
Pressurized Water Reactor (PWR) 

Models: 

•  Involve neutron transport, thermal-hydraulics, chemistry 

•  Inherently multi-scale, multi-physics 

CRUD Measurements: Consist of low resolution images at limited number of locations. 

  



Pressurized Water Reactor (PWR) 

3-D Neutron Transport Equations:  

Challenges: 

•  Linear in the state but function of 7 
independent variables: 

 

•  Very large number of inputs or parameters; 
e.g., 100,000; Parameter selection critical. 

•  ORNL Code: Denovo 

•  Codes can take hours to days to run.   



Pressurized Water Reactor (PWR) 
Thermo-Hydraulic Model: Mass, momentum and energy balance for fluid  

Challenges: 

•  Nonlinear coupled PDE with nonphysical parameters due to closure relations; 

•  CASL code: COBRA (CTF)  

•  COBRA is a sub-channel code, which cannot be resolved between pins. 

•  Codes can take minutes to days to run.   

Note: Similar equations for gas 



Microscopic Cross-Sections 

Cross-Sections: Probability that a neutron-nuclei reaction will occur is characterized 
by nuclear cross-sections. 

•  Assume target is sufficiently thin so no shielding. 

•  Rate of Reactions: 

 

•  Microscopic Cross-Sections: Related to types of reactions.  
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Macroscopic Cross-Sections 

Macroscopic Cross-Sections: Accounts for shielding 

Total Reaction Rate per Unit Area: 
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Strategy: Equate reaction rate to decrease 
in intensity 
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Neutron Flux in Reactor 

Neutron Density:  N(r, t)

• N(r, t)dr3: Expected number of neutrons in dr3 about r at time t

Reaction Rate Density: Interaction frequency  

dr3

r

• N(r, E, t)dr3dE: Expected number neutrons in dr3 with energies E in dE

Angular Neutron Density:  

• n(r, E, ⌦̂, t)dr3dEd⌦̂: Expected number of neutrons in dr3 about r

with energy E about dE, moving in direction ⌦̂

in solid angle ⌦̂ at time t

Angular Neutron Flux:  '(r, E, ⌦̂, t) = vn(r, E, ⌦̂, t)

F (r, E, t)dr3 = v⌃N(r, E, t)dEdr3

v⌃ where v is neutron speed



Neutron Transport Equation 
Conservation Law:  

Gain Mechanisms:  
(1) Neutron sources (fission)

(2) Neutrons entering V

(3) Neutrons of different E0, ⌦̂0
that change to E, ⌦̂ due to scattering collision

Loss Mechanisms:  
(4) Neutrons leaving V

(5) Neutrons suffering a collision
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Neutron Transport Equation 
Terms:  

(1)
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(5) Rate at which neutrons collide at point r is
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(2), (4) Consider the rate at which neutrons leak out of surface
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Neutron Transport Equation 
Terms: Scattering cross-sections 

•  Consider first a beam of neutrons of incident intensity I, all of energy E’, hitting a 
thin target of surface atomic density   NA

E0 E

Note: Microscopic differential scattering cross-section is proportionality constant   
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Neutron Transport Equation 
Terms: Scattering cross-sections 

•  Consider how change in direction  
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(3) Rate at which neutrons scatter from E0, ⌦̂0
to E, ⌦̂ is
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To incorporate contributions from any E0, ⌦̂0
, we integrate to obtain
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Neutron Transport Equation 
Conservation Law:  

Since this must hold for any control volume, it follows that 
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Neutron Transport Equation 
Plane Symmetry: Flux depends only on x  
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1-D Neutron Transport Equation: 
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