
Introduction and Motivation

``Essentially all models are wrong but some are useful,’’ 
George E.P. Box, Industrial Statistician



Modeling Strategy
General Strategy: Conservation of stuff

Continuity Equation:

Density:

Rate of Flow:
More Generally:
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Example 1: Weather Models
Challenges:
• Coupling between temperature, pressure 
gradients, precipitation, aerosol, etc.;
• Models and inputs contain uncertainties;
• Numerical grids necessarily larger than 
many phenomena; e.g., clouds
• Sensors positions may be uncertain; 
e.g., weather balloons, ocean buoys.

Goal:
• Assimilate data to quantify uncertain 
initial conditions and parameters;
• Make predictions with quantified 
uncertainties.



Equations of Atmospheric Physics
Conservation Relations:

Constitutive Closure Relations: e.g., 
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Ensemble Predictions
Ensemble Predictions:

Cone of Uncertainty:
00 UTC on August 26, 2005 12 UTC on August 26, 2005

General Questions:

• What is expected rainfall on August 10?
• What are high and low temperatures?
• What is predicted average snow fall?

• Note: Quantities are statistical in nature.



Example 2: Pressurized Water Reactors (PWR)

Models:
• Involve neutron transport, thermal-hydraulics, chemistry, fuels

• Inherently multi-scale, multi-physics 

Objective: Develop Virtual Environment for Reactor Applications (VERA)



Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid 

Challenges: 
• Codes can have 15-30 closure relations and up to 75 parameters.

• Codes and closure relations often ”borrowed” from other physical phenomena; 
e.g., single phase fluids, airflow over a car (CFD code STAR-CCM+)

• Calibration necessary and closure relations can conflict. 

• Inference of random fields requires high- (infinite-) dimensional theory.

Notes:
• Similar relations for gas 

and bubbly phases

• Models must conserve 
mass, energy, and 
momentum
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Example 3: HIV Model for Characterization and Control Regimes
HIV Model:

Compartments: 

Notes: 21 parameters 
[Adams, Banks et al., 2005, 
2007] 

Notation: 
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Example: HIV Model for Characterization and Treatment Regimes
HIV Model: Several sources of uncertainty including viral measurement techniques
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Figure 2: Patient 6 CD4+ T-cell and viral load data, including censor points (lines at L̄1 =
400, L̄2 = 50) for viral load, and periods of on-therapy (solid lines on axis) and periods of oÆ-
therapy (dashed line on axis).

Of the 45 patients considered in this paper, sixteen (those numbered 2, 4, 5, 6, 9, 10, 13, 14, 15,
23, 24, 26, 27, 33, 46, and 47) spend 30–70% time oÆ treatment. Of these only patients 9, 15, and
47 do not spend appreciable time oÆ treatment during the early half of their observation period.

Due to the linear range limits described above, the clinical viral load assays eÆectively have
lower and upper limits of quantification. The upper limit is typically readily handled by repeatedly
diluting the sample until the resulting viral load measurement is in range and then scaling. The
lower limit, or left censoring point, however, directly influences the observed data. When a data
point is left-censored (below the lower limit of quantification), the only available knowledge is that
the true measurement is between zero and the limit of quantification L̄? for the assay. Those at
hand have two limits of quantification, L̄1 = 400 copies/ml for the standard and L̄2 = 50 copies/ml
for the ultra-sensitive assay. These are illustrated in sample data from patient 6 shown in Figure
2, where censored data points are those appearing identically on the horizontal censoring lines
L̄1 = 400, L̄2 = 50. A statistical methodology for handling this type of censored data is described
below in Section 3.2.

The observation times and intervals vary substantially between patients. The sample data in
Figure 2 also reveal that observations of viral load and CD4 may not have been made at the
same time points, so in general for patient number j we have CD4+ T-cell data pairs (tij1 , yij

1 ), i =
1, . . . , N j

1 and (potentially diÆerent) viral RNA data pairs (tij2 , yij
2 ), i = 1, . . . , N j

2 .
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Example: Upper and lower limits to assay sensitivity 

UQ Questions: 
• What are the uncertainties in parameters that cannot be directly measured?

• What is optimal treatment regime that is “safe” for patient?

• What is expected viral load? Issue: very often requires high-dimensional 
integration!

• e.g., E[V (t)] =
Z

R21
V (t , q)⇢(q)dq

Experimental results are believed by everyone, except for the person who ran the 
experiment, source anonymous, quoted by Max Gunzburger, Florida State University. 



Modeling Process

Strategy:

• Use physical understanding to make appropriate assumptions; e.g. uniform 
longitudinal forces permit use of lumped or spring model.

• Apply physical principles to develop model; e.g., Newtonian (force and moment 
balancing), Lagrangian (variational principles based on kinetic and potential 
energy), or Hamiltonian (total energy principles).

• Obtain analytic or numerical solution to model.

• Compare to experimental data (validate and predict).

• Update model to accommodate missing physics or inappropriate assumptions. 
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Derivation of Spring Model

Newtonian Principles:  Balance forces using Newton’s second law

Note: Details regarding classical mechanics can be found in Appendix C 
of the supplemental material.



Derivation of Spring Model

Lagrangian Principles: 

Note: Details regarding calculus of variation and Lagrangian and Hamiltonian 
principles can be found in Appendix C of the supplemental material.



Analytic Solution of the Spring Model
Second-Order Model: 

Homogeneous Model: 

Nonhomogeneous Model: 



Analytic Solution of the Spring Model
First-Order System: 

Initial Condition: 

Analytic Solution: 

Importance: 

• Analytic solution techniques

• Numerical approximation

• Control design



Analytic Solution of the Spring Model
Example: 



Numerical Solution of the Spring Model
Consider First-Order System: 

Note: See notes for initial value problems (IVP)


