Mass Conservation and Compartmental Analysis

“There is no reason anyone would want a computer in their home,” Ken Olson,
president, chairman, and founder of Digital Equipment Corp., 1977



Compartmental Analysis

Compartmental Analysis: Examine transport of mass (or other items)
across physical or nonphysical compartments

* Onion, coffee, ...

* Acoustics

* Fluid flow (mix cups of milk and water)
» Chemical Transport

* Traffic flow

» Related processes: population dynamics, biological models

Assumptions:

- Constant volumes: V; # V, but 42 = 472 =0

* Well-mixed

 Transport constant across membranes



Conservation of Stuff

Basic Idea: “Stuff’ flowing along a conduit is conserved

Conduit Stuff

air mass
rod heat
pipe water

highway cars
river pollution
sidewalk  people

Fundamental Concept:

dStuft
dt

= Stuff in - Stuff out + Stuff created - Stuff destroyed

Strategy: Consider flow of Stuff through a control volume (z to z + Az in 1-D)

Stuff —

T T+ Ax

Note: Thanks to Kurt Bryan for motivating the consideration of Stuff



Conservation of Stuff

Density: p(t, ) — Amount of Stuff per unit length (linear density) or unit volume
(regular density)

e.g., Mass density: kg/m?

Cars per unit length of road
People per unit length of sidewalk

Rate of Flow: q(t,z) — Rate at which Stuff flows past = at time ¢
(Units: Stuff per second)

e.g., Cars or people per second

Flux: u(t,z) — Rate at which Stuff crosses unit area A at x and time ¢
(Units: Stuff per area per second)

e.g., Mass flux: kg/m?/s or X4

m2s



Continuity Equations:1-D

Case 1: Rate of flow q(t, z) O(pAz) | q(t,z + Ax)
d(pAz) _ o —
ot - Q(t, $) T q(t,a: + A.’IJ) T T+ Az
—~ lim _,0 — lim Q(tv .’13) B Q(ta T+ AJJ)
Az—0 Ot Axz—0 Azx
= % + % =0 Continuity Equation

Case 2: Flux u(t,z) | O0(PAAZ) | 4tz + Ax)
— ot s
8(,0AA$) _ A,L,L(t, .’E) _ A'u(t’ T+ Aa:)

ot x x+ Ax
0(pA) O(nA) . .
= 5 + 9 0 [ Continuity Equation
= @ + d—“ =0 if A is constant

ot Oxr



Continuity Equations: 1-D

Continuity Equations with Production and Destruction of Stuff:

% + g_q =b—d b: rate of production per unit length or volume
X
d: rate of destruction per unit length or volume
O(pA) | O(pd)
ot i ox (b-d)4
Problem:

o One equation with two unknowns p and g or

Constitutive Relations:
o Need constitutive relations or equations of state to relate unknowns
e This depends upon Stuff being considered

o Consider first relation between mass density and mass flux



Compartmental Analysis: Mass Flow

Transport across Membrane:

A A
Kx —=D—
OcAa: Az

K: Volumetric Rate (m?/s)

Mass Transport:

d

Mass

Azx

dt

Two Compartment Model:

—>

— Ko 1

P2

Va

e Mass Balance

dm1

dt
dmz

dt

= K9 1p2 — K1 ,2p1

= Kj 901 — K2,1p2

e Mass Balance (K = K12 = K1)

dm1
K _
dt (P2 P1)
dmo
T K _
dt (Pl Pz)



Compartmental Analysis: Mass Flow

Two Compartment Model:

e Density Balance

— =K — K P1 _
gt i [ 2,1P2 1,2P1] gt Vi
dp2 1 d K
2 _ K ~ K P2 _
Note:
dm1 dm2 :
= C at
° 7 4 o 0 so Conservation of Mass
d d
o L2 10 unless V; = Vs

dt dt

1 5
K>

p2

Kz 1

Va

o Density Balance (K = K12 = Ka,1)

(p2 — p1)

(p1 — p2)



Constitutive Relation and Mass Flow Model

Case 1: Stationary fluid -- 1-D
. olt, ) plt,z + Az)
, r)—plx+ Az
= Ap o) =pla-+ 8 A
= m = —DAa—p
Ox

e Mass flux: u = %

Constitutive Relation:

dp

B=— o Fick’s First Law of Diffusion

Model: Constant A and no production or destruction of mass

8 O (.0
8_§ = — (Da—z) Diffusion Equation




Mass Flow Model: 1-D Moving Fluid

Constitutive Relation: Average fluid velocity «

op
p— —D— U /
s oz e //
Mass Sources and Sinks: —1_; At, z)
b: rate of production per unit volume T
d: rate of destruction per unit volume x\\
r+ Ax
Model:
d(pA) | O(pud) O Op
ot * or Oz DA('?:U +(b—d)A
or

Op  O(pu) 0 ([ 0p B
8t+ oxr  Ox D(’?az +b—d

if A is constant



Mass Flow Model: 1-D Moving Fluid

Special Cases: Ais constant,b=d =0

e Ignore diffusion

Op | O(pu)
ot * ox

=0  Continuity of Mass

e p constant

ou

=0 Incompressible Fluid
oz



Mass Conservationin3-D ¥ Ay
Constitutive Relation: Take @ = [u , v, W] X Az
i
p=pu X

Mass Balance:

Rate of change | _ Rate of mass ) Rate of mass
of massin AV [~ | convected into AV convected out of AV

0
= Aa:AyAza—[t) = AyAz [(PU)|m — (pu)|x+Am]

+ AzAz [(p’v)|y - (P’U)|y+Ay]
+ AzAy[(pw)], — (pw)], 4 n,)

0 0 0 0
= o+ 5o (ou) + 5 (pv) + 5 (pw) = 0




Mass Conservation in 3-D

Arbitrary Control Volume: Continuity equation Y

d
dV = — [ - (p@)dS
= pV /Sn ()

=»

Divergence Theorem: Continuous vector field B
/ V-B’dvzfﬁ-édszfé-dﬁ
1% S s

Continuity Equation:

/[g’t)+v (o )]deO

0 . . .
= 8—? + V - (pd) =0 | Since control volume is arbitrary

%



Eulerian Versus Lagrangian Reference Frames

Eulerian Specification: Describe phenomenon at a specific spatial location by
specifying flow velocity; e.g., sit on bank of river and watch river flow.

Lagrangian Specification: Follow individual fluid particles as they move through
space and time; e.qg., sit in boat and drift down river.

Substantive, Material or Total Derivative: Relates the two specifications

Framework: Let f(z(t),y(t), 2(t),t) denote any function of position and time
(can be scalar or vector)



Material or Substantive Derivative

Example: Let p = f(z,vy, 2, t) (z + Az, y + Ay, z + Az, t + At)
L dr dy dz p+Ap
Velocity: 4= [u, v, w| = , —,
didi - dt (2,9, 2,1)
Note: Attime ¢ + At: P
p+Ap = flz+Az,y+ Ay, z + Az, t + At)

= f(x + uAt,y + vAt, z + wAt, t + At)

= flz,y,2,t) + (ug—i +v% +wg—£ + g—{t) At + O((At)?)

Material Derivative:

Note:
Dp _ 2P L .
Dt ArSo At e i - Vp: Convective rate of change
dp  Op Op df due to spatial changes
v Y ‘ * 5 Local rate of change
,, op
= VPt g, o @: Flow velocity



Material or Substantive Derivative

Note: The material derivative is the total derivative

Ofdr Ofdy 0Ofdz Of
Ordt Oydt 0Ozdt Ot
Df

L w(),9(0),2(0),1

Continuity Equation: Differentiation yields

Dy
Dt

= —p(V - 1)




Material or Substantive Derivative

Example: Consider temperature in Yellowstone Lake; T' = f(z,y, 2z, t)

Case i: Swimmer stands in one place and feels water get warmer as sun rises;
dx
Note: — =0
d

Case ii: Swimmer swims through regions with warmer steady state temperatures

due to underwater hot springs. Note that temperatures at a given spatial point
remain constant.

Case iii: Swimmer goes through water that is warming due to the sun and has
gradients due to hot pools... Material Derivative

DT oT
Dt Ot

+u-VT




Material or Substantive Derivative

Example: Let u = f(z,y, 2,t). Then \
“ Du 7. ou —

= — = U + -
Dt ot ¢ Convective
Local " s
More Generally: /
Diu ou
— e = v—' -
C=pr T VT

Note: Be careful with notation for covariant derivative; e.g., non-Cartesian system

Interpretation: Material derivative is rate of change measured by observer
traveling with specific particles under investigation; e.g., floating on river



Material or Substantive Derivative

Example: Here we examine the difficulties faced by a tourist who jumps into the
Yellowstone river a few meters above the lower falls. If we assume that the river
is flowing at 10 m/s, what does his local velocity have to be in order for him to

swim upriver?




