Pressurized Water Reactor (PWR)

Containment Structure

Pressurizer Steam

[ Condenser

Models:

* Involve neutron transport, thermal-hydraulics, chemistry
* Inherently multi-scale, multi-physics

CRUD Measurements: Consist of low resolution images at limited number of locations.



Pressurized Water Reactor (PWR)

3-D Neutron Transport Equations:
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Challenges:

* Linear in the state but function of 7
independent variables:

r=ua,Y,2, £, =0,¢;t

* Very large number of inputs or parameters;
e.g., 100,000; Parameter selection critical.

e ORNL Code: Denovo

« Codes can take hours to days to run.
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Pressurized Water Reactor (PWR)

Thermo-Hydraulic Model: Mass, momentum and energy balance for fluid
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Challenges:

* Nonlinear coupled PDE with nonphysical parameters due to closure relations;
« CASL code: COBRA (CTF)

« COBRA s a sub-channel code, which cannot be resolved between pins.

« Codes can take minutes to days to run.



Microscopic Cross-Sections

Cross-Sections: Probability that a neutron-nuclei reaction will occur is characterized

by nuclear cross-sections.

« Assume target is sufficiently thin so no shielding. —>
« Rate of Reactions: s
R = O'INA 5
Flux 1
Note: o is microscopic cross-section (cm?) neutrons
cm? - s

« Microscopic Cross-Sections: Related to types of reactions.
o¢: Fission
os. Scatter
o:. Total

\u

Reference: J.J. Duderstadt and L.J. Hamilton, Nuclear Reactor Analysis,

John Wiley and Sons, 1976.
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Macroscopic Cross-Sections

Macroscopic Cross-Sections: Accounts for shielding

Total Reaction Rate per Unit Area: 1(x)
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Total Macroscopic Cross-Section: >; = No;
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Frequency: With which reactions occur v>.; T



Neutron Flux in Reactor

Neutron Density: [V (7, 1)

e N(r,t)dr®: Expected number of neutrons in dr> about r at time ¢
e N(r, E,t)dr3dE: Expected number neutrons in dr® with energies E in dE

dr3

Reaction Rate Density: Interaction frequency v where v is neutron speed
F(r,E, t)dr® = v N(r, E,t)dEdr?

Angular Neutron Density:

o n(r, E,,t)dr3dEdSQ: Expected number of neutrons in dr3 about r
with energy E about dE, moving in direction

in solid angle 2 at time ¢

Angular Neutron Flux: ¢(r, E, Q,t) = vn(r, E, Q,t)



Neutron Transport Equation

Conservation Law:

2 [/ n(r, F, Q,t)dr3] = gain in V' —loss in V
ot | Jv

Gain Mechanisms:

(1) Neutron sources (fission)
(2) Neutrons entering V/
(3) Neutrons of different E’, )’ that change to E, ) due to scattering collision

Loss Mechanisms:
(4) Neutrons leaving V/

(5) Neutrons suffering a collision



Neutron Transport Equation
Terms:

(1) / S(r, F, Q, t)d'r3dEdQ where S is a source term
.

(5) Rate at which neutrons collide at point r is
fr = vXe(r, E)n(r, E, Q,t)
= (5) = {fv vy (r, E)n(r, E, Q,t)dr?’} dEdS)
(2), (4) Consider the rate at which neutrons leak out of surface

j(r, E,Q,t) - dS = vQn(r, E,Q,t) - dS
so leakage is

(4) - (2) = _ /S ds - in(r,E,Q,t)] dEdS)

= / V- in(fr, E,Q,t)dr?’] dEd
A%

A

— U vQ - Vn(r, E, Q,t)dr3] dEdQ
.



Neutron Transport Equation

Terms: Scattering cross-sections

« Consider first a beam of neutrons of incident intensity |, all of energy E’, hitting a
thin target of surface atomic density /V 4

—>()—>
E' E

Note: Microscopic differential scattering cross-section is proportionality constant

Rate
cm?

=04,(E" — E)INAdE
when neutron scatters from energy E’ to final energy F inrange E t0 E+dFE

Microscopic scattering cross-section:
os(E') = / dEo,(E" — F)
0
Macroscopic scattering cross-section:

S, (E' = E) = Noy(E' — E)



Neutron Transport Equation

Terms: Scattering cross-sections

» Consider how change in direction

e - S = [ dQo (Y — Q
Q\O%Zy 0'() LW O'( )

(3) Rate at which neutrons scatter from E’, Q) to E,Q is

[/ V'S (B — E,Q — Q)n(r, E’,Q’,t)dr?’] dEdQ
1%

To incorporate contributions from any E’, €)', we integrate to obtain

(3) = [ / dr? / d<Y / dE'V' S (E' — E, QY — Q)n(r, E', Y, t)| dEdQ
Vv 47 0



Neutron Transport Equation

Conservation Law:
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Since this must hold for any control volume, it follows that

@—H)Q Vn 4+ vXn(r, E,Q,t)

/ dQ’/ dEV'S(E' — E, Q' — Q)n(r, E', Y t) + S(r, E,Q,t)
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Angular Flux: o(r, E,Q,t) = on(r, E,0,t)
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Neutron Transport Equation

Plane Symmetry: Flux depends only on x

o (), =cosb
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1-D Neutron Transport Equation:
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/ d,u/ dE'S (B — E, 1 — p)o(x, B, )/ t) + S(z, B, u, t)



