Heat Conduction and the Heat Equation

"If you can't take the heat, don't tickle the dragon."

Heat Transfer

Note: Energy is the conserved quantity

Conduction:

- Heat transfer due to molecular activity. Energy is transferred from more energetic to less energetic particles due to energy gradient
- Occurs in solids, fluids and gases
- Empirical relation: Fourier's law

Convection:

- Energy transfer in fluid or gas due to bulk or macroscopic motion (advection)
- Convection: Advection + conduction
- Empirical relation: Newton's law of cooling

Thermal Radiation:

- Energy emitted by matter due to changes in electron configurations that results in changes in energy via EM waves or photons
- Empirical relation: Stefan-Boltzmann law

Heat Conduction

1-D Assumptions:

- Temperature uniform over cross-sections
- Heat transfer is by conduction
- Heat transfer only along x-axis
- No heat escapes from sides (perfect insulation)

Relevant Quantities:

- u(t,x) : Temperature (°C or K)
- H(t,x): Amount of Heat (energy) Units: Calories or Joules

Note: 1 calorie = heat required to raise 1 g water 1 °C

1 J = 0.23885 cal

1 cal = 4.19 J

Note: $H = c_p m u$

- c_p : Specific heat Units: $\frac{J}{kg \cdot K}$, e.g., Aluminum versus iron
- m: Mass, e.g., Consider 1 g Fe at 100 °C in 10 g water versus 10 g Fe at 100 °C in 10 g water

x

Heat Conduction

Thermal Energy Density: Units: J/m³ or cal/m³

$$\rho_{th}(t,x) = H(t,x)/m^3 = c_p \rho(t,x) u(t,x)$$

Rate of Heat Transfer:

q(t, x): Units: Watts (power) where 1 W = 1 J/s

Flux:

$$\mu(t,x) = q(t,x)/A$$

Conservation of Energy: See mass conservation with constant A

$$\frac{\partial \rho_{th}}{\partial t} + \frac{\partial \mu}{\partial x} = 0$$
$$\Rightarrow c_p \rho \frac{\partial u}{\partial t} = -\frac{\partial \mu}{\partial x}$$

if c_p and ρ are constant

$$\begin{array}{c|c} \mu(t,x) \\ \hline \end{array} & \begin{array}{c} \frac{\partial(\rho_{th}A\Delta x)}{\partial t} \\ \hline \end{array} & \mu(t,x+\Delta x) \\ \hline \end{array} \\ \hline x \\ x \\ x + \Delta x \end{array}$$

Note:
$$c_p \rho$$
: Volumetric heat capacity
(ability of material to store heat)

1-D Heat Equation

Note: k provides measure of material's ability to conduct heat

1-D Unforced Heat Equation:

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$

Note: Thermal diffusivity
$$\alpha = \frac{k}{\rho c_p}$$
 has units $\frac{m^2}{s}$

Boundary and Initial Conditions

Initial Condition:

 $u(0,x) = \psi(x) , \ 0 < x < L$

Dirichlet Boundary Condition: Specify temperature

$$u(t,0) = u_1(t) , u(t,L) = u_2(t)$$

Neumann Boundary Condition: Specify q(t, x) or $\mu(t, x)$ at boundaries e.g., Perfectly insulated at x = 0 implies $k \frac{\partial u}{\partial x}(t, 0) = 0$

Robin Boundary Condition:

e.g.,
$$k \frac{\partial u}{\partial x}(t,L) + hu(t,L) = g(t)$$

Boundary Conditions

Robin Boundary Condition: Motivation

Newton's Law of Cooling: u_s – Temperature of solid

$$q = hA(u_s - u_f)$$

 u_f – Temperature of fluid or convective medium

h – Convective heat transfer coefficient

Mechanism	$h~(W/m^2K)$
Still air	2.8-23
Moving air	11.3-55
Moving water	280-17,000
Condensing steam	5,700-28,000

Note:

$$\begin{split} -\mu(t,L) &= h[u_f - u(t,L)] \\ \Rightarrow k \frac{\partial u}{\partial x}(t,L) &= h[u_f - u(t,L)] \\ \Rightarrow k \frac{\partial u}{\partial x}(t,L) + hu(t,L) &= hu_f \end{split}$$

3-D Heat Equation

 $\mu = -k\nabla u \cdot \hat{n}$ Conservation of Energy: Let f denote heat source or sink $\frac{d}{dt} \int_{V} \rho_{th} dV = -\int_{S} \mu dS + \int_{V} f dV$ $\Rightarrow \int_{U} c_p \rho \frac{\partial u}{\partial t} = \int_{C} k \nabla u \cdot \hat{n} dS + \int_{U} f dV$ $\Rightarrow \int_{V} \left(c_p \rho \frac{\partial u}{\partial t} - \nabla \cdot (k \nabla u) - f \right) dV = 0$ $\Rightarrow c_p
ho rac{\partial u}{\partial t} = k
abla^2 u + f$ if k is constant

Fourier's Law:

Note: $\nabla^2 u = \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$ in cartesian coordinates

Thermal-Based Damage Detection in Porous Materials

Current Research: H.T. Banks, Amanda Criner (NCSU), William Winfree (NASA LaRC)

Detail: CRSC Technical Report CRSC-TR08-11

Goal: Use active thermography to detect subsurface anomalies in porous materials; e.g., for aeronautic and aerospace structures

