Introduction and Motivation

“"Essentially all models are wrong but some are useful,”
George E.P. Box, Industrial Statistician




Modeling Strategy

General Strategy: Conservation of stuff
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Example 1: Weather Models

Challenges:

» Coupling between temperature, pressure
gradients, precipitation, aerosol, etc.;

« Models and inputs contain uncertainties;

* Numerical grids necessarily larger than
many phenomena; e.g., clouds

« Sensors positions may be uncertain;
e.g., weather balloons, ocean buoys.

Goal:

» Assimilate data to quantify uncertain
initial conditions and parameters;

« Make predictions with quantified
uncertainties.
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Equations of Atmospheric Physics

Conservation Relations: 3 3
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Constitutive Closure Relations: e.g.,
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Ensemble Predictions

Ensemble Predictions:
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Cone of Uncertainty:
General Questions:

* What is expected rainfall on August 10?
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« What are high and low temperatures?

» What is predicted average snow fall?

* Note: Quantities are statistical in nature.




Example 2: Pressurized Water Reactors (PWR)

Containment Structure

Pressurizer Steam
Gen

Condenser

Models:
* Involve neutron transport, thermal-hydraulics, chemistry, fuels
* Inherently multi-scale, multi-physics

Objective: Develop Virtual Environment for Reactor Applications (VERA)



Example: Pressurized \Water Reactors (PWR)

Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid
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Challenges:

Codes can have 15-30 closure relations and up to 75 parameters.

Codes and closure relations often "borrowed” from other physical phenomena;
e.g., single phase fluids, airflow over a car (CFD code STAR-CCM+)

Calibration necessary and closure relations can conflict.

Inference of random fields requires high- (infinite-) dimensional theory.



Example 3: HIV Model for Characterization and Control Regimes

HIV Model: Notes: 21 parameters
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Example: HIV Model for Characterization and Treatment Regimes

HIV Model: Several sources of uncertainty including viral measurement techniques

Example: Upper and lower limits to assay sensitivity
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UQ Questions:

« What are the uncertainties in parameters that cannot be directly measured?
* What is optimal treatment regime that is “safe” for patient?

* What is expected viral load? Issue: very often requires high-dimensional
integration!

ce.g., E[V()] = JRZ V(t,q)p(q)dg

Experimental results are believed by everyone, except for the person who ran the
experiment, source anonymous, quoted by Max Gunzburger, Florida State University.



Modeling Process

HIV Model: Several sources of uncertainty including viral measurement techniques
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Strategy:

» Use physical understanding to make appropriate assumptions; e.g. uniform
longitudinal forces permit use of lumped or spring model.

» Apply physical principles to develop model; e.g., Newtonian (force and moment
balancing), Lagrangian (variational principles based on kinetic and potential
energy), or Hamiltonian (total energy principles).

 Obtain analytic or numerical solution to model.
« Compare to experimental data (validate and predict).

« Update model to accommodate missing physics or inappropriate assumptions.



Derivation of Spring Model

Newtonian Principles: Balance forces using Newton’s second law
e External Force: f(t) f(¢)
e Spring Force: Fi(t) = —ky(t)
o Damping Force: Fy(t) dy

s

Newton’s Second Law: m‘ng = Fs(t) + Fy(t) + f(t)

. d’y  dy
Model: m——= +c— + ky =
Spring Model: m > +c 0 +ky=f
- . dy
Initial Conditions: y(0) = yo , E(O) = Vg

Note: Details regarding classical mechanics can be found in Appendix C
of the supplemental material.



Derivation of Spring Model

Lagrangian Principles: Take c = f =0

e Kinetic Energy: K(y) = %m:f/2
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e Potential Energy: U(y) = / kxdx k — y(t)
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e Lagrangian: L(y,9,t) = K(3) — U(y)
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Euler-Lagrange Equations: — — =0
e Eu grange Equati T a

= my+ky =20

Note: Details regarding calculus of variation and Lagrangian and Hamiltonian
principles can be found in Appendix C of the supplemental material.



Analytic Solution of the Spring Model

Second-Order Model:
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Homogeneous Model: f(t) =0
e Solve characteristic equation to obtain homogeneous solution yy (%)
e Eigenvalue solutions of first-order system

Nonhomogeneous Model:
e Obtain particular solution y,(¢) and general solution y(t) = yx(t) + yp(t)

— Method of undetermined coefficients: e.g., f(t) = cos(wt)

— Variation of parameters: e.g., f(t) =1Int

e Laplace transform: e.g., f(t) = d(t — to)



Analytic Solution of the Spring Model

First-Order System: Take z;1 =y, 20 = ¥
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Initial Condition: 2(0) = 2z

Analytic Solution:

t
2(t) = etz +/ eAt=3) F(s)ds
0

Importance:
 Analytic solution techniques
* Numerical approximation

 Control design



Analytic Solution of the Spring Model

Example: Take c= f =0

y(t) =e" =>mr’+ k=0
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= r = ti/k/m

= y(t) = Acos(wot) + Bsin(wot) , wo = v/ k/m
e Eigenvalues and eigenvectors of A
+1

e Solution

z(t):A[ cos wot ]—I—B[ sin wot ]

—wp Sinwpt Wp COS wot



Numerical Solution of the Spring Model

Consider First-Order System:

:'[il]:[—ko/m o | Lo |+ s

= 3(t) = Az(t) + F(t)

Z(O) = 20

Note: See notes for initial value problems (IVP)



