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Chapter 7

Frequentist Techniques
for Parameter Estimation

The di↵erential equation models of Section 3.2 can be classified as ODE systems

du

dt
= g(t, u(t), q) , u(t

0

) = u
0

, u(t, q) 2 RN

y(t, q) = Cu(t, q) , C 2 R⌫⇥N ,

(7.1)

stationary PDE
N (u, q) = F (q) , x 2 D
B(u, q) = G(q) , x 2 @D
y(x, q) = Cu(x, q),

(7.2)

or evolutionary PDE

@u

@t
= N (u, q) + F (q) , x 2 D, t 2 [t

0

,1)

B(u, q) = G(q) , x 2 @D, t 2 [t
0

,1)

u(t
0

, x, q) = I(q) , x 2 D.

(7.3)

Here y and q denote observations and parameters and N , F, B and G denote di↵er-
ential operators, source terms and boundary conditions.

Additionally, we considered algebraic models

A(q)u = F (q). (7.4)

If A(q) 2 Rn⇥n is invertible, we can represent the n observations by

y(q) = u(q) = A�1(q)F (q). (7.5)

Linear regression is a special case in which the parameter dependency is linear so

y(q) = Xq.

For q 2 Rp, X 2 Rn⇥p is termed the design matrix.
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134 Chapter 7. Frequentist Techniques for Parameter Estimation

In the statistics and inverse problems literature, the observed model response
or quantity of interest is often formulated as

y = f(�, q) (7.6)

where � are independent variables – e.g., t or x – or other known inputs. In the
statistics literature, � are also referred to as explanatory or regressor variables.
The function f generically denotes the map from the independent variables and
parameters to the response. We assume that f is fixed and known in the sense that
there exists a unique modeled response. For nonlinear, ODE and PDE and alge-
braic models, however, one can rarely obtain analytic solutions and hence explicit
formulations for f . Hence for most problems, we rely on numerical approximations
for f .

Throughout our discussion, we assume that we have observations (�i, �i), i =
1, · · · , n, where the measured quantity of interest �i is corrupted by measurement
errors ✏i so that

�i = f(�i, q) + ✏i, , i = 1, · · · , n. (7.7)

The mathematical inverse problem associated with parameter estimation can then
be formulated as follows: given these noisy measurements, determine q in a stable
manner. The associated statistical inverse problem – sometimes referred to as in-
verse uncertainty quantification – is to additionally quantify uncertainties associated
with q due to the measurement errors. The assumptions required to approximate q
and quantify its uncertainty define frequentist and Bayesian techniques for param-
eter estimation.

For sensitivity analysis and uncertainty propagation, the specific role of the
independent variables are of secondary importance and we are instead interested
how the model solution varies as a function of the parameters or inputs q. This is
facilitated by the representation

�i = fi(q) + ✏i , i = 1, · · · , n. (7.8)

where fi(q) 2 R⌫ denotes the observed model response and �i 2 R⌫ again denotes
measured data. For the models (7.1), (7.2) and (7.4), the model response can be
expressed as n ⇥ ⌫ vector

f(q) = [f(t
1

, q), · · · , f(tn, q)]T , Evolution Processes

f(q) = [f(x
1

, q), · · · , f(xn, q)]T , Stationary Processes

f(q) = [f
1

(q), · · · , fn(q)]T , Algebraic Models.

(7.9)

Hence the dependence of the observed model response on the independent or re-
gressor variables is suppressed in the notation f(q).

For evolution models, we will have ⌫ � 1 experimental measurements and
model responses at each time tj , j = 1, · · · , n. For stationary processes and algebraic
models, we consider scalar measurements and model evaluations so ⌫ = 1.
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7.1. Parameter Estimation from a Frequentist Perspective 135

7.1 Parameter Estimation from a Frequentist
Perspective

We recall George E.P. Box’s quote “Essentially, all models are wrong, but some are
useful,” page 424 of [38]. Thus the mathematical models will exhibit model errors,
which we collectively denote by vector � = [�

1

, · · · , �n]T , along with measurement
errors. To accommodate these errors, we consider statistical models of the form

⌥ = f(q
0

) + � + " (7.10)

where ⌥ = [⌥
1

, · · · , ⌥n]T is a random vector whose realization � = [�
1

, · · · , �n]T

is comprised of measurements from an experiment. Measurement errors are rep-
resented by the random vector " = ["

1

, · · · , "n]T and errors resulting for a specific
experiment are denoted by ✏ = [✏

1

, · · · , ✏n]T .
As detailed in Section 4.8.1, a basic tenet of frequentist inference is the as-

sumption that parameters are fixed but possibly unknown. Hence q
0

represents
the true but unknown value of the parameter set that generated the observations
� = [�

1

, · · · , �n]T . We emphasize that since q
0

is not a random vector, the model
response f(q

0

) is a deterministic quantity.
If the quantification of modeling errors constitutes one of the goals, then it

is necessary to consider the statistical model (7.10) and characterize the modeling
errors in an e�cient and statistically consistent manner as detailed in Chapter 12.
For many applications, however, the modeling and measurement errors can be col-
lectively quantified by the random vector ", in which case, one would employ the
statistical model

⌥ = f(q
0

) + " (7.11)

in which errors are additive.
To construct likelihoods in the manner detailed in Section 4.3, we typically

assume that the random variables "i are unbiased and iid which is often not the case
if they are comprised of both modeling and measurement errors. For example, we
illustrate in Chapter 12 that residuals for a structural model are highly dependent on
the magnitude of y even though the model is providing an accurate fit to measured
data. Hence for some applications, the statistical model

⌥i = fi(q0)(1 + "i) , j = 1, · · · , n, (7.12)

with multiplicative errors may be more appropriate since var(⌥i) will depend on
the magnitude of fi(q0).

The goal when calibrating models is to determine parameter estimates q so
that the model response f(q) fits the data in some optimal sense. We showed in
Section 4.3 that this can be achieved by constructing an estimator q̂ that estimates
q
0

in a statistically reasonable manner.1 It was demonstrated that ordinary least
squares (OLS) estimators

q̂OLS = argmin
q2Q

n
X

i=1

[⌥i � fi(q)]
2 (7.13)

1The notation q̂ for the estimator is not universal and many texts denote the estimate by q̂.
Hence care must be taken to establish the convention employed in a specific text.
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136 Chapter 7. Frequentist Techniques for Parameter Estimation

and maximum likelihood estimators (MLE) both achieve this goal and are equivalent
for certain assumptions regarding the distribution of errors "i.

Remark 7.1. Because the estimator q̂ is a random variable or random vector, it has
a mean, covariance and distribution termed the sampling distribution. We will show
that with appropriate assumptions regarding the distribution of "i, E(q̂) = q

0

and
the covariance will quantify the variability of the errors. Furthermore, confidence
limits for the sampling distribution can be used to quantify the accuracy of the
estimation process.

What the sampling distribution does not do is provide a distribution for the
model parameters since q

0

is not a random variable in frequentist inference. We will
illustrate that, for certain problems, the sampling distribution coincides with the
parameter distribution constructed using Bayesian techniques. This makes it tempt-
ing to propagate the sampling distribution through the model, using the techniques
of Chapters 9 and 10, to quantify the model or response uncertainty. However,
this is problematic for two reasons. The first is that there is no convergence theory
specifying an asymptotic relation between the sampling distribution and parameter
distribution which relies on Bayesian assumptions. Secondly, the sampling distribu-
tion is Gaussian which limits its accuracy for quantifying non-Gaussian parameter
distributions. Hence this approach should be avoided unless additional analysis
indicates an equivalence between the two distributions.

There are two alternatives. From a frequentist perspective, one can assume
parametric forms (e.g., Gaussian or Johnson distributions) for the densities asso-
ciated with model parameters and estimate the augmented parameter set using
moment or distribution matching techniques [154,155,240]. For model responses of
the form (7.3), this requires that errors "i be characterized from independent ex-
periments. We do not provide further details about this approach but rather refer
the reader to the cited references. Alternatively, the Bayesian techniques detailed
in Chapter 8 can be used to construct parameter densities and moments that can
be directly propagated through models.

The estimators q̂ can be determined explicitly only for linear parameter de-
pendencies. Whereas applications such as convolution models for acoustics or image
processing and X-ray tomography yield linearly parameterized models, general mod-
els typically exhibit a nonlinear dependence on q. To illustrate the derivation of
relevant theory, we consider the linear regression (linear parameterization) problem
first in Section 7.2. We return to the general problem posed here in Section 7.3.

7.2 Linear Regression
We illustrate here fundamental results regarding linear regression to motivate cor-
responding theory for the nonlinear least squares problem (7.13). Additional details
can be found in [95].

We consider the statistical model

⌥ = Xq
0

+ " (7.14)
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7.2. Linear Regression 137

where ⌥ = [⌥
1

, · · · , ⌥n]T and " = ["
1

, · · · , "n]T are random vectors and the n ⇥ p
design matrix X is considered deterministic and known. We let q

0

denote the vector
of true but unknown parameters and let � = [�

1

, · · · , �n]T denote realizations or
observations from an experiment in which the realized errors are ✏ = [✏

1

, · · · , ✏n].
Throughout this discussion, we assume that there are more measurements than
parameters so that n > p.

Assumption 7.2. We make the assumption that errors are unbiased and indepen-
dent and identically distributed (iid) with variance �2

0

; hence for j = 1, · · · , n,

(i) E("i) = 0

(ii) var("i) = �2

0

, cov("i, "j) = 0 for i 6= j.
(7.15)

In accordance with frequentist assumptions, the error variance �2

0

is assumed fixed
but unknown. At this point, we make no additional assumptions regarding the error
distribution.

Our first objective is to construct unbiased estimators q̂ and �̂2 for the un-
known parameters q

0

and �2

0

.

7.2.1 Parameter Estimator and Estimate

To construct an estimator q̂ for q
0

, we seek q that minimizes the ordinary least
squares functional

J (q) = (⌥ � Xq)T (⌥ � Xq). (7.16)

If (7.16) were scalar-valued, we would optimize it by setting the derivative with
respect to q equal to 0 and solving for q. For vector-valued problems, this is achieved
using the gradient rqJ of J with respect to q. Specifically, one sets

rqJ = 2[rq(⌥ � Xq)T ][⌥ � Xq] = 0,

where

rq(⌥ � Xq)T = �rqq
TXT = �XT ,

to obtain the least squares estimator

q̂OLS = (XTX)�1XT⌥. (7.17)

The realization

qOLS = (XTX)�1XT� (7.18)

is the least squares estimate for the unknown true parameter q
0

.

Remark 7.3. Throughout this chapter, we will discuss only OLS estimators and
estimates. Hence to simplify notation, we will drop the subscript OLS and let
q̂ = q̂OLS and q = qOLS denote the least squares estimator and estimate.
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138 Chapter 7. Frequentist Techniques for Parameter Estimation

Whereas the normal equations (7.17) provide an analytic minimum for (7.16),
they are typically ill-conditioned for moderate to large numbers of parameters.
Hence in practice, it is often numerically advantageous to solve the minimization
problem (7.16) to avoid inaccurate results associated with numerically solving ill-
conditioned linear systems.

7.2.2 Parameter Estimator Properties

Result 7.4. The parameter estimator q̂ has the mean and covariance matrix

(i) E(q̂) = q
0

(ii) V (q̂) = �2

0

(XTX)�1.
(7.19)

Relation (i) follows directly from (7.17) since

E(q̂) = E[(XTX)�1XT⌥] = (XTX)�1XTE(⌥) = q
0

.

Hence q provides an unbiased estimate for the true parameter. To establish the
covariance relation, we let A = (XTX)�1XT and note that

V (q̂) = E[(q̂ � q
0

)(q̂ � q
0

)T ]

= E[(q
0

+ A" � q
0

)(q
0

+ A" � q
0

)T ] , since q̂ = A⌥ = A(Xq
0

+ ")

= AE(""T )AT

= �2

0

(XTX)�1.

As noted previously, the error variance �2

0

is assumed to be fixed but unknown.
Hence to employ (7.19) to estimate the parameter covariance, we must construct
an unbiased estimator �̂2 for �2

0

.

7.2.3 Error Variance Estimator

Result 7.5. The unbiased error covariance estimator is

�̂2 =
1

n � p
bRT
bR (7.20)

where
bR = ⌥ � Xq̂ (7.21)

denotes the residual estimator.

To obtain this result, we first note that the residual can be expressed as

bR = (In � H)⌥

where In denotes the n ⇥ n identity matrix and

H ⌘ X(XTX)�1XT .
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7.2. Linear Regression 139

It is straightforward to show that H satisfies the properties

HT = H (Symmetric),

H2 = H (Idempotent),

(In � H)2 = In � H,

(In � H)X = 0.

(7.22)

From (7.14) and (7.22), it follows that

bR = (In � H)"

so that
bRT
bR = "T (In � H)". (7.23)

If we generically denote the ij entry of In�H by hij , the quadratic form (7.23) can
be expressed as

bRT
bR =

n
X

i=1

n
X

j=1

hij"i"j .

It then follows that

E( bRT
bR) =

n
X

i=1

n
X

j=1

hijE("i"j)

=
n
X

i=1

n
X

j=1

hijcov("i, "j) , follows from (4.14) with E("j) = E("i) = 0

=
n
X

i=1

hiivar("i) , "i independent

= �2

0

tr(In � H) , " identically distributed with variance �2

0

.

Since the trace operator satisfies the properties tr(A + B) = tr(A) + tr(B) and
tr(AB) = tr(BA), it follows that

tr(In � H) = n � tr[X(XTX)�1XT ]

= n � tr[(XTX)�1XTX]

= n � p.

(7.24)

Thus �̂2 = 1

n�p
bRT
bR is an unbiased estimator for �2

0

. Furthermore, we can conclude

from (7.24) that the eigenvalues of H are 0 or 1.

Example 7.6. Consider the height-weight data from the 1975 World Almanac and
Book Facts that is compiled in Table 7.1. To model this data, we employ the
quadratic relation

⌥i = q
1

+ q
2

(xi/12) + q
3

(xi/12)2 + "i (7.25)
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140 Chapter 7. Frequentist Techniques for Parameter Estimation

Height 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

(in)

Weight 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

(lbs)

Table 7.1. Height-weight data from the 1975 World Almanac and Book Facts.

where xi is the height in inches and ⌥i is the corresponding weight. Solution of the
normal equations (7.18) yields the parameter values q = [261.88,�88.18, 11.96]T .
We note that the conditioning of the 3⇥3 matrix XTX is 6.7⇥107 thus illustrating
the ill-conditioning of the normal equations. The variance estimate provided by
(7.20) is �2 = 0.15 which yields the covariance matrix estimate

V =

2

4

634.88 �235.04 21.66
�235.04 87.09 �8.03

21.66 �8.03 0.74

3

5 .

The estimated parameter values, plus and minus two standard deviations, are thus

q
1

= 261.88 ± 50.39 q
1

2 [211.48, 312.27]

q
2

= �88.18 ± 18.66 ) q
2

2 [�106.84,�69.51]

q
3

= 11.96 ± 1.72 q
3

2 [10.24, 13.68].

(7.26)

7.2.4 Sampling Distribution for q̂

As detailed in Section 4.2, the estimator q̂ has a distribution, termed the sampling
distribution, which we will use to construct confidence intervals for the estimation
process. The assumptions required to specify a sampling distribution are more
stringent than those in Assumption 7.2 and require either that errors are normally
distributed or that samples are su�ciently large that the central limit theorem can
be invoked for averaged error relations.

Assumption 7.7. The sampling distribution for q̂ can be directly specified for
problems in which errors are iid and "i ⇠ N(0, �2

0

) where �
0

is fixed, but likely
unknown.

Property 7.8 (Sampling Distribution for q̂). With Assumption 7.7, q̂ has the
sampling distribution q̂ ⇠ N(q

0

, �2

0

(XTX)�1). Furthermore, if we let �k denote
the kth diagonal element of (XTX)�1 and q

0k
denote the kth element of the true

parameter vector q
0

, then q̂k ⇠ N(q
0k

, �2

0

�k).

To verify this property, we note from [95] that because each component q̂k is
the linear combination of independent random variables ⌥k, it follows that q̂ has a
joint multivariate normal distribution. When combined with the fact that E(q̂) = q

0

and cov(q̂) = �2

0

(XTX)�1, it follows that q̂ ⇠ N(q
0

, �2

0

(XTX)�1).
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For numerous applications, errors may be iid with variance �2

0

but not nor-
mally distributed. For su�ciently large sample sizes, asymptotic theory yields a
result similar to Property 7.8.

Property 7.9 (Asymptotic Sampling Distribution for q̂). Consider the model
(7.14) with errors which are iid with variance �2

0

. For su�ciently large n, the
sampling distribution for q̂ is asymptotically normal which we denote by q̂

a⇠
N(q

0

, �2

0

(XTX)�1).

Rather than provide a complete proof of Property 7.9, we instead summarize
the approach and refer the reader to [216] for additional details. We first note that
substitution of (7.14) into (7.17) yields q̂ � q

0

= (XTX)�1XT " so that

p
n(q̂ � q

0

) =

✓

1

n
XTX

◆�1 1p
n

XT ".

Because the first right-hand side term can be interpreted as an average, the law of
large numbers is used to establish that

1

n
XTX

P! Y

where Y is positive definite. Since E( 1p
n
XT ") = 0, it follows that

var

✓

1p
n

XT "

◆

= E
✓

1

n
XT ""TX

◆

P! �2

0

Y.

The central limit theorem, discussed in Section 4.4, is then invoked to establish that

1p
n

XT "
D! Z

where Z ⇠ N(0, �2

0

Y), so that
p

n(q̂ � q
0

)
a⇠ N(0, �2

0

Y�1). Finally, one shows that
1

nXTX is a strongly consistent estimator of Y to obtain the asymptotic result.
An obvious practical question concerns the size n required to justify using

these asymptotic results. This is problem dependent and alternative methods, such
as Bayesian analysis, may be required to establish the normality of distributions
when sample sizes are small.

Confidence Intervals

It was shown in Section 3.3 that chi-squared and t-distributions are required
to construct confidence intervals. This is established for our estimators in the next
two properties.

Property 7.10. For �̂2 given by (7.20), the random variable ⌫ = (n�p)�̂2

�2
0

has a

chi-squared distribution with n � p degrees of freedom.
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To establish this, we note that

(n � p)�̂2

�2

0

=
1

�2

0

bRT
bR

=
1

�2

0

"T (In � H)"

=
1

�2

0

⌦

", U⇤UT "
↵

, In � H = U⇤UT since symmetric

=
1

�2

0

⌦

UT ", ⇤UT "
↵

.

Since tr(In � H) = rank(In � H) = n � p, we can express ⇤ as

⇤ =



In�p 0
0 0

�

where In�p is the n � p identity matrix. Moreover, it is proven in [95] that since
UT is an orthogonal matrix and " ⇠ N(0, �2

0

), then u = UT " is a vector of N(0, �2

0

)
random variables. Because

⌫ =
(n � p)�̂2

�2

0

=
hu, ⇤ui

�2

0

=
n�p
X

i=1

u2

i

�2

0

is the sum of squares of n � p independent N(0, 1) random variables, it thus has a
chi-squared distribution with n � p degrees of freedom.

Property 7.11. The random variable

Tk =
q̂k � q

0k

�̂
p

�k

has a t-distribution with n � p degrees of freedom.

To verify Property 7.11, we note from Property 7.8 that Z =
q̂k�q0k
�0

p
�k

⇠ N(0, 1).

It then follows from Definition 4.12 that

Tk =
q̂k � q

0k

�̂
p

�k

=
q̂k � q

0k

�
0

p
�k

�
0

�̂
p

n � p
·
p

n � p

=
Z

p

⌫/(n � p)
, Z ⇠ N(0, 1) , ⌫ ⇠ �2(n � p),

has a t-distribution with n � p degrees of freedom.
To construct a (1 � ↵) ⇥ 100% confidence interval, we employ the techniques

of Example 4.33, with Tk =
q̂k�q0k
�̂
p
�k

, to obtain

P
⇣

q̂k � tn�p,1�↵/2 · �̂
p

�k < q
0k

< q̂k + tn�p,1�↵/2 · �̂
p

�k
⌘

= 1 � ↵.
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We then employ the parameter estimate q = (XTX)�1XT� and variance estimate
�2 = 1

n�pRTR, where R = � � Xq, to obtain

h

qk � tn�p,1�↵/2 · �
p

�k, qk + tn�p,1�↵/2 · �
p

�k
i

. (7.27)

We note that this is often expressed as
⇥

qk � tn�p,1�↵/2 · SEk, qk + tn�p,1�↵/2 · SEk

⇤

(7.28)

where SEk ⌘ �
p

�k is termed the standard error. To construct (7.27) or (7.28), one
uses a table of t-distributions or t-value calculator to look up or compute values of
tn�p,1�↵/2 for specified values of n, p and ↵ where n � p is the degrees of freedom.
We caution the reader that whereas most tables are compiled in terms of one tail
(1 � ↵/2), some provide values for both tails (1 � ↵). Hence care must be taken to
employ ↵ consistent with the table.

Example 7.12. We revisit Example 7.6 and use the t-distribution to construct 90%
confidence intervals for the parameters q

1

, q
2

and q
3

in the quadratic model (7.25).
Here we have n = 15 observations and p = 3 parameters. For ↵ = 0.05, we obtain
the value tn�p,1�↵/2 = 2.2 from a table of t-values. This yields the 95% confidence
intervals

q
1

2 [206.45, 317.31]

q
2

2 [�108.71,�67.65]

q
3

2 [10.07, 13.86].

These intervals are slightly larger than those in (7.26) for two reasons: the intervals
in (7.26) reflect 2� ⇡ 94.45% confidence intervals and the t-distribution has heavier
tails than the normal distribution as illustrated in Figure 4.3(b).

The statistical model, estimators, and statistical properties of the linear re-
gression model are summarized in Table 7.2. This provides motivation and a basis
for comparison for the nonlinear theory summarized in the next section.

7.3 Nonlinear Parameter Estimation Problem
We return to the evolutionary process model (7.1), stationary process model (7.2)
and algebraic model (7.4), which exhibit nonlinear parameter dependencies, along
with the associated statistical model

⌥ = f(q
0

) + ". (7.29)

The model responses f(q
0

) for the three regimes are summarized in (7.3). As
before, we take q 2 Rp and let q

0

designate the true but unknown parameter that
generates the response � 2 Rn. As in Section 7.2, we assume that there are more
measurements than parameters so that n > p. We let Q denote the admissible
parameter space and Q denote the space associated with the estimator q̂. Since
both specify admissible parameter values, Q and Q will coincide for reasonable
estimators.
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Statistical Model:

⌥ = Xq
0

+ " , q 2 Rp

� = Xq
0

+ ✏ , (realization)

Assumptions: E("i) = 0 , "i iid with var("i) = �2

0

Least Squares Estimator and Estimate:

q̂ = (XTX)�1XT⌥ , E(q̂) = q
0

, V (q̂) = �2

0

(XTX)�1

q = (XTX)�1XT�

Error Variance Estimator and Estimate: bR = ⌥ � Xq̂ , R = � � Xq

�̂2 =
1

n � p
bRT
bR , �2 =

1

n � p
RTR

Covariance Matrix Estimator and Estimate:

V (q̂) = �̂2(XTX)�1 , V = �2(XTX)�1

Sampling Distribution: Requires "i ⇠ N(0, �2

0

) or su�ciently large n

• q̂ ⇠ N(q
0

, �2

0

(XTX)�1)

• (1 � ↵) ⇥ 100% Confidence Intervals: �k = [(XTX)�1]kk
h

qk � tn�p,1�↵/2�
p

�k , qk + tn�p,1�↵/2�
p

�k
i

Table 7.2. Statistical model, estimators, and statistical properties of the linear
regression model. As noted in Remark 7.3, q̂ = q̂OLS and q = qOLS are the OLS
estimator and estimate.

As noted in Section 7.1, the OLS estimate for the scalar case is obtained by
minimizing the functional

J (q) =
n
X

i=1

[�i � fi(q)]
2 (7.30)

subject to q 2 Q.
The di�culty is that analytic expressions for these minimizers generally cannot

be obtained for nonlinearly parameterized problems. Instead, estimates must be
obtained by minimizing the least squares functional. Rather than provide a detailed
analysis of the nonlinear problem, we summarize results that are analogous to the
linear theory and refer readers to [24, 26, 216] for details regarding the nonlinear
problem.
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7.3.1 Parameter and Error Variance Estimators – Scalar
Observations

Assumption 7.13. To construct parameter and error variance estimators, we re-
quire "i to be iid with zero mean and fixed but unknown variance �2

0

. With this
assumption, it follows that E(⌥i) = fi(q0) and var(⌥i) = �2

0

.

Parameter Estimator and Estimate

Unlike the linear case, which can be solved explicitly using the normal equa-
tions, the determination of an OLS estimator and estimate,

q̂OLS = argmin
q2Q

n
X

i=1

[⌥i � fi(q)]
2 , qOLS = argmin

q2Q

n
X

i=1

[�i � fi(q)]
2, (7.31)

requires numerical optimization techniques. The restriction q 2 Q can produce
constraints that must be enforced during optimization.

It was noted in Example 3.3 that parameter values for physical or biological
problems can easily vary over 10 orders of magnitude. The direct optimization of
(7.30) using standard software will be highly ine�cient or fail for such problems.
To address this, we employ scaled parameters qs = q./s where ./ denotes compo-
nentwise division and s is a vector whose components are the scale or magnitude of
each parameter. Point estimates for the scaled parameters are then given by

qOLS = argmin
qs2Qs

n
X

i=1

[�i � fi(qs. ⇥ s)]2 (7.32)

where .⇥ denotes componentwise multiplication and Qs is the scaled admissible
parameter space. We employ (7.32) for physical problems where the magnitude of
parameters vary significantly.

Remark 7.14. As noted in Remark 7.3, we will consider OLS estimators and es-
timates in this chapter. To simplify notation, we thus take q̂ = q̂OLS and q = qOLS

for the remainder of the discussion.

One approach for obtaining least squares estimates is to employ stochastic
optimization techniques such as genetic algorithms, simulated annealing, and dif-
ferential evolution [229]. These techniques reduce the reliance on accurate initial
parameter estimates and, in theory, provide global convergence. However, their
convergence rates are slower — they may require infinite time for convergence —
and, because they are nondeterministic, multiple optimizations can yield varying
final parameter values.

Alternatively, one can employ gradient-based methods such as the interior-
reflective Newton, Levenberg–Marquardt, or sequential quadratic programming al-
gorithms employed in the MATLAB routines lsqnonlin and fmincon. The e�-
ciency and success of gradient-based optimization methods is predicated on deter-
mining good initial parameter estimates and being able to accurately determine
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gradients. The advantage of gradient-based methods is that once they are near
the minimum, they can exhibit quadratic convergence rates which is vastly more
e�cient than stochastic optimization techniques. We note that one alternative is
to employ the hybrid approaches in which the stochastic techniques are used to
provide reasonable initial estimates for the gradient-based algorithms which then
provide fast convergence to final parameter estimates.

Parameter Estimator Mean and Variance

For the linear model with design matrix X, we showed in (7.19) that E(q̂) = q
0

and V (q̂) = �2

0

(XTX)�1. In the nonlinear theory, linearization about q
0

yields the
approximate covariance relations

V (q̂) ⇡ �2

0

⇥

X T (q
0

)X (q
0

)
⇤�1 ⇡ �̂2

⇥

X T (q)X (q)
⇤�1

. (7.33)

Here X (q) denotes the n ⇥ p sensitivity matrix whose elements are

Xik(q) =
@fi(q)

@qk
. (7.34)

Sensitivity Matrix Construction

The sensitivity matrix can be constructed using three techniques: (i) finite
di↵erence approximations, (ii) solution of sensitivity equations, or (iii) automatic
di↵erentiation. Ideally, one would compare matrices resulting from at least two of
the methods to verify results.

The simplest conceptually is to approximate the derivatives using finite dif-
ference relations

Xik(q) =
@fi(q)

@qk
⇡ fi(q + hk) � fi(q)

|hk|
(7.35)

where hk is a p-vector having a nonzero kth element. The di�culty is that the
accuracy of (7.35) is highly dependent on the choice of hk which also must be
correctly scaled according to the magnitude of q. Hence the accuracy of results
should be verified through comparison with the other techniques.

Sensitivity equations can be constructed using various techniques. In Chap-
ter 14, we illustrate their formulation using Gâteaux di↵erentials. More formally,
they can be constructed by di↵erentiating the evolution equation du

dt = g(t, u(t), q)
with respect to the components qk of q, and switching the order of integration, to
obtain

@uqk

@t
=

@g

@u
uqk +

@g

@qk
(7.36)

where uqk ⌘ @u
@qk

. The matrix component Xik(q) = C @u(ti,q)
@qk

is easily constructed

once one has numerically integrated (7.36) to obtain uqk(ti, q). This approach has
the advantage that it eliminates the uncertainty associated with choosing stepsizes
hk to provide accurate finite di↵erence approximations. However, if the original
system has N di↵erential equations, the solution of (7.36) will involve N ·p additional
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di↵erential equations. Moreover, the analytic di↵erentiation of the original system
to construct the sensitivity equations is often di�cult for complex systems.

For certain problems, automatic di↵erentiation (AD) codes can be used to con-
struct the sensitivity equations in a form that can be directly incorporated in ODE
software. In such cases, the use of AD software to construct the sensitivity matrix
X (q) can avoid the inaccuracy associated with finite di↵erence approximations and
the potential for errors when formulating and solving the sensitivity equations.

Error Variance Estimator

Since the error variance �2

0

in (7.33) is unknown, we construct a variance
estimator analogous to that in the linear case. Specifically, we consider the unbiased
variance estimator and estimate

�̂2 =
1

n � p
bRT
bR , �2 =

1

n � p
RTR (7.37)

where bR = ⌥i � fi(q̂) and R = �i � fi(q) are the residual estimator and estimate.
This yields the estimate

V = �2

⇥

X T (q)X (q)
⇤�1

(7.38)

for the covariance matrix.

Sampling Distribution

To specify a sampling distribution for q̂, we again require either Assump-
tion 7.7, which stipulates that errors are iid and " ⇠ N(0, �2

0

), or that n is su�ciently
large that we can invoke the central limit theorem in the sense of Property 7.9. This
directly or asymptotically establishes that

q̂ ⇠ N
⇣

q
0

, �2

0

⇥

X T (q
0

)X (q
0

)
⇤�1

⌘

(7.39)

where the covariance matrix is approximated by (7.38).

Confidence Intervals

The construction of (1 � ↵) ⇥ 100% confidence intervals is analogous to the
formulation (7.27) or (7.28) for the linearly parameterized model. If we let �k denote
the kth diagonal element of [X T (q)X (q)]�1, then the (1 � ↵) ⇥ 100% confidence
interval is

h

qk � tn�p,1�↵/2�
p

�k , qk + tn�p,1�↵/2�
p

�k
i

. (7.40)

where � is given by (7.37). As noted in Section 7.2.4, t-calculators or tables can be
used to calculate or look up tn�p,1�↵/2 given values of n, p and ↵.

The properties of the least squares estimator q̂ for the nonlinear statistical
model (7.13) are compiled in Table 7.3. These can be compared with analogous
properties for the linear regression problem summarized in Table 7.2.
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Statistical Model:

⌥ = f(q
0

) + " , q 2 Rp, � 2 R1

� = f(q
0

) + ✏ , (realization)

Assumptions: E("i) = 0 , "i iid with var("i) = �2

0

Least Squares Estimator and Estimate:

q̂ = argmin
q2Q

n
X

i=1

[⌥i � fi(q)]
2 , q = argmin

q2Q

n
X

i=1

[�i � fi(q)]
2

Error Variance Estimator and Estimate: bR = ⌥ � f(q̂) , R = � � f(q)

�̂2 =
1

n � p
bRT
bR , �2 =

1

n � p
RTR

Covariance Matrix Estimator and Estimate: Xik(q) = @fi(q)
@qk

V (q̂) = �̂2[X T (q̂)X (q̂)]�1 , V = �2[X T (q)X (q)]�1

Statistical Properties: Requires "i ⇠ N(0, �2

0

) or su�ciently large n

• q̂ ⇠ N
⇣

q
0

, �2

0

⇥

X T (q
0

)X (q
0

)
⇤�1

⌘

• (1 � ↵) ⇥ 100% Confidence Intervals: �k = [(X T (q)X (q))�1]kk
h

qk � tn�p,1�↵/2�
p

�k , qk + tn�p,1�↵/2�
p

�k
i

Table 7.3. Statistical model, estimators, and statistical properties of the nonlinearly
parameterized model (7.13) with scalar observations. As noted in Remark 7.14,
q̂ = q̂OLS and q = qOLS are the OLS estimator and estimate.

Example 7.15. Consider the spring model

z̈ + Cż + Kz = 0

z(0) = 2 , ż(0) = �C
(7.41)

with displacement observations so that

y = [1 0]


z
ż

�

= z.

We showed in Example 3.2 that (7.41) has the solution

z(t) = 2e�Ct/2 cos
⇣

p

K � C2/4 · t
⌘

(7.42)
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Figure 7.1. (a) Synthetic data and modeled displacement and (b) residuals at
n = 501 points.

when C2�4K < 0. We take K = 20.5 to be known and let q = C be the parameter
considered in the statistical analysis. We note that although the model exhibits a
linear dependence on the states z and ż, the dependence of z(t, q) on q is nonlinear.

To numerically generate synthetic data, we employ C
0

= 1.5 and add noise
" ⇠ N(0, �2

0

) where �
0

= 0.1. The model and one realization of the data at n = 501
points are plotted in Figure 7.1(a) and the residuals are plotted in Figure 7.1(b).
By construction, the residuals are iid with 94.4% of the values lying with the 2�
interval indicated by the horizontal lines.

The n ⇥ 1 sensitivity matrix (vector) is

X (q) =



@y

@C
(t

1

, q), · · · ,
@y

@C
(tn, q)

�T

(7.43)

where

@y

@C
= e�Ct/2



Ctp
4K � C2

sin
⇣

p

K � C2/4 · t
⌘

� t cos
⇣

p

K � C2/4 · t
⌘

�

(7.44)

results from di↵erentiating (7.42). The construction of X (q) by constructing and
solving the corresponding sensitivity equations is addressed in Exercise 7.1.

Because we know �2

0

, we obtain the covariance value

V = �2

c = �2

0

⇥

X T (q)X (q)
⇤�1

= 3.35 ⇥ 10�4

so that �c = 0.0183. Since "i ⇠ N(0, �2

0

), the random variable bC has the sampling
distribution

bC ⇠ N
�

C
0

, �2

c

�

(7.45)

which is plotted in Figure 7.2. The parameter estimated by minimizing (7.31) for
the data plotted in Figure 7.1 is C = 1.4792 and the 95% confidence interval given
by (7.40) is [1.4433, 1.5150].
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Figure 7.2. (a) Sampling density N
�

C
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c

�

for bC and density constructed from
10,000 simulations.

It was noted in Sections 4.8.1 and 7.1 that in frequentist inference, the 95%
confidence interval has the following interpretation in the context of parameter es-
timation; if the procedure is repeated ` times, 0.95` of the computed intervals will
contain the true parameter q

0

. This is illustrated in Figure 4.11(a). To demon-
strate for this example, we generated 10, 000 sets of numerical data using the true
parameter values C

0

and "i ⇠ N(0, �2

0

) with �
0

= 0.1. For each data set, we
optimized (7.31) to obtain a point estimate C and corresponding 95% confidence
interval. In this set of numerical experiments, 9455 of the intervals contained C

0

.
Using the 10,000 estimated values of C, we used the kernel estimation techniques
discussed in Section 4.1.1 to construct the density which is plotted in Figure 7.2.
As expected, the kernel density estimate matches the representation (7.45) for the
sampling distribution.

Example 7.16. We showed in Example 3.5 that the boundary value problem

d2Ts

dx2

=
2(a + b)

ab

h

k
[Ts(x) � Tamb]

dTs

dx
(0) =

�

k
,

dTs

dx
(L) =

h

k
[Tamb � Ts(L)]

models the steady state temperature of an uninsulated rod with source heat flux � at
x = 0 and ambient air temperature Tamb. The model parameters to be estimated
and statistically analyzed are q = [�, h] where h is the convective heat transfer
coe�cient.

The rod used in these experiments was aluminum with cross-sectional di-
mensions a = b = 0.95 cm and length L = 70 cm. The temperature measure-
ments yi, compiled in Table 3.2, were made at 15 equally spaced spatial locations
xi = x

0

+ (i � 1)�x where x
0

= 10 cm and �x = 4 cm. The observed solution is

yi(q) = Ts(xi, q) = c
1

(q)e��xi + c
2

(q)e�xi + Tamb
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where � =
q

2(a+b)h
abk and

c
1

(q) = � �

k�



e�L(h + k�)

e��L(h � k�) + e�L(h + k�)

�

, c
2

(q) =
�

k�
+ c

1

(q).

We suppress the parameter dependence of � to clarify the notation. We employ the
thermal conductivity value k = 2.37 W

cm·C reported for aluminum and the measured
ambient room temperature Tamb = 21.29oC.

A least squares fit to the data yielded the parameter estimates � = �18.41
and h = 0.00191 and the model fit shown in Figure 7.3(a). We note that this value
of h falls within the range 2.8 ⇥ 10�4 � 0.0023 W

cm2·C reported for still air. The
residuals plotted in Figure 7.3(b) exhibit no discernible pattern thus motivating
the assumption that the errors "i are iid. We assume that errors are normally
distributed when constructing a sampling distribution.

The error variance estimate is �2 = 0.0627 and the covariance matrix, com-
puted using analytic sensitivity relations, as derived in Exercise 7.4 and illustrated
in Figure 7.4, is

V =



2.1034 ⇥ 10�2 �2.0286 ⇥ 10�6

�2.0286 ⇥ 10�6 2.0972 ⇥ 10�10

�

. (7.46)

The standard deviations for the errors and sampling distribution are

� = 0.2504 , �
�

= 0.1450 , �h = 1.4482 ⇥ 10�5. (7.47)

Since n = 15 and p = 2, the 95% confidence intervals are

[�18.7233,�18.0967] , [1.8787 ⇥ 10�3, 1.9413 ⇥ 10�3].

In Example 8.12, we revisit this example in the context of Bayesian analysis.

10 20 30 40 50 60 7020

30

40

50

60

70

80

90

100

Distance (cm)

Te
m

pe
ra

tu
re

 (o C
)

 

 

Model
Data

10 20 30 40 50 60 70

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Distance (cm)

R
es

id
ua

ls
 (o C

)

(a) (b)

Figure 7.3. (a) Model fit to the steady-state temperature data, and (b) residuals at
the 15 spatial locations.
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Figure 7.4. Analytic sensitivity values: (a) @y
@� (xi, q) and (b) @y

@h (xi, q).

7.3.2 Parameter and Error Variance Estimators for Evolution
Models – Multiple Responses

In this section, we consider the evolution equation (7.1) with ⌫ > 1 data measure-
ments and model responses specified by an ⌫ ⇥ N matrix C. The statistical model
in this case is

⌥i = f(ti, q0) + "i , j = 1, · · · , n

where ⌥i and "i are random ⌫-vectors.

Assumption 7.17. To accommodate the possibility that error distributions associ-
ated with individual components of the observations could di↵er, we let �2

0j
denote

the fixed but unknown variance of the error associated with the jth observation.
These values are compiled in the ⌫ ⇥ ⌫ diagonal measurement error covariance ma-
trix V

0

= diag[�2

01
, · · · , �2

0⌫
]. As before, errors are assumed to be unbiased. We

remind the reader that V
0

is fixed but typically unknown.

The construction of parameter and covariance estimators is similar in theory
to the scalar case ⌫ = 1 but is complicated by the coupling induced by the po-
tentially di↵ering variances of the error components. We provide an overview of
the estimators, estimates and sampling distribution for ⌫ > 1 and refer the reader
to [24, 26] for details.

Example 7.18. It was noted in Example 3.2 that for vibrating systems modeled
as a simple harmonic oscillator (3.11), displacements and velocities can be respec-
tively measured using a proximity sensor and laser vibrometer. If both sets of
measurements are available, the modeled observations will be



y
1

(ti, q)
y
2

(ti, q)

�

=



1 0
0 1

� 

z
1

(ti, q)
z
2

(ti, q)

�

which is just the parameter-dependent states. Given the di↵ering nature of the
measurement devices, one would expect di↵erent error distributions to be associated
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with the experimental measurements y
1

and y
2

. Hence we would employ

V
0

=



�2

01
0

0 �2

02

�

. (7.48)

Example 7.19. For the HIV model (3.15) of Example 3.3, one can typically only
measure the total number T

1

+ T ⇤
1

of T-lymphocytes and the viral load V . Hence

C =



1 0 1 0 0 0
0 0 0 0 1 0

�

and y(t, q) 2 R2. The error covariance matrix would again have the structure (7.48).

Parameter and Error Covariance Estimators

The OLS estimator and estimate are taken to be

q̂OLS = argmin
q2Q

n
X

i=1

[⌥i � f(ti, q)]
T V �1

0

[⌥i � f(ti, q)]

qOLS = argmin
q2Q

n
X

i=1

[�i � f(ti, q)]
T V �1

0

[�i � f(ti, q)]

(7.49)

where V �1

0

weights the response components by the reciprocals of the corresponding
error variance associated with each component. Since V

0

is typically unknown, it
too must be estimated. Motivated by (7.37), the estimate V ⇡ V

0

is provided by
the relation

V = diag

 

1

n � p

n
X

i=1

[�i � f(ti, qOLS)][�i � f(ti, qOLS)]T
!

. (7.50)

Unlike the scalar response relations (7.31) and (7.37), the multiple response relations
(7.49) and (7.50) are coupled due to the fact that V

0

6= �2

0

I, and hence they must
be solved as a coupled system.

Sampling Distribution

To specify a sampling distribution, we need an assumption analogous to As-
sumption 7.7.

Assumption 7.20. Let "ij denote the error in the ith component of ⌥i at time
ti. We make the assumption that "ij ⇠ N(0, �2

0j
) so that "i ⇠ N(0, V

0

). For n
su�ciently large, the central limit theorem can be invoked in the manner detailed
in Property 7.9 to obtain similar asymptotic results.

With this assumption, it is shown in [24,26] that

q̂OLS ⇠ N(q
0

,V
0

) ⇡ N(qOLS,V)
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where

V
0

⇡

0

@

n
X

j=1

X T
j (q

0

)V �1

0

Xj(q0)

1

A

�1

is the p ⇥ p covariance matrix and

Xj(q) =

2

6

6

4

@f1(ti,q)
dq1

· · · @f1(ti,q)
dqp

...
...

@f⌫(ti,q)
dq1

· · · @f⌫(ti,q)
dqp

3

7

7

5

(7.51)

is the ⌫ ⇥ p sensitivity matrix at time ti. For implementation, V
0

is approximated
by

V =

0

@

n
X

j=1

X T
j (qOLS)V �1Xj(qOLS)

1

A

�1

where (7.51) must be evaluated at each time step. The (1 � ↵) ⇥ 100% confidence
intervals are

[qOLS,k � tn�p,1�↵/2SE, qOLS,k + tn�p,1�↵/2SE]

where qOLS,k is the kth element of qOLS and the standard error is

SE ⇡
p

Vk.

Here Vk is the kth diagonal element of V.

7.4 Notes and References
The parameter estimation techniques discussed in this chapter are based on linear
and nonlinear regression for which there are numerous excellent texts. The text [95]
provides a very nice introduction to linear regression and has the advantage that the
authors use di↵erent notation to delineate between random variables and their real-
izations. This is also a good resource for obtaining additional background regarding
the confidence and prediction intervals discussed in Chapter 9. Asymptotic theory
for nonlinear regression problems is detailed in the classic book [216]. We refer read-
ers to [24, 26] for details regarding the construction of estimators and specification
of sampling distributions for parameters in nonlinear evolution models.

For brevity, we do not discuss the following topics: infinite-dimensional in-
verse problems associated with parameter estimation, regularization, or optimiza-
tion methods for inverse problems. The reader is referred to [25] for theory and
estimation techniques for distributed parameter systems and [15, 126, 173, 241, 253]
for details regarding regularization, computational algorithms and case studies per-
taining to parameter estimation and inverse problems. The texts [61, 129, 130, 229]
cover a variety of optimization techniques that are appropriate for this class of
problems.


