 0

1
Case 2: P¢ = Pmax; Pr = §pmax \

Characteristics 0
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Numerical Methods for Burgers Equation

Conservation Form:
ou 0 (1 4
a -+ 8_33 (iu ) — 0

First-Order Differencing:

k1l , 1 5
Ui, j+1 = Uj5 — h 5%’,3‘ ~ oti-1j

Note: You will often get an incorrect shock speed with the quasilinear approximation
k

Wij+1 = Uij — 3 Ui [Uij — Ui—1,5]

General Conservation Relation: u: + (f(u))z =0

k
Ui j+1 = Ui 5 — n [f(uzg) - f(“i—l,j)] 3 f’(u) >0

k
Ui+l = Uij — 3 [f(wig1,5) — fluijy)] , fl(w) <O

Note: More comprehensive methods need to be employed if f'(u) switches sign.



Poiseuille Flows

yTT> I é

Note: Velocity a function only of y implies 3% = ¢%. Thus

Parallel Plates:

dp d?*u
0= ——= —
iz i
du d
:>u—=—p+cl Note:d—u =0=c1=0
dy dx dy |,
du dp . _ _
= T = Tyz = M@ = I Note: Shear stress is a linear function of y
Moreover,
1 dp ,
v 2/ dmy +e
_1ldp, , 2\« _
= u(y) = ﬂd_x(y — h*) since u y—in =0



Hagen-Poiseuille Flows

Pipe Flow: Analogous development

1 dp, o o -
u(r) = g oo~ R?)
L
Notation: A
U: Volumetric flow rate T J::f

. p2- o it
Ao {éa el

Note: s :T‘::m““" o
R
].dp 2 B
_ — RY2nrd 1
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Hagen-Poiseuille Equation:

¥
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R = ML Resitance o flow ;J.Q_%J o oo

m R4 between two points




Conservation of Energy

Note: Must include energy balance if heat or work affects the flow.
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Conservation of Energy

Definition: The energy of a body is defined as the capacity of the body to do work.
The units of energy are the same as those of work.

Definition: The kinetic energy is that due to its motion.

Definition: The internal energy is that stored within the substance and is due
to the activity and spacing of molecules.

Definition: The heat or heat transfer is defined as thermal energy in transition
due to a temperature difference between two points.

Principle:
Increase in energy (internal | __ | Rate at which heat is I Rate which surface work is
and kinetic) of unit mass transferred to the body done on the body

(e.g., gravity, EM) do work

Rate at which body forces
+ }
on the body

Integrate in Time:
AE=A{U+KE+PE)=Q—-W
First Law of Thermodynamics



Conservation of Energy

Notation: Ty |
: : vz |yt Ay
e: Internal energy/unit mass — Units: J/kg E—
q: Heat flux — Units: W/m? = J/(s m?) o, |
o < <4< Txx - -
= Q= _/ q-ndS Tz Tee| ar Tl e
S T >
p: Fluid density — Units: kg/m? . . E—
@ = [u, v, w]: Velocity field Tyel,
Energy Balance: Flow in x-direction
D L2 av = AdS + AyA
D Vp(6+2u +g2)dV = - @75 + Ay pul|, —pu| A,
+ —'rm’u, oA T Twmu|m] AyAz
Ty ay Tymu|y] AzAz
+ -sz’u, Ay 'rzxu|z] AzAy




Conservation of Energy

Note:

%/Vp(eqL%uqugz)dV = /V:d%(pé)qtu(;%(pé)] awv é=e+%u2+gz
= [ % +u2)ern(Grul)|av
_ /Vp%dV

Energy Relation: Flow in x-direction

D 1 0 0 0 0
p— (e + ~u?® + gz> = -V g+ —(utgz) + = (uTyz) + = (uTzz) — = (pu)

Dt 2 Heat 07 oy 0z oz
T transferred to Surface work done on body
Tyx |y+Ay bOdy
—>
— . . . .
el = | L E 7 Too | Note: Can S|mpI|f3_/ using
z |Te| AT | Tl momentum equation

CC’

«—




Conservation of Energy

Energy Relation: General flow @ = [u, v, w]

% Vp(e+ %|ﬁ|2+92> dV=—/9q-ﬂd5+[91?(n> - udS
Here the dyad ¢,y = 7 - 7 is defined as
by = @ [MaTex + nyTye + 1. Tos)
] neToy + nyTyy + 1,7y
k(g Tor + 1y Ty, + 1,7
where
i = ing + jny + kn,

T=17—-pl

Tez Taey Taz
T= | Tyz Tyy Tyz

Tzx Tzy Tzz



Conservation of Energy
Energy Relation: Differential form
p% (e+ ;u2+gz> =—-V.q+V-(T-u)

Here
T U= 1[Tpeu+ Toyv + Tpow]
+7[Tyau + Tyyv + Tyow]
+k [Toou + Toyv + T, ow)



Temperature Relation

Note: H = c¢,mT
H

épezﬁ:cpp’f

Fourier’s Law:
q=—kVT - -n

Assumptions: Negligible shear stresses

DT 9 0
— p— — —
PP Dy K oz (pu)



Bernoulli’'s Principle

Assumptions: Steady,1-D flow |

—» U9
—» U1
Energy Relation:
oW 1
0Q _ _ / (£+e+—u2+92) pudS

ot ot S14+82 \P 2

1 1

— (ZE + eg + ~uj +922) p2Asug — (& +e1+ ~ui+ 92'1) p1A1U1
p2 2 p]- 2

Conservation of Mass:
dm

— = p1Ajuy = poAou
dt pP1A1Ul = p2A2U2

Combination yields

0Q oW _[(p2 p B uz—uf - \]dm
ot ot _KP2 p1>+(€2 e1) + g(z2 — 21)




Bernoulli’'s Principle

Reformulation in terms of change per unit mass yields

2 2
Uy — U
q—w=<@—&>+(€2—61)+ 2 1+g(22—21)
P2  p1 2
Assumption: Incompressible flow
2 2
— Uy — U
—w = 2 ppl + 2t gz — 2) + (2 —e1—q)
P2 — D1 U% — U%
= p t—5 g(22 — 21) + gHL

where the “head loss”
gHp, =e2 —e; —q

represents conversion of mechanical to thermal energy.

Zero Work Case:

P2 — D1 +U%—U%

p 2

+g(zg —21) =0



Bernoulli's Principle

Common Form:;
2
Uu
— +gz+ P-c
2 p

Applications:

« Lift from an airfoil (be careful of analysis)

» Carburetor design (venturi creates region of Venturi meter

low pressure that draws in fuel and mixes it
AIR Basic Carburetor

(Cross Section)

* Pitot tube used to determine airspeed of an
aircraft

* Allows sail-craft to move faster than the wind!

Q(GPM) = 5.67 CD,2 ﬁ

C = Instrument Coefficient
D, = Entrance Diameter in Inches
D, = Throat Diameter in Inches

A =D,D,
T H = Differential Head in Inches = h, — h,
h, L |
b, 0, 1
1 a D,

J_.--"'"_T_ —

— ° -




Bernoulli’'s Principle
Applications:

* Noncontact grippers (e.g., for solar cells —_—

which are easily contaminated) PRESSURE ﬁ\-]

AIR-STREAM demmm” S AIR-STREAM

* Windcube: Generator employing shroud that LIFTING FORCE
generates electricity with wind speeds as low  omect
as 5 mph

Easy Experiments:

» Blow between two ping-pong balls
suspended from strings

 Collapse a paper house

» Suspend a balloon or ping-pong ball
over a stream of air

* Blow air out of a funnel

 Other cool activities :)



Applications:

e Curve ball

Bernoulli's Principle

Wh dﬂES Thers are countiess variations on the curve, but the basic idea
i& to throw the ball so that it curves right or left and/ or down

CurVEball fooling the batter into swinging at a ball that's no longer the;e.
Curve The secret of the curve lies in the spin of the ball.

To throw a curve, most HIGH The stitching on the
pitchers grasp the ball PRESSURE il gathers up air
with their middie and - s the ball rotates,
index fingers on or / creating higher
n;alr trrl1e 51:|I::htng, v 111'_ %;‘]\n ECTION air pre'ssure?tm
their thum = PATH O one side of =
underneath. ' FBa \ﬁ i the ball.

As they throw, they™
snap the wrist in a

"turning the

pressure
forces the

doorknob" motion bali in the
to impart a spin in oy ilﬁ?- direction of the
the direction of the #‘E':TMH oF AIRFLOW low pressure, and

thirow. the ball curves.
SOURCES: University of California Dawis, Learnd com Clay Frost J MShBC



