
Numerical Methods for ODE

“Mathematics is an experimental science, and definitions do not come first, but
later on,” Oliver Heaviside



Initial Versus Boundary Value Problems

Initial Value Problems (IVP):

Boundary Value Problems (BVP):



Numerical Methods for IVP:  Euler’s Method
Initial Value Problem:

Notation:

Taylor Series:

Euler’s Method:

Accuracy: Local truncation error

Global truncation error

Assumptions:



Euler and Implicit Euler Methods

Note:

Euler’s Method: Left Endpoint

Implicit Euler: Right Endpoint

Stability: Apply method to Forward Euler Implicit Euler



Runge-Kutta-Feylberg Methods

4th Order Runge-Kutta:

Accuracy: Local Truncation error is 4th-order if u(t) has five continuous derivatives.

Runge-Kutta-Feylberg: Use R-K method with 5th order truncation error to estimate
local error in 4th order R-K method to choose appropriate stepsize.



MATLAB ODE Routines
Algorithms: From the MATLAB ODE documentation

• ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is a one-step solver -
in computing y(tn), it needs only the solution at the immediately preceding time point, y(tn-1). In general,
ode45 is the best function to apply as a "first try" for most problems.

• ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine. It may be more
efficient than ode45 at crude tolerances and in the presence of moderate stiffness. Like ode45, ode23 is a
one-step solver.

• ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be more efficient than ode45 at
stringent tolerances and when the ODE file function is particularly expensive to evaluate. ode113 is a
multistep solver - it normally needs the solutions at several preceding time points to compute the current
solution.

• The above algorithms are intended to solve nonstiff systems. If they appear to be unduly slow, try using one
of the stiff solvers below.

• ode15s is a variable order solver based on the numerical differentiation formulas (NDFs). Optionally, it
uses the backward differentiation formulas (BDFs, also known as Gear's method) that are usually less
efficient. Like ode113, ode15s is a multistep solver. Try ode15s when ode45 fails, or is very inefficient, and
you suspect that the problem is stiff, or when solving a differential-algebraic problem.

• ode23s is based on a modified Rosenbrock formula of order 2. Because it is a one-step solver, it may be
more efficient than ode15s at crude tolerances. It can solve some kinds of stiff problems for which ode15s is
not effective.

• ode23t is an implementation of the trapezoidal rule using a "free" interpolant. Use this solver if the problem
is only moderately stiff and you need a solution without numerical damping. ode23t can solve DAEs.

• ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula with a first stage that is a
trapezoidal rule step and a second stage that is a backward differentiation formula of order two. By
construction, the same iteration matrix is used in evaluating both stages. Like ode23s, this solver may be
more efficient than ode15s at crude tolerances.



MATLAB ODE Routines: From the Documentation

If using crude error tolerances to solve
stiff systems.

LowStiffode23tb

For moderately stiff problems if you need
a solution without numerical damping.

LowModerately Stiffode23t

If using crude error tolerances to solve
stiff systems and the mass matrix is
constant.

LowStiffode23s

If ode45 is slow because the problem is
stiff

Low to
Medium

Stiffode15s

For problems with stringent error
tolerances or for solving computationally
intensive problems.

Low to HighNonstiffode113

For problems with crude error tolerances
or for solving moderately stiff problems.

LowNonstiffode23

Most of the time. This should be the first
solver you try.

MediumNonstiffode45

When to UseOrder of
Accuracy

Problem TypeSolver



Example 1

Problem:

Analytic Solution:

Euler’s Method:

4th Order R-K:

Similarly,

What is going on?



Example 2
Experimental Beam Data:

Voltage Input Voltage Input (Zoomed View) Displacement

Lumped Model:

Notes:

• Initial conditions?

• Experimental input

• How will ODE solvers accommodate the experimental input?

• How can you test numerical codes?



Example 3
Feedback Control Design:

State Estimator:

Feedback Control:

Implementation:

(Nature)

Issues:
• Estimator must be integrated in
real time!

• Observations are available only at
discrete times



Numerical Methods for BVP:  Finite Differences

Problem:

Grid:

Centered Difference Formulas: (From Taylor expansions)

System:

Note: N interior grid points



Finite Difference Method for BVP

and considerFinite Difference System: Define

for

Matrix System:



Galerkin Methods
Boris Galerkin: 1871-1945; Mathematician and Engineer

Consider

on inner product space For finite dimensional spaces,
span and span find

that satisfies

Employ

which yields

for

Terminology:
•       weight or test functions

•       basis, trial or shape functions



Galerkin Methods

Rayleigh-Ritz: Take so

When A is symmetric and positive definite, this is the R-R method and
solution is equivalent to that obtained by minimizing

with respect to

Finite Element: Employ piecewise polynomials for the test and trial functions.
Operator A does not have to be symmetric.

Least Squares:  Take so

Collocation:  Take



Finite Element Method for BVP
Problem:

Assumptions:

Weak Formulation:

Grid:

Linear Basis:



Finite Element Method for BVP

Approximate Solution:

System:

Matrix System: Integrals: Gaussian quadrature; e.g., 2 pt

Reference: Smith, Chapter 8



Error Estimates
Linear Splines:

Cubic Splines:



Finite Difference Versus Galerkin Methods

Galerkin (Finite Element) Advantageous:

• Model derived using energy principles

• Complicated geometries

• Natural boundary conditions

• Coupled systems or multiphysics problems

• Rigorous error analysis in various norms

Finite Difference Advantageous:

• Easier to program for certain problems

• Error analysis based on Taylor theory


