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Chapter 4

Fundamentals of
Probability, Random
Processes and Statistics

We summarize in this chapter those aspects of probability, random processes and
statistics that are employed in subsequent chapters. The discussion is necessarily
brief and additional details can be found in the references cited both in the text
and noted in Section 4.9.

4.1 Random Variables, Distributions and Densities
When constructing statistical models for physical and biological processes, we will
consider parameters and measurement errors to be random variables whose statis-
tical properties or distributions we wish to infer using measured data. The classical
probability space provides the basis for defining and illustrating these concepts.

Definition 4.1 (Probability Space). A probability space (⌦,F , P ) is comprised
of three components:

⌦: sample space is the set of all possible outcomes from an experiment;

F : �-field of subsets of ⌦ that contains all events of interest;

P : F ! [0, 1]: probability or measure that satisfies the postulates

(i) P (;) = 0,

(ii) P (⌦) = 1,

(iii) if Ai 2 F and Ai \ Aj = ;, then P (
S1

i=1

Ai) =
P1

i=1

P (Ai).

We note that the concept of probability depends on whether one is considering
a frequentist (classical) or Bayesian perspective. In the frequentist view, probabil-
ities are defined as the frequency with which an event occurs if the experiment is
repeated a large number of times. The Bayesian perspective treats probabilities as a
distribution of subjective values, rather than a single frequency, that are constructed
or updated as data is observed.
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70 Chapter 4. Fundamentals of Probability, Random Processes and Statistics

Example 4.2. Consider an experiment in which we flip two individual coins (e.g.,
a quarter and nickel) multiple times and record the outcome which consists of an
ordered pair. The sample space and �-field of events are thus

⌦ = {(H, H), (T, H), (H, T ), (T, T )}
F = {;, (H, H), (T, H), (H, T ), (T, T ), ⌦, {(H, T ), (T, H), · · · }}.

(4.1)

Note that F contains all countable intersections and unions of elements in ⌦. If we
flip the pair twice, two possible events are

A = {(H, H), (T, H)} , B = {(H, H), (H, T )} .

For fair coins, the frequentist perspective yields the probabilities

P (A) =
1

2
, P (B) =

1

2
, P (A \ B) =

1

4
, P (A [ B) =

3

4
.

We note that because the events are independent, P (A\B) = P (A)P (B). We will
revisit the probabilities associated with flipping a coin from the Bayesian perspective
in Example 4.66 of Section 4.8.2.

We now define univariate random variables, distributions and densities.

4.1.1 Univariate Concepts

Definition 4.3 (Random Variable). A random variable is a function X : ⌦ ! R
with the property that {! 2 ⌦|X(!)  x} 2 F for each x 2 R; i.e., it is measurable.
A random variable is said to be discrete if it takes values in a countable subset
{x

1

, x
2

, · · · } of R.

Definition 4.4 (Realization). The value

x = X(!)

of a random variable X for an event ! 2 ⌦ is termed a realization of X.

We note that in the statistics literature, many authors employ the same nota-
tion for the random variable and realization and let the context dictate the meaning.
For those who are new to the field, this can obscure the meaning and, to the degree
possible, we will use di↵erent notation for random variables and their realizations.

Definition 4.5 (Cumulative Distribution Function). Associated with every
random variable X is a cumulative distribution function (cdf) FX : R ! [0, 1] given
by

FX(x) = P{! 2 ⌦|X(!)  x}. (4.2)

This is often expressed as FX(x) = P{X  x} which should be interpreted in
the sense of (4.2). The following example illustrates the construction of a cdf for a
discrete random variable.
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4.1. Random Variables, Distributions and Densities 71

Example 4.6. Consider the experiment of Example 4.2 in which our event ! con-
sists of a single flip of a pair of coins. We define X(!) to be the number of heads
associated with the event so that

X(H, H) = 2

X(H, T ) = X(T, H) = 1

X(T, T ) = 0.

For x < 0, the probability of finding an event ! 2 ⌦ such that X(!)  x is 0 so
FX(x) = 0 for x < 0. Similar analysis yields the cdf relation

FX(x) =

8

>

>

<

>

>

:

0 x < 0
1/4 , 0  x < 1
3/4 , 1  x < 2
1 , x � 2

which is plotted in Figure 4.1.

It is observed that, by construction, the cdf satisfies the properties

(i) lim
x!�1

FX(x) = 0

(ii) x
1

 x
2

) FX(x
1

)  FX(x
2

)

(iii) lim
x!1

FX(x) = 1.

(4.3)

This is an example of a càdlàg (French “continue à droite, limite à gauche) function
that is right-continuous and has left limits everywhere. These functions also arise
in stochastic processes that admit jumps.

For continuous and discrete random variables the probability density function
(pdf) and probability mass function are defined as follows.

Definition 4.7 (Probability Density Function). The random variable X is
continuous if its cumulative distribution function is absolutely continuous and hence
can be expressed as

FX(x) =

Z x

�1
fX(s)ds , x 2 R

where the derivative fX = dFx

dx mapping R to [0,1) is called the probability density
function (pdf) of X.

(x)

1 2

1/4

3/4

1

x

FX

Figure 4.1. Cumulative distribution function for Example 4.6.
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72 Chapter 4. Fundamentals of Probability, Random Processes and Statistics

Definition 4.8 (Probability Mass Function). The probability mass function of
a discrete random variable X is given by fX(x) = P (X = x).

The pdf properties

(i) fX(x) � 0

(ii)

Z

R
fX(x)dx = 1

(iii) P (x
1

 X  x
2

) = FX(x
2

) � FX(x
1

) =

Z x2

x1

fX(x)dx

follow immediately from the definition and (4.3). The attributes of density functions
can be further specified by designating their location or centrality, their spread or
variability, their symmetry, and the contribution of tail behavior. In general, this
information is provided by moments

E(Xn) =

Z

R
xnfX(x)dx

or central moments. For example, the mean

µ = E(X) =

Z

R
xfX(x)dx,

also termed the first moment or expected value, provides a measure of the density’s
central location whereas the second central moment

�2 = var(X) = E[(X � µ)2] =

Z

R
(x � µ)2fX(x)dx (4.4)

provides a measure of the density’s variability or width. This typically is termed
the variance of X and � is called the standard deviation. One often employs the
relation

�2 = E(X2) � µ2

which results directly from (4.4). We note that the third moment (skewness) quanti-
fies the density’s symmetry about µ whereas the fourth moment (kurtosis) quantifies
the magnitude of tail contributions.

Important Distributions for Inference and Model Calibration

We summarize next properties of the univariate normal, uniform, chi-squared,
Student’s t, beta, gamma, inverse-gamma and inverse chi-squared distributions
which are important for frequentist and Bayesian inference and model calibration.

Definition 4.9 (Normal Distribution). In uncertainty quantification, a com-
monly employed univariate density is the normal density

fX(x) =
1

�
p

2⇡
e�(x�µ)2/2�2

, �1 < x < 1.
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4.1. Random Variables, Distributions and Densities 73

The associated cumulative distribution function is

FX(x) =

Z x

�1
f(s)ds =

1

2



1 + erf

✓

x � µ

�
p

2

◆�

where the error function is defined to be

erf(x) =
2p
⇡

Z x

0

e�s2ds.

The notation X ⇠ N(µ, �2) indicates that the random variable X is normally
distributed with mean µ and variance �2. For the normal density, 68.29% of the area
is within 1� of the mean µ and 95.45% is within 2� as illustrated in Figure 4.2(a).

Definition 4.10 (Continuous Uniform Distribution). A random variable X
is uniformly distributed on the interval [a, b], denoted X ⇠ U(a, b), if any value in
the interval is achieved with equal probability. The pdf and cdf are thus

fX(x) =
1

b � a
�
[a,b](x) (4.5)

and

FX(x) =

8

<

:

0 , x < a
x�a
b�a , a  x < b
1 , x � b

(4.6)

where the characteristic function �
[a,b](x) is defined to be unity on the interval [a, b]

and 0 elsewhere. The pdf is plotted in Figure 4.2(b). It is established in Exercise 4.1
that the mean and variance of X are

E(X) =
a + b

2
, var(x) =

(b � a)2

12
(4.7)

!1 !0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

f(
x
)

1! 2!!1!!2!

34.1%34.1%

13.6%13.6%

a

b!a

1

x

f(x)

b

(a) (b)

Figure 4.2. (a) Normal density with µ = 0.5 and � = 0.4 and areas within 1� and
2� of µ. (b) Uniform density on the interval [a, b].
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74 Chapter 4. Fundamentals of Probability, Random Processes and Statistics

and the relationship between X ⇠ U(a, b) and Z ⇠ U(�1, 1) is established in Exer-
cise 4.6. When prior information is lacking, it is often assumed that model param-
eters have a uniform density.

Definition 4.11 (Chi-Squared Distribution). Let X ⇠ N(0, 1) be normally
distributed. The random variable Y = X2 then has a chi-squared distribution with
1 degree of freedom, denoted Y ⇠ �2(1). Furthermore, if Yi, i = 1, · · · , k, are

independent �2(1) random variables, then their sum Z =
Pk

i=1

Yi is a �2 random
variable with k degrees of freedom, denoted Z ⇠ �2(k) or Z ⇠ �2

k. The probability
density function

fZ(z; k) =

(

zk/2�1e�z/2

2

k/2
�(k/2)

, z � 0

0 , z < 0
(4.8)

can be compactly expressed in terms of the gamma function, where �(k/2) =p
⇡ (k�2)!!

2

(k�1)/2 for odd k, and exhibits the behavior shown in Figure 4.3(a). The mean
and variance of Z are

E(Z) = k , var(Z) = 2k.

Chi-squared distributions naturally arise when evaluating the sum of squares error
between measured data and model values when estimating model parameters.

Definition 4.12 (Student’s t-Distribution). Let X ⇠ N(0, 1) and Z ⇠ �2(k)
be independent random variables. The random variable

T =
X

p

Z/k

has a Student’s t-distribution (or simply t-distribution) with k degrees of freedom.

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

z

f Z(z
;k

)
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0

0.1

0.2
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 k=1
 k=2
 k=10
 Normal

(a) (b)

Figure 4.3. (a) Chi-squared density for k = 1, · · · , 5 and (b) Student’s t-density
with k = 1, 2, 10 compared with the normal density with µ = 0, � = 1.
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The probability density function can be expressed as

fT (t; k) =
�((k + 1)/2)

�(k/2)
p

k⇡

✓

1 +
t2

k

◆�(k+1)/2

where � again denotes the gamma function. Note that

fT (t; 1) =
1

⇡(1 + t2)

is a special case of the Cauchy distribution. As illustrated in Figure 4.3(b), the
density is symmetric and bell-shaped, like the normal density, but exhibits heavier
tails.

It will be shown in Section 7.2 that the t-distribution naturally arises when
estimating the mean of a population when the sample size is relatively small and
the population variance is unknown.

On a historic note, aspects of this theory were developed by William Sealy
Gosset, an employee of the Guinness brewery in Dublin, in an e↵ort to select opti-
mally yielding varieties of barley based on relatively small sample sizes. To improve
perception following the recent disclosure of confidential information by another em-
ployee, Gosset was only allowed to publish under the pseudonym “Student.” The
importance of his work was advocated by both Karl Person and R.A. Fisher.

Definition 4.13 (Gamma Distribution). The gamma distribution is a two-
parameter family with two common parameterizations: (i) shape parameter ↵ > 0
and scale parameter � > 0 or (ii) shape parameter ↵ and inverse scale or rate
parameter � = 1/�. We employ the second since the inverse-gamma distribution
formulated in terms of ↵ and � is a conjugate prior for likelihoods associated with
normal distributions with known mean and unknown variance; see Example 4.69.
For X ⇠ Gamma(↵, �), the density is

fX(x; ↵, �) =
�↵

�(↵)
x↵�1e��x , x > 0,

and the expected value and variance are E(X) = ↵/� and var(X) = ↵/�2.
In MATLAB, random values from a gamma distribution can be generated

using the command gamrnd.m which uses the first parameterization based on the
shape and scale parameters ↵ and �.

We point out that the one-parameter �2

k distribution with k degrees of freedom
is a special case of the gamma distribution with ↵ = k

2

and � = 1

2

.

Definition 4.14 (Inverse-Gamma Distribution). If X has a gamma distribu-
tion, then Y = X�1 has an inverse-gamma distribution with parameters that satisfy

X ⇠ Gamma(↵, �) , Y ⇠ Inv-gamma(↵, �). (4.9)

Hence the density is

fY (y; ↵, �) =
�↵

�(↵)
y�(↵+1)e��/y , y > 0,
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and the mean and variance are E(Y ) = �
↵�1

for ↵ > 1 and var(Y ) = �2

(↵�1)

2
(↵�2)

for ↵ > 2.
As noted in Definition 4.13 and illustrated in Example 4.69, the inverse-

gamma distribution is the conjugate prior for normal likelihoods that are functions
of the variance. The equivalence (4.9) can be used to generate random inverse-
gamma values using the MATLAB Statistics Toolbox command gamrnd.m. Since
x = gamrnd(↵, �) is parameterized in terms of the scale parameter, one would em-
ploy the command y = gamrnd(↵, �), with � = 1/�, to generate realizations of
Y ⇠ Inv-gam(↵, �). A technique to construct random realizations from the inverse-
gamma distribution, if gamrnd.m is not available, is discussed at the end of this
section.

Definition 4.15 (Inverse Chi-Squared Distribution). The inverse chi-squared
distribution is a special case of Inv-gamma(↵, �) with ↵ = k

2

, � = 1

2

so the density
is

fY (y; k) =
2�k/2

�(k/2)
y�(k/2+1)e�1/2y

for y > 0. This reparameterization can facilitate manipulation of conjugate families
when constructing Bayesian posterior distributions.

Definition 4.16 (Beta Distribution). The random variable X ⇠ Beta(↵, �) has
a beta distribution if it has the density

fX(x; ↵, �) =
�(↵ + �)

�(↵)�(�)
x↵�1(1 � x)��1

for x 2 [0, 1]. As illustrated in Example 4.68, it is the conjugate prior for the bino-
mial likelihood. It is observed that if ↵ = � = 1, the beta distribution is simply the
uniform distribution which is often used to provide noninformative priors. Realiza-
tions from the beta distribution can be generated using the MATLAB command
betarnd.m.

Definition 4.17 (Quantile-Quantile (Q-Q) Plots). A Q-Q plot is a graphi-
cal method for comparing data from two distributions by plotting their quantiles
against each other. We will typically use this to determine the degree to which data
is Gaussian but the technique can be used to compare any distributions. If distri-
butions are linearly related, Q-Q plots will be approximately linear. In MATLAB,
Q-Q plots can be generated using the command qqplot.m.

To illustrate, we compare in Figure 4.4 realizations from N(3, 4) and U(0, 1)
distributions with data from a N(0, 1) distribution. The linearity in the first case
illustrates that the two are from the same family whereas the quantiles di↵er sig-
nificantly in the comparison between the uniform and normal data.
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Figure 4.4. Q-Q plot for (a) N(3, 4) and (b) U(0, 1) data as compared with N(0, 1)
data.

Kernel Density Estimation

When estimating parameter densities in Chapter 8, we will determine the fre-
quency with which values occur at the n points xi. From this, we wish to compute
density values fX(x) at arbitrary points x in the sample space. We consider non-
parametric estimation procedures that do not pre-assume a parametric form for the
density.

In principle, this can be achieved from a histogram of the computed values as
illustrated in Figure 4.5(a). After dividing the sample space into a set of N bins,
the density is approximated using the relation

f̃(x) =
1

N

Number of xi in same bin as x

Width of bin
.

Whereas this approach is simple to implement in one dimension, it has the following
disadvantages: the choice of bin locations and numbers can determine the structure
of the density, and it is di�cult to implement in multiple dimensions.

Instead, one often employs kernel density estimation (kde) techniques in which
densities are formulated in terms of known kernel functions as shown in Figure 4.5(b).
In 1-D, kernel density representations have the form

f̃(x) =
1

nh

n
X

i=1

K

✓

x � xi

h

◆

(4.10)

(b)(a)

Figure 4.5. (a) Histogram and approximating density. (b) Kernel basis function
and kernel density estimate.
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where K is a specified, symmetric, pdf (e.g., normal) and h is a smoothing parameter
termed the bandwidth [37,218]. Representations in higher dimensions are analogous.

If one has access to the MATLAB Statistics Toolbox, the function ksdensity.m

can be employed to construct kernel density estimates. Alternatively, the functions
kde.m and kde2d.m, which implement automatic bandwidth selection, are available
from the MATLAB Central File Exchange.

Inverse Transform Sampling

In Definition 4.14, we discussed the use of the function gamrnd.m, from the
MATLAB Statistics Toolbox, to construct random realizations from the inverse-
gamma distribution. Here we summarize a technique to construct realizations of
a general continuous random variable X with absolutely continuous distribution
function FX(x).

For U ⇠ U(0, 1), we assume that we have a random number generator capable
of generating realizations of U . We define the random variable Y = F�1

X (U) which
has the same distribution as X since

FY (y) = P (Y  y)

= P (F�1

X (U)  y)

= P (U  FX(y))

= FX(y).

(4.11)

To generate a realization x of X, we generate a realization u of U and define

x = F�1

X (u).

One typically computes F�1

X (u) using numerical algorithms. Even for an arbitrarily
fine mesh, the cost of this procedure is typically low.

This technique can be used in lieu of calling gamrnd.m if the MATLAB Statis-
tics Toolbox is unavailable.

4.1.2 Multiple Random Variables

For most applications, we have multiple parameters, responses and measurements
with each being represented by a random variable. We discuss here multiple random
variables with associated distributions.

Definition 4.18 (Random Vector). Let X
1

, · · · , Xn be random variables. The
vector X : ⌦ ! Rn given by X = [X

1

, X
2

, · · · , Xn] is termed a random vector.

Definition 4.19 (Joint CDF). For a random vector X, the associated joint cdf
FX : Rn ! [0, 1] is defined by

FX(x
1

, · · · , xn) = P{! 2 ⌦|Xj(!)  xj} , j = 1, · · · , n

which is often written FX(x) = P{X
1

 x
1

, · · · , Xn  xn}.
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Consider now the random variables X
1

, · · · , Xn each having an expectation
E(Xi). It follows immediately that

E
 

n
X

i=1

aiXi

!

=
n
X

i=1

aiE(Xi) (4.12)

where a
1

, · · · , an are real constants. Furthermore, if the n random variables are
independent, then

E(X
1

X
2

· · ·Xn) = E(X
1

)E(X
2

) · · ·E(Xn). (4.13)

Definition 4.20 (Covariance and Correlation). The covariance of random vari-
ables X and Y is the number

cov(X, Y ) = E[(X � E(X))(Y � E(Y ))] = E(XY ) � E(X)E(Y ) (4.14)

and the correlation or correlation coe�cient is

⇢XY =
cov(X, Y )

�X�Y
. (4.15)

We note that if X and Y are independent, then cov(X, Y ) = ⇢XY = 0 and the
random variables are uncorrelated. The converse is not true in general since the
relation (4.15) quantifies only linear dependencies among random variables.

Returning to the case of n random variables, it is shown in [95] that

var

 

n
X

i=1

aiXi

!

=
n
X

i=1

a2

i var(Xi) + 2
X

i<j

aiajcov(Xi, Xj) (4.16)

which simplifies to

var

 

n
X

i=1

aiXi

!

=
n
X

i=1

a2

i var(Xi) (4.17)

if the random variables are pairwise uncorrelated.

Theorem 4.21. Let X
1

, · · · , Xn be mutually independent, normally distributed,
random variables with Xi ⇠ N(µi, �2

i ) and let a
1

, · · · , an and b
1

, · · · , bn be fixed
constants. As proven in Corollary 4.6.2 of [60], it then follows that

Z =
n
X

i=1

(aiXi + bi) ⇠ N

 

n
X

i=1

(aiµi + bi),
n
X

i=1

a2

i�
2

i

!

. (4.18)

Like the univariate normal, the multivariate normal distribution plays a central
role in uncertainty quantification and model validation.
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Definition 4.22 (Multivariate Normal Distribution). The random n-vector
X is said to be normally distributed with mean µ = [µ

1

, · · · , µn] and covariance
matrix

V =

2

6

6

6

4

var(X
1

) cov(X
1

, X
2

) · · · cov(X
1

, Xn)
cov(X

2

, X
1

) var(X
2

) · · · cov(X
2

, Xn)
...

...
...

cov(Xn, X
1

) cov(Xn, X
2

) · · · var(Xn)

3

7

7

7

5

, (4.19)

designated X ⇠ N(µ, V ), if the associated density is

fX(x) =
1

p

(2⇡)n|V |
exp



�1

2
(x � µ)V �1(x � µ)T

�

.

Here x = [x
1

, x
2

, · · · , xn] and |V | is the determinant of V .

We use the next theorem when constructing proposal functions for the MCMC
algorithms detailed in Chapter 8.

Theorem 4.23. Let Y = [Y
1

, · · · , Yn]T be a normally distributed random vector,
Y ⇠ N(µ, V ), where V is positive definite. Let Z ⇠ N(0, In) where In is the n ⇥ n
identity. Then Y = (RZ + µ) where V = RRT and R is a lower triangular matrix.

A proof of this theorem can be found in [95]. We note that the decomposition
V = RRT can be e�ciently computed using a Cholesky decomposition.

Finally, the concepts of marginal and conditional distributions and densities
will play an important role in statistical inference. We summarize the definitions
for continuous random variables and refer the reader to [110, 168] for analogous
definitions for discrete random variables.

Definition 4.24 (Marginal PDF). Let X
1

and X
2

be jointly continuous random
variables with joint pdf fX(x

1

, x
2

). The marginal density functions of X
1

and X
2

are respectively given by

fX1
(x

1

) =

Z

R
fX(x

1

, x
2

)dx
2

, fX2
(x

2

) =

Z

R
fX(x

1

, x
2

)dx
1

.

A representative marginal density is plotted in Figure 4.6(a). Similarly for jointly
continuous random variables X

1

, · · · , Xn with joint density function fX(x
1

, · · · , xn),
the marginal pdf of X

1

is

fX1(x1

) =

Z

R
· · ·
Z

R
fX(x

1

, x
2

, · · · , xn)dx
2

· · · dxn.

Definition 4.25 (Conditional PDF). Let X
1

and X
2

be jointly continuous ran-
dom variables with joint pdf fX(x

1

, x
2

) and marginal pdf fX1
(x

1

) and fX2
(x

2

). The
conditional density of X

1

given X
2

= x
2

is

fX1|X2
(x

1

|x
2

) =

(

fX(x1,x2)

fX2
(x2)

, fX2(x2

) > 0

0 , otherwise
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(a) (b)

Figure 4.6. (a) Marginal density fX2(x2

) and (b) conditional density fX1|X2
(x

1

|x
2

)
at x

2

= � 1

2

for a normal joint density fX(x
1

, x
2

) with covariance matrix V = 0.09I.

as plotted in Figure 4.6(b). We note that fX1|X2
(x

1

|x
2

) is a function of x
1

. The
definition for fX2|X1

(x
2

|x
1

) is analogous. Similarly, for n jointly continuous ran-
dom variables X

1

, · · · , Xn with joint density function fX(x
1

, · · · , xn) and marginal
density fX1

(x
1

), the conditional pdf of X
2

, · · · , Xn given X
1

= x
1

is

fX2,··· ,Xn|X1
(x

2

, · · · , xn|x1

) =
fX(x

1

, x
2

, · · · , xn)

fX1(x1

)
.

Definition 4.26 (iid Random Variables). Random variables X
1

, · · · , Xn are
said to be independent and identically distributed (iid) with pdf f(x) if they are
mutually independent and the marginal pdf fXi

for each Xi is the same function
f(x) = fX1

(x) = · · · fXn
(x). The joint pdf for iid random variables is

fX(x
1

, · · ·xn) =
n
Y

i=1

f(xi). (4.20)

4.2 Estimators, Estimates and Sampling Distributions
In this section, we summarize concepts pertaining to the estimation of unknown
parameters through samples, observations, or measurements. In Section 4.3, we will
detail specific techniques to estimate parameters in the context of model calibration.
More general theory pertaining to frequentist and Bayesian inference is provided in
Section 4.8.

Definition 4.27 (Point and Interval Estimates). Consider a fixed but unknown
parameter q 2 Q ⇢ Rp. A point estimate is a vector in Rp that represents q. An
interval estimate provides an interval that quantifies the plausible location of com-
ponents of q. The mean, median, or mode of a sampling distribution are examples
of point estimates whereas confidence intervals are interval estimates.



“book˙uq”
2013/9/5
page 82i

i
i

i

i
i

i
i

82 Chapter 4. Fundamentals of Probability, Random Processes and Statistics

Definition 4.28 (Estimator and Sampling Distribution). An estimator is a
rule or procedure that specifies how to construct estimates for q based on random
samples X

1

, · · · , Xn. Hence the estimator is a random variable with an associated
distribution, termed the sampling distribution, which quantifies attributes of the
estimation process. The estimate is a realization of the estimator so it is a function
of the realized values x

1

, · · · , xn. An estimator is said to be unbiased if its mean
is equal to the value of the parameter being estimated. Otherwise it is said to be
biased. Two estimators that we will employ for model calibration are ordinary least
squares and maximum likelihood estimators. We will also employ mean, variance
and interval estimators at various points in the discussion.

Definition 4.29 (Statistic). A statistic is a measurable function of one or more
random variables that does not depend on unknown parameters.

Example 4.30. Let X
1

, · · · , Xn be random variables associated with a sample of
size n. Suppose we wish to estimate the population mean µ and variance �2 which
are assumed unknown. This can be accomplished using the estimators, or statistics,

X̄ =
1

n

n
X

i=1

Xi , S2 =
1

n � 1

n
X

i=1

(Xi � X̄)2 (4.21)

which are the sample mean and variance. We note that we employ n�1 rather than
n in the expression for S2 to ensure that it is unbiased. If we additionally assume
that Xi ⇠ N(µ, �2), it is illustrated in [168] that the sampling distributions for X̄
and S2 are

X̄ ⇠ N

✓

µ,
�2

n

◆

, S2 ⇠ �2

n � 1
�2(n � 1). (4.22)

Definition 4.31 (Interval Estimator and Confidence Interval). The goal
when constructing an interval estimate is to determine functions qL(x) and qR(x)
that bound the location qL(x) < q < qR(x) of q based on realizations x = [x

1

, · · · , xn]
of a random sample X = [X

1

, · · · , Xn]. The random interval [qL(X), qR(X)] is
termed an interval estimator. An interval estimator in combination with a confi-
dence coe�cient is commonly called a confidence interval. The confidence coe�cient
can be interpreted as the frequency of times, in repeated sampling, that the interval
will contain the target parameter q. The (1 � ↵) ⇥ 100% confidence interval is the
pair of statistics (qL(X), qR(X)) such that for all q 2 Q,

P [qL(X)  q  qR(X)] = 1 � ↵. (4.23)

Example 4.32. Consider a sequence of n random variables X
1

, · · · , Xn from a
normal distribution with known variance �2 and unknown mean µ; that is, Xi ⇠
N(µ, �2). To determine information about the unknown mean, we consider the
sample mean X̄ given by (4.21) which has the sampling distribution given in (4.22).
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It thus follows that
¯X�µ
�/

p
n
⇠ N(0, 1) so that

P

✓

�2 <
X̄ � µ

�/
p

n
< 2

◆

⇡ 0.9545

since 95.45% of the area of a normal distribution lies within 2 standard deviations
of the mean. This implies that

P

✓

X̄ � 2�p
n

< µ < X̄ +
2�p

n

◆

⇡ 0.9545.

Here [X̄ � 2�/
p

n, X̄ + 2�/
p

n] is an interval estimator for µ where both endpoints
are statistics since �2 is considered known. A (1� ↵)⇥ 100% confidence interval is
[x̄� 2�/

p
n, x̄+2�/

p
n] where x̄ = 1

n

Pn
i=1

xi is the realized sample mean based on
n measurements, or realizations, xi of the random variables Xi.

Example 4.33. We now turn to the problem of determining the confidence interval
for the mean µ of a normal distribution when the variance �2 is also unknown. To
estimate �2, we employ the statistic S2 given by (4.21) which has the �2 distribution
(4.22). We thus have

X =

p
n(X̄ � µ)

�
⇠ N(0, 1) , Z =

(n � 1)S2

�2

⇠ �2(n � 1)

so that the quotient

T =
X

p

Z/(n � 1)
=

p
n(X̄ � µ)

S

has a t-distribution with n�1 degrees of freedom; see Definition 4.12. To determine
a (1 � ↵) ⇥ 100% confidence interval for a given value of n, we seek values a and b
such that

P

✓

a <

p
n(X̄ � µ)

S
< b

◆

= 1 � ↵.

In Figure 4.3(b), it is shown that the t-distribution is symmetric so that b = �a
which we denote by tn�1,1�↵/2 to reflect the n � 1 degrees of freedom and interval
1 � ↵/2. It then follows that

P

✓

X̄ �
tn�1,1�↵/2Sp

n
< µ < X̄ +

tn�1,1�↵/2Sp
n

◆

= 1 � ↵.

On can employ standard tables of t-distributions to determine tn�1,1�↵/2 given ↵
and n and thus specify the (1�↵)⇥100% confidence interval [X̄�tn�1,1�↵/2S/

p
n ,

X̄ + tn�1,1�↵/2S/
p

n ]. We remind the reader that for ↵ = 0.05, this is a random
interval that has a 95% chance of containing the unknown but fixed (deterministic)
parameter µ. The interval is constructed by obtaining measurements x

1

, · · · , xn and
employing the realizations x̄ = 1

n

Pn
i=1

xi and s2 = 1

n�1

Pn
i=1

(xi � x̄)2 to obtain



x̄ �
tn�1,1�↵/2 sp

n
, x̄ +

tn�1,1�↵/2 sp
n

�

.



“book˙uq”
2013/9/5
page 84i

i
i

i

i
i

i
i

84 Chapter 4. Fundamentals of Probability, Random Processes and Statistics

We will use t-distributions in this manner in Chapter 7 to construct confidence
intervals for model parameters determined using least squares estimators when � is
unknown and the degrees of freedom is relatively small.

4.3 Ordinary Least Squares and Maximum Likelihood
Estimators

The process of model calibration entails estimating model parameters, and pos-
sibly initial and boundary conditions, based on measured data. More generally,
the estimation of model parameters, based on observations, comprises a significant
component of statistical inference which is further discussed in Section 4.8.

To motivate, consider the statistical model

⌥i = f(ti, q0) + "i , i = 1, · · · , n (4.24)

where ⌥i are random variables whose realizations �i are a set of n measurements
from an experiment and f(ti, q) is the parameter-dependent model response or
quantity of interest at corresponding times. The random variables "i account for
errors between the model and measurements. Finally, q

0

denotes the true, but
unknown, parameter value that we cannot measure directly but instead must infer
from realizations of the random variables ⌥i. We emphasize that in this context,
q
0

is not a random variable.

4.3.1 Ordinary Least Squares (OLS) Estimator

Consider (4.24) with the assumption that errors "i are independent and identi-
cally distributed (iid), unbiased so E("i) = 0, and have true but unknown variance
var("i) = �2

0

. We assume that the true parameter q
0

is in an admissible parameter
space Q and we let Q denote the corresponding sample space. As illustrated in the
examples of Chapter 7, these spaces typically coincide.

The ordinary least squares estimator and estimate1

q̂OLS = argmin
q2Q

n
X

i=1

[⌥i � f(ti, q)]
2

qOLS = argmin
q2Q

n
X

i=1

[�i � f(ti, q)]
2

(4.25)

are the random variable and realization in Rp that minimize the respective sum of
squares errors as illustrated in Figure 4.7(a). Details regarding the distribution of
q̂OLS based on various assumptions regarding the distribution of the errors "i are
provided in Chapter 7.

1The use of the notation q̂OLS to indicate the estimator is not universal and many texts
denote the least squares estimate by the hat-notation. Hence care must be taken to establish the
convention employed in the specific text.
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MLEq

(a)

q
OLS

(b)

Figure 4.7. (a) Ordinary least squares solution qOLS to (4.25) and (b) maximum
likelihood estimate qMLE given by (4.27).

4.3.2 Maximum Likelihood Estimator (MLE)

Maximum likelihood estimators can also be used to achieve the objective of esti-
mating a parameter q based on random samples ⌥

1

, · · · , ⌥n.

Definition 4.34 (Likelihood Function). Let f
⌥

(�; q) be a parameter-dependent
joint pdf associated with a random vector ⌥ = [⌥

1

, · · · , ⌥n], where q 2 Q is an
unknown parameter vector, and let � = [�

1

, · · · , �n] be a realization of ⌥. The
likelihood function L : Q ! [0,1) is defined by

L�(q) = L(q|�) = f
⌥

(�; q) (4.26)

where the observed sample � is fixed and q varies over all admissible parameter
values. The notation L�(q) is somewhat nonstandard but it highlights the fact that
the independent variable is q. Some authors use the notation

L(q) = L(q|d) = f
⌥

(d; q),

where d = [d
1

, · · · dn] denotes the outcome from a random experiment, to reinforce
this concept.

We note that because L is function of q, it is not a probability density function
and the notation L(q|�), while standard, should not be interpreted as a conditional
pdf. If Y is discrete, then L�(q) is the probability of obtaining the data � for a
given parameter value q. For continuous ⌥, the fact that L is only defined to within
a constant of proportionality can be combined with Riemann sum approximations
of the integral to obtain a similar interpretation.

For n iid random variables, it follows from (4.20) that the likelihood function
is

L(q|�) =
n
Y

i=1

f
⌥

(�i; q).

Finally, we denote the log-likelihood function by

`�(q) = `(q|�) = ln L(q|�).
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Example 4.35. Consider the binomial distribution with probability of success p.
The probability mass function

f
⌥

(�; p, n) = P (⌥ = �|n, p) =

✓

n
�

◆

p�(1 � p)n�p

quantifies the probability of obtaining exactly � = 0, 1, · · · , n successes in a sequence
of n experiments. In this function, p and n are known and � is unknown. Although
the likelihood

L(q|�, n) =

✓

n
�

◆

p�(1 � p)n�p

has the same functional form, the independent variable now is p, and � and n are
known. Hence the likelihood function is continuous whereas the probability mass
function is discrete.

Estimates for q
0

are commonly constructed by computing the value of q that
maximizes the likelihood which is termed a maximum likelihood estimate (MLE).
For iid samples, the maximum likelihood estimate is

qMLE = argmax
q2Q

n
Y

i=1

f
⌥

(�i|q).

To illustrate, we consider (4.24) with the assumption that errors are iid,
unbiased, and normally distributed with true but unknown variance �2

0

so that
"i ⇠ N(0, �2

0

) and hence ⌥i ⇠ N(f(ti, q0), �2

0

). In this case q and �2 are both
parameters so the likelihood function is

L(q, �|�) =
n
Y

i=1

1

�
p

2⇡
e�[�i�f(ti,q)]

2/2�2

=
1

(2⇡�2)n/2
e�

Pn
i=1[�i�f(ti,q)]

2/2�2

(4.27)

and the maximum likelihood estimate is

qMLE = argmax
q2Q

�22(0,1)

L(q, �|�) (4.28)

as depicted in Figure 4.7(b).
Due to the monotonicity of the logarithm function, maximizing L(q,�|�) is

equivalent to maximizing the log likelihood

`(q, �|�) = �n

2
ln(2⇡) � n

2
ln(�2) � 1

2�2

n
X

i=1

[�i � f(ti, q)]
2 .

From a computational perspective, however, the log likelihood is advantageous so
it is commonly employed in algorithms. For fixed �2, the condition d

dq `(�|q, �) = 0
yields

n
X

i=1

[�i � f(ti, q)]rf(ti, q) = 0 (4.29)



“book˙uq”
2013/9/5
page 87i

i
i

i

i
i

i
i

4.4. Modes of Convergence and Limit Theorems 87

where rf denotes the gradient of f with respect to q. It is observed that with the
assumption of iid, unbiased, normally distributed errors, the maximum likelihood
solution qMLE to (4.29) is the same as the least squares estimate qOLS specified by
(4.25). The equivalence between minimizing the sum of squares error and maxi-
mizing the likelihood will be utilized when we construct proposal functions for the
MCMC techniques in Chapter 8.

In frequentist inference, the maximum likelihood estimate qMLE is the param-
eter value that makes the observed output most likely. It should not be interpreted
as the most likely parameter value resulting from the data since this would require
it to be a random variable which contradicts the tenets of frequentist analysis.

4.4 Modes of Convergence and Limit Theorems
There are several modes of convergence for sequences of random variables and dis-
tributions that are important for our discussion. We summarize the definitions and
refer the reader to [60, 80,81] for additional details, examples and proofs of related
theorems.

Definition 4.36 (Convergence in Probability). A sequence X
1

, X
2

, · · · of ran-

dom variables converges in probability to a random variable X, written as Xn
P! X,

if for every " > 0,

lim
n!1

P (|Xn � X| � ") = 0 or, equivalently, lim
n!1

P (|Xn � X| < ") = 1.

Note that X
1

, X
2

, · · · are typically not iid in this and following definitions. This
mode of convergence is weaker than almost sure convergence.

Definition 4.37 (Almost Sure Convergence). A sequence X
1

, X
2

, · · · of ran-
dom variables converges almost surely to a random variable X, written Xn

a.s.�! X,
if for every " > 0,

P
⇣

lim
n!1

|Xn � X| < "
⌘

= 1.

Examples of sequences that converge in probability but not almost surely are pro-
vided in [60]. This is sometimes referred to as convergence with probability 1.

Definition 4.38 (Convergence in Distribution). Let X
1

, X
2

, · · · be a sequence
of random variables with corresponding distributions FX1

(x), FX2
(x), · · · . If FX(x)

is a distribution function and

lim
n!1

FXn(x) = FX(x)

at all points x where FX(x) is continuous, then Xn is said to have a limiting random
variable X with distribution function FX(x). In this case, Xn is said to converge

in distribution to X, which is often written as Xn
D! X. Care must be taken when

using this notation since the convergence of random variables is defined in terms
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of the convergence of the distributions. Hence this mode of convergence is quite
di↵erent from the previous two.

We note that almost sure convergence implies convergence in probability which
in turn implies convergence in distribution. Hence convergence in distribution is the
weakest of the three concepts.

Definition 4.39 (Consistent Estimator). A sequence q̂n of estimators is said
to be consistent, or weakly consistent, if it converges in probability to the value q

0

of the parameter being estimated. In practice, we often construct estimators that
are a function of the sample size n. In this case, the estimator is consistent if the
sequence converges in probability to q

0

as the number of samples tends to infinity.

Law of Large Numbers and Central Limit Theorem

The Law of Large Numbers and Central Limit Theorem are two of the pillars
of probability theory. To motivate them, we consider the problem of estimating the
unknown mean µ and variance �2 of a population based on samples x

1

, x
2

, · · · and
associated random variables X

1

, X
2

, · · · . An estimator for the mean is

X̄n =
1

n

n
X

i=1

Xi (4.30)

so a natural question is the following: Does limn!1 X̄n = µ? This is addressed by
the strong and weak laws of large numbers.

Theorem 4.40 (Strong Law of Large Numbers). Let X
1

, X
2

, · · · be iid random
variables with E(Xi) = µ and var(Xi) = �2 < 1 and define X̄n by (4.30). Then
for every " > 0,

P
⇣

lim
n!1

|X̄n � µ| < "
⌘

= 1 or X̄n
a.s.�! µ.

The formulation of the weak Law of Large Numbers is similar except X̄n
P! µ.

These laws are of fundamental importance since they establish that the random
sample adequately represents the population in the sense that X̄n converges to the
mean µ.

Given the central role of the sample mean, it is natural to question the degree
to which its sampling distribution can be established. In Example 4.30, we noted
that if Xi ⇠ N(µ, �2) then X̄ ⇠ N(µ, �2/n). The requirement of normally dis-
tributed random variables is quite restrictive, however, so we relax this assumption
and pose the same question in the context of iid random variables from an arbitrary
distribution. The remarkable answer is provided by the Central Limit Theorem.

Theorem 4.41 (Central Limit Theorem). Let X
1

, · · · , Xn be iid random vari-
ables with E(Xi) = µ and var(Xi) = �2 < 1. Furthermore, let X̄n be given by
(4.30) and let Gn(x) denote the cdf of the random variable

p
n(X̄n � µ)/�. Then

lim
n!1

Gn =

Z x

�1

1p
2⇡

e�y2/2dy
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so that the limiting distribution of
p

n(X̄n � µ)/� is a normal distribution N(0, 1).
The theorem is often expressed as

p
n(X̄n � µ)

�
D! Z

where Z ⇠ N(0, 1).

Because

X̄n
D! X̄ ⇠ N

✓

µ,
�2

n

◆

, (4.31)

X̄n is approximately normal for su�ciently large n. This result is similar to that
noted in Example 4.30 for Xi ⇠ N(µ, �2) but with the major di↵erence that (4.31)
holds in an asymptotic sense for Xi from an arbitrary distribution as long as n is
su�ciently large.

From a broad perspective, the combination of the Law of Large Numbers
and Central Limit Theorem establishes that for su�ciently large n, samples are
representative of the population (in the sense of the means) and the means of these
samples behave asymptotically as normal distributions. The question as to how
large n must be to ensure this asymptotic behavior is problem dependent and the
assumption of approximate normality can be questionable when sample sizes are
small.

We will invoke the asymptotic normality provided by the Central Limit The-
orem in Chapter 7 when constructing sampling distributions for model parameters.

4.5 Random Processes
In Section 4.1, we summarized the framework associated with random variables
and random vectors. However, uncertainty quantification in the context of di↵er-
ential equation models can yield variables that exhibit time or space dependence in
addition to randomness. This necessitates the discussion of stochastic or random
processes and fields. We will also see that the Markov chain Monte Carlo (MCMC)
techniques of Chapter 8 rely on the theory of stochastic processes.

To motivate our discussion of random processes, consider first the ODE

du

dt
= �↵(!)u , t > 0

u(0, !) = �(!)
(4.32)

where ↵ and � are random variables and ! 2 ⌦ is an event in an underlying
probability space. It was noted in Example 3.1 that for every time instance t, the
random solution u(t, !) is an example of a stochastic or random process.

Now consider the partial di↵erential equation

@T

@t
=

@

@x

✓

↵(x, !)
@T

@x

◆

= f(t, x) , �1 < x < 1 , t > 0

T (t,�1) = T` , T (t, 1) = Tr , t � 0

T (0, x) = T
0

(x) ,�1  x  1

(4.33)
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which, as detailed in Example 3.5, models the flow of heat u in a structure having
uncertain di↵usivity ↵. Here ↵ is an example of a random field and the solution
T (t, x, !) is random for all pairs (t, x) of independent variables.

Definition 4.42 (Stochastic Process). A stochastic or random process is an
indexed collection

X = {Xt, t 2 T} = {X(t), t 2 T}

of random variables, all of which are defined on the same probability space (⌦,F , P ).
The index set is typically assumed to be totally ordered and often is taken to be
time. Taking T to be a subset of consecutive integers yields a discrete random
process whereas taking T to be an interval of real numbers yields a continuous
process.

The random solution u(t, !) to (4.32) is an example of a continuous random
process. In the next section, we will devote significant discussion to Markov chains,
which are discrete random processes, since they are central to the MCMC methods
used in the Bayesian analysis of Chapter 8 to quantify parameter densities.

Other ordered index sets can be considered including spatial points or inter-
vals. However, the ordering in dimensions greater than one is complicated so we
employ the terminology stochastic or random fields for spatially varying quantities.

A stochastic process can be interpreted three ways.

(i) X is a function on T⇥ ⌦ with the realization Xt(!) for t 2 T and ! 2 ⌦;

(ii) For fixed t 2 T, Xt is a random variable;

(iii) For an outcome ! 2 ⌦, the realization Xt(!) is a function of t that is often
called the sample path or trajectory associated with !.

We note that continuous stochastic processes are infinite-dimensional and ex-
treme care must be taken when extending finite-dimensional convergence results to
these cases. The following class of random processes is important since the concepts
of mean, covariance and correlation functions are well-defined for these processes.

Definition 4.43 (Second-Order Stochastic Process). A second-order stochas-
tic process is one for which E(X2

t ) < 1 for all t 2 T.

For second-order random processes, the random variable concepts of mean and
covariance can be directly extended using the interpretation (ii). Specifically, the
expectation and covariance functions of X are defined as

µ(t) = E(Xt) , t 2 T

C(t, s) = cov(Xt, Xs) = E [(Xt � µ(t))(Xs � µ(s))] , t, s 2 T.
(4.34)

Hence µ(t) quantifies the centrality of sample paths whereas C(t, s) quantifies their
variability about µ(t).
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Definition 4.44 (Gaussian Process). A Gaussian process (GP) is a continuous-
time stochastic process X such that all finite-dimensional vectors Xt = [Xt1 , · · · , Xtn ]
have a multivariate normal distribution; that is

Xt ⇠ N(µ(t), C(t))

where t = [t
1

, · · · , tn], µ(t) = [E(Xt1), · · · ,E(Xtn)] and [C(t)]ij = cov(Xti , Xtj ) for
all 1  i, j  n. A Gaussian process is thus a probability distribution for a function.

The concept of stationarity is important in the theory of Markov chains since
it provides criteria specifying when MCMC methods can be expected to converge to
posterior distributions for parameters. We consider this in the context of a discrete
index set T but note that a similar definition holds for continuous index sets.

Definition 4.45 (Stationary Random Process). The random process X is said
to be stationary if, for any t

1

, t
2

, · · · , tn 2 T and s such that t
1

+s, · · · , tn+s 2 T, the
random vectors [Xt1 , · · · , Xtn ] and [Xt1+s, · · · , Xtn+s] have the same distribution.
For a stationary process, µ(t) is constant for all t = [t

1

, · · · , tn] and C(t, s) = C(t�s)
is a function only of the time di↵erence |t � s|.

Definition 4.46 (Autoregressive (AR) Models). An AR(1) process, or time
series, X satisfies

Xt = ⇢
1

Xt�1

+ "t , "t ⇠ N(0, �2) (4.35)

where ⇢
1

is a parameter. If |⇢
1

| < 1, the process is said to be wide-sense station-
ary. In this case, E(Xt) = E(Xt�1

) so that E(Xt) = 0 and var(Xt) = E(X2

t ) =

⇢2
1

E(X2

t�1

) + �2 so that var(X2

t ) = �2

1�⇢2
1
. We note that an AR(1) process smooths

the output in the sense of a low-pass filter.
An AR(p) process satisfies

Xt =
p
X

k=1

⇢kXt�k + "t , "t ⇠ N(0, �2). (4.36)

We note that AR(p) processes are a type of Gaussian process.

Definition 4.47 (Random Field). The concept of a random field generalizes
that of a random process by allowing indices that are vector-valued or points on a
manifold. Specifically, a random field is a collection

X = {Xx, x 2 X}

of random variables indexed by elements x in a topological space X . For our ap-
plications, we will employ random fields to quantify uncertain spatially-varying
parameters such as ↵(x, !) in (4.33).

For the definitions of random processes and random fields, we have considered
indexed families of random variables which, for fixed values of the index, map ⌦
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to R. When describing Markov processes, however, it is advantageous to generalize
this concept to include random variables that map into a state space S. This is
established in the following definitions.

Definition 4.48 (S-Valued Random Variable). Let S be a finite or countable
set termed the state space. An S-valued random variable is a function X : ⌦ ! S
such that {! 2 ⌦|X(!)  x} 2 F for each x 2 S. Note that this is exactly
Definition 2.3 if S = R.

Definition 4.49. A random process X is said to have a state space S if Xt is an
S-valued random variable for each t 2 T.

4.6 Markov Chains
In Chapter 8, we will employ Markov chain Monte Carlo (MCMC) methods to
construct posterior densities for model parameters. We summarize here the funda-
mental properties of Markov chains necessary for that development.

Broadly stated, a stochastic process is said to satisfy the Markov property
if the probability of future states is dependent only on the present state rather
than the sequence of past events that precede it. This is completely analogous
to the state space concept of modeling in which a system is defined in terms of
state variables that uniquely define the behavior at time t. When combined with
dynamics encompassed in the model, the future state behavior can be completely
defined. Both Markov processes and state space models are memoryless in the
sense that the past history is not required to make future predictions. Whereas
Markov processes can be defined for both continuous and discrete index sets T, we
focus solely on the latter since it provides the setting necessary for MCMC analysis.
Discrete-time Markov processes are usually called Markov chains although some
authors also use this designation for continuous time processes.

Definition 4.50 (Markov Chain). A Markov chain is a sequence of S-valued
random variables

X = {Xi, i 2 Z}
that satisfy the Markov property that Xn+1

depends only on Xn; that is

P (Xn+1

= xn+1

|X
0

= x
0

, · · · , Xn = xn) = P (Xn+1

= xn+1

|Xn = xn) (4.37)

where xi is the state of the chain at time i.

A Markov chain is characterized by three components: a state space S, an
initial distribution p0, and a transition or Markov kernel. As indicated in Defi-
nition 4.48, the state space is the range of all random variables so it is the set
of all possible realizations. We assume a finite number k of discrete states so
S = {x

1

, · · · , xk}. The initial distribution quantifies the starting configuration
for the chain whereas the transition kernel quantifies the probability of transition-
ing from state xi to xj so it establishes how the chain evolves. For our discussion,
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we assume that the transition probabilities are the same for all time which yields a
homogeneous Markov chain.

We let pij denote the probability of moving from xi to xj in one step so that

pij = P (Xn+1

= xj |Xn = xi).

The resulting transition matrix is

P = [pij ] , 1  i, j  k.

We will also be interested in the probability of transitioning between states in m-
steps which we denoted by

p(m)

ij = P (Xn+m = xj |Xn = xi)

with the corresponding m-step transition matrix

Pm =
h

p(m)

ij

i

= Pm.

The initial density, which is often termed mass when it is discrete, is given by

p0 = [p0
1

, · · · , p0k]

where p0i = P (X
0

= xi). Because p0 and P contain probabilities, their entries are
nonnegative and the elements of p0 and rows of P must sum to unity. Matrices
satisfying the property are termed row-stochastic matrices.

Given an initial distribution and transition kernel, the distribution after 1 step
is p1 = p0P and

pn = pn�1P = p0Pn

after n steps. We illustrate these concepts in the next example.

Example 4.51. Various studies have indicated that factors such as weather, in-
juries, and unquantifiable concepts such as hitting streaks lend a random nature to
baseball [7]. We assume that a team that won its previous game has a 70% chance
of winning their next game and 30% chance of losing whereas a losing team wins
40% and loses 60% of their next games. Hence the probability of winning or losing
the next game is conditioned on a team’s last performance.

This yields the two-state markov chain illustrated in Figure 4.8 where

S = {win, lose}.

The resulting transition matrix is

P =



0.7 0.3
0.4 0.6

�

.

There are 30 teams in major league baseball so

p0 = [p0w , p0` ] , p0w + p0` = 1
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0.7 win lose

0.4

0.3

0.6

Figure 4.8. Markov chain quantifying the probability of winning or losing based on
the last performance.

is the percentage of teams who won and lost their last games. To illustrate, we take
p0 = [0.8, 0.2]. We assume a schedule in which teams play at di↵erent times so p0w
and p0` do not both have to be 0.5.

The percentage of teams who win/lose their next game is given by

p1 = [0.8 , 0.2]


0.7 0.3
0.4 0.6

�

= [0.64 , 0.32]

so the distribution after n games is

pn = [0.8 , 0.2]


0.7 0.3
0.4 0.6

�n.

The distributions for n = 0, · · · , 10 are compiled in Table 4.1. These numerical
results indicate that the distribution is limiting to a stationary value.

For this example, we can explicitly compute a limiting distribution ⇡ by solving
the constrained relation

⇡ = ⇡P ,
X

⇡i = 1

) [⇡win , ⇡lose]


0.7 0.3
0.4 0.6

�

= [⇡win , ⇡lose] , ⇡win + ⇡lose = 1

to obtain
⇡ = [0.5714 , 0.4286].

In general, however, we cannot solve explicitly for a stationary value and instead
must establish the manner in which pn limits to ⇡. We next discuss the nature of
this convergence and summarize criteria that guarantee the existence of a unique
limiting value.

n pn n pn n pn

0 [0.8000 , 0.2000] 4 [0.5733 , 0.4267] 8 [0.5714 , 0.4286]
1 [0.6400 , 0.3600] 5 [0.5720 , 0.4280] 9 [0.5714 , 0.4286]
2 [0.5920 , 0.4080] 6 [0.5716 , 0.4284] 10 [0.5714 , 0.4286]
3 [0.5776 , 0.4224] 7 [0.5715 , 0.4285]

Table 4.1. Iteration and distributions for Example 4.51.



“book˙uq”
2013/9/5
page 95i

i
i

i

i
i

i
i

4.6. Markov Chains 95

As detailed in Section 4.4, it does not make sense to directly consider limits
lim
n!1

Xn of random variables. Instead, we consider the limit

lim
n!1

pn = ⇡

which is convergence in distribution. We note that if this limit exists, it must satisfy

⇡ = lim
n!1

p0Pn = lim
n!1

p0Pn+1 =
⇣

lim
n!1

p0Pn
⌘

P = ⇡P.

Definition 4.52 (Stationary Distribution). For a Markov chain with transition
kernel P , distributions ⇡ that satisfy

⇡ = ⇡P (4.38)

are termed equilibrium or stationary distributions of the chain. In a measure theo-
retic framework, ⇡ is an invariant measure.

For every finite Markov chain, there exists at least one stationary distribu-
tion. However, it may not be unique and it may not be equal to lim

n!1
pn. Criteria

necessary to establish a unique limiting distribution ⇡ = lim
n!1

pn are motivated by

the following definitions and examples.

Definition 4.53 (Irreducible Markov Chain). A Markov chain is irreducible if
any state xj can be reached from any other state xi in a finite number of steps; that

is p(m)

ij > 0 for all states in finite m. Otherwise it is reducible.

Example 4.54. Consider the Markov chain depicted in Figure 4.9(a) with the
transition matrix

P =

2

6

6

4

0 1

3

2

3

0
1

3

0 0 2

3

0 0 1 0
0 0 0 1

3

7

7

5

.

The chain is clearly reducible since p
3j = 0 for j = 1, 2, 4. Furthermore, it is easy

to verify that ⇡ = [0, 0, 1, 0] and ⇡ = [0, 0, 0, 1] are both stationary distributions.
The property of irreducibility is required to guarantee that ⇡ is unique.

(a)

1 2
1/3

1/3

1

2

3

(b)

11

5 

41/2 1/2

113 4

2/3 2/3

1 1

Figure 4.9. (a) Reducible chain for Example 4.54, and (b) periodic chain for
Example 4.56.
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Definition 4.55 (Periodic Markov Chain). A Markov chain is periodic if parts
of the state space are visited at regular intervals. The period k is defined as

k = gcd
n

m|⇡(m)

ii > 0
o

= gcd {m|P (Xn+m = xi|Xn = xi) > 0} .

The chain is aperiodic if k = 1.

Example 4.56. The Markov chain depicted in Figure 4.9(b) with the transition
matrix

P =

2

6

6

6

6

4

0 1 0 0 0
0 0 1 0 0
1

2

0 0 1

2

0
0 0 0 0 1
0 0 1 0 0

3

7

7

7

7

5

has the unique stationary distribution ⇡ = [1/6 , 1/6 , 1/3 , 1/6 , 1/6]. It is estab-
lished in Exercise 4.8 that if p0 = [1, 0, 0, 0, 0, 0], then p3 = p6 = p9 = · · · = p0 so
the period is k = 3. Because mass cycles through the chain at a regular interval,
it does not converge so lim

n!1
pn does not exist. Furthermore, it is demonstrated

in Exercise 4.9 that if the limit of a periodic chain exists for one initial distribu-
tion, other distributions can yield di↵erent limits. Hence aperiodicity is required to
guarantee that the limit exists.

For infinite chains, one must additionally include conditions regarding the
persistence or recurrence of states. However, we will focus on finite Markov chains
for which it can be shown that if the chain is irreducible, all states are positive
persistent [119].

Before providing a theorem that establishes the convergence limn!1 pn = ⇡,
we summarize relevant results from matrix theory.

Definition 4.57. A k ⇥ k matrix A is

(i) nonnegative, denoted A � 0, if aij � 0 for all i, j

(ii) strictly positive, denoted A > 0, if aij > 0 for all i, j.

Theorem 4.58 (Perron–Frobenius). Let A be an k⇥k nonnegative matrix such
that Am > 0 for some m � M . Then

(i) A has a positive eigenvalue �
0

with corresponding left eigenvector x
0

where the
entries of x

0

are positive,

(ii) If � 6= �
0

is any other eigenvalue of A, then |�| < �
0

,

(iii) �
0

has geometric and algebraic multiplicity 1.

There are several statements of the Perron-Frobenius theorem, and details and
proofs can be found in [119,128,217].



“book˙uq”
2013/9/5
page 97i

i
i

i

i
i

i
i

4.6. Markov Chains 97

Theorem 4.59. For all finite stochastic matrices P , the largest eigenvalue is �
0

= 1.

See [119] for a proof of this theorem.

Theorem 4.60. Let P be a finite transition matrix for an irreducible aperiodic
Markov chain. Then there exists M � 1 such that Pm > 0 for all m � M .

Further details are provided in [119] and the theorem is illustrated in Exercise 4.10.
The following theorem establishes the convergence of the Markov chain.

Theorem 4.61. Every finite, homogeneous Markov chain that is irreducible and
aperiodic, with transition matrix P , has a unique stationary distribution ⇡. More-
over, chains converge in the sense of distributions, limn!1 pn = ⇡, for every initial
distribution p0.

Proof. It follows from Theorems 4.58–4.60 that the largest eigenvalue of P is
�
0

= 1 which has multiplicity 1. There is thus a unique left eigenvector ⇡ that
satisfies ⇡P = ⇡ and

P

⇡i = 1. To establish the convergence, we first consider the
eigendecomposition

UPV = ⇤ =

2

6

6

4

1 0 · · · 0
0 �

2

...
. . .

...
0 · · · �k

3

7

7

5

where 1 > |�
2

| � · · · � |�k| and V = U�1. It follows that

lim
n!1

Pn = lim
n!1

V

2

6

6

4

1 0 · · · 0
0 �n

2

...
. . .

...
0 · · · �n

k

3

7

7

5

U = V

2

6

6

4

1 0 · · · 0
0 0
...

. . .
...

0 · · · 0

3

7

7

5

U.

Furthermore, we observe that UP = ⇤U implies that

2

4

⇡
1

· · · ⇡k

...
...

uk1 · · · ukk

3

5

"

P

#

=

2

6

6

4

1
�
2

. . .
�n

3

7

7

5

2

4

⇡
1

· · · ⇡k

...
...

uk1 · · · ukk

3

5

and V = U�1 implies that

UV =

2

4

⇡
1

· · · ⇡k

...
...

uk1 · · · ukk

3

5

2

4

1 · · · v
1k

...
...

1 · · · vkk

3

5 =

2

4

1 · · · 0
...

...
0 · · · 1

3

5
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since
P

⇡i = 1. This establishes that the first column of V is all ones. Finally

lim
n!1

pn = lim
n!1

p0Pn

= lim
n!1

⇥

p0
1

, · · · , p0k
⇤

2

4

1 · · · vk1
...

...
1 · · · vkk

3

5

2

6

6

4

1
�
2

. . .
�k

3

7

7

5

2

4

⇡
1

· · · ⇡k

...
...

uk1 · · · ukk

3

5

=
⇥

p0
1

· · · p0k
⇤

2

4

1 · · · vk1
...

...
1 · · · vkk

3

5

2

6

6

4

1
0

. . .
0

3

7

7

5

2

4

⇡
1

· · · ⇡k

...
...

uk1 · · · ukk

3

5

= [⇡
1

, · · · , ⇡k]

= ⇡

thus establishing the required convergence.

Theorem 4.61 establishes that finite Markov chains which are irreducible and
aperiodic will converge to a stationary distribution ⇡. However, it is often di�cult
or impossible to solve for ⇡ using the relations ⇡P = ⇡ subject to

P

⇡i = 1.
The detailed balance condition provides an alternative that is straight-forward to
implement in MCMC methods where the goal is to construct Markov chains whose
stationary distribution ⇡ is the posterior distribution for parameters.

Definition 4.62 (Detailed Balance). A chain with transition matrix P = [pij ]
and distribution ⇡ = [⇡

1

, · · · , ⇡k] is reversible if the detailed balance condition

⇡ipij = ⇡jpji (4.39)

is satisfied for all i, j. Since

X

i

⇡ipij =
X

i

⇡jpji = ⇡j

X

j

pji = ⇡j ,

it follows immediately that ⇡P = ⇡ so that reversibility implies stationarity. Hence
if the chains are irreducible and aperiodic, they will uniquely limit to this specified
stationary distribution. In Chapter 8, we use the Metropolis algorithm to construct
chains that satisfy (4.39) and converge to the posterior density.

4.7 Random Versus Stochastic Di↵erential Equations
We briefly illustrate here the di↵erence between random di↵erential equations, which
we consider throughout this text, and stochastic di↵erential equations. This is done
in part to allay a growing trend in the UQ community to treat these terms as
synonymous when in fact they are distinctly di↵erent and they require completely
di↵erent techniques for analysis and approximation.
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Definition 4.63 (Random Di↵erential Equation). Random di↵erential equa-
tions are those in which random e↵ects are manifested in parameters, initial or
boundary conditions, or forcing conditions that are regular (e.g., continuous) with
respect to time and space. An example is the ODE

dz

dt
= a(!)z + b(t, !)

z(0) = z
0

(!)

which has the solution

z(t; q) = ea(!)t



z
0

(!) +

Z t

0

e�a(!)sb(s, !))ds

�

.

We emphasize that b(t, !) is a random process, as defined in Definition 4.42, with
the additional requirement that for an outcome ! 2 ⌦, the sample path b(t, !) is
taken to be smooth; e.g., in C[0, tf ]. This guarantees that sample paths of the
solution u(t, !) are at least di↵erentiable functions as illustrated in Figure 4.10.

In summary, for each realization of !, random di↵erential equations are ana-
lyzed and solved sample path by sample path using the theory of standard di↵eren-
tial equations [90,136,228]. The goal pursued in Chapters 9 and 10 is to determine
distributions or uncertainty bounds for u(t, !) based on those of inputs such as
parameters or initial and boundary conditions.

Definition 4.64 (Stochastic Di↵erential Equation). The role of uncertainty
is fundamentally di↵erent in stochastic di↵erential equations (SDE). In this case,
the di↵erential equations are forced by an irregular process such as a Wiener pro-
cess or Brownian motion. Stochastic di↵erential equations are typically written
symbolically in terms of stochastic di↵erentials but they are interpreted as Itō or
Stratonovich stochastic integrals. For example, fluctuations in Z(t) due to a Wiener

0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1

1.1

1.2

1.3

t

z
(t
)

0 0.2 0.4 0.6 0.8 1
!1

!0.5

0

0.5

1

t

Z
(t
)

(a) (b)

Figure 4.10. Realizations of (a) a random di↵erential equation and (b) sample
paths of a stochastic di↵erential equation.
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process W could be formulated as

dZ(t) = �aZ(t)dt + bdW (t)

which is interpreted as

Z(t) = Z
0

�
Z t

0

aZ(s)ds +

Z t

0

bdW (s)

where the second integral is an Itō stochastic integral.
As illustrated in Figure 4.10, the solutions of SDE exhibit nondi↵erentiable

sample paths due to the irregularity of the driving Wiener process. We do not
further consider SDE in this text but rather include this definition to delineate
them from random di↵erential equations. The reader is referred to [90, 136] for
further details about SDE.

4.8 Statistical Inference
The goal in statistical inference is to deduce the structure of, or make conclusions
about, a phenomenon based on observed data. This often involves the determination
of an unknown distribution based on observed data in which case the problem of
statistical inference can be stated as follows. Given a set

S = {x
1

, · · · , xn} , xj 2 RN

of observed realizations of a random variable X, we want to infer the underlying
probability distribution that produces the data S.

Statistical inference can be roughly categorized as being parametric or non-
parametric in nature. In parametric approaches, one assumes that the underlying
distributions can be adequately described in terms of a parametric relation having
a relatively small number of parameters; e.g., mean and variance. The inference
problem is to estimate those parameters or the distribution of those parameters.
This approach has the advantage of a typically small number of parameters but
the disadvantage of limited accuracy if the assumed functional relation is incor-
rect. In nonparametric approaches, one does not presuppose a functional form but
instead describes or constructs the distribution based solely on properties of the
observations. This avoids errors associated with incorrect parametric relations but
requires that some structure be imposed on algorithms to ensure that reasonable
distributions are determined.

4.8.1 Frequentist Versus Bayesian Inference

Frequentist and Bayesian inference di↵er in the underlying assumptions made re-
garding the nature of probabilities, models, parameters, and confidence intervals.
As detailed in [30], each approach, or a hybrid combination of the two, is advan-
tageous for certain problems or applications. Hence it is necessary that scientists
understand both.
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From a frequentist perspective, probabilities are defined as the frequencies
with which an event occurs if the experiment is repeated a large number of times.
Hence they are objective and are not updated as data is acquired. Parameters are
considered to be unknown but fixed; hence they are deterministic. To statistically
establish confidence in the estimation process, one constructs estimators, such as
ordinary least squares (OLS) or maximum likelihood estimators (MLE), to esti-
mate the parameters in the manner detailed in Section 4.3. Based on either the
assumption of normality for the errors or asymptotic theory resulting from the Cen-
tral Limit Theorem, one can then construct sampling distributions and confidence
intervals for the parameter estimators.

The interpretation of confidence intervals in the framework of frequentist infer-
ence is often a source of confusion. As detailed in Definition 4.31, a 90% confidence
interval has the following interpretation: in repeated procedures, 90% of realized
intervals would include the true parameter q

0

. In model calibration, this means that
if the estimation procedure is repeated 100 times using data having the same error
statistics, and a 90% interval estimate is computed each time, then 90% of the in-
tervals would include q

0

as illustrated in Figure 4.11(a). The sampling distribution
and confidence intervals thus quantify the accuracy and variability of the estimation
procedure rather than providing a density for the parameter. Hence they do not
provide a direct measure of parameter uncertainty.

Because parameters are fixed, but unknown, values in this framework, it
cannot be directly applied to obtain parameter densities that can be propagated
through models to quantify model uncertainty. In some problems, the sampling
distributions may be similar to parameter distributions but this needs to be verified
either experimentally or using Bayesian analysis. This is discussed in more detail
in Chapter 7.

Probabilities are treated as possibly subjective in the Bayesian framework and
they can be updated to reflect new information. Moreover, they are considered to
be a distribution rather than a single frequency value. Similarly, parameters are
considered to be random variables with associated densities and the solution of the
parameter estimation problem is the posterior probability density. The Bayesian
perspective is thus natural for model uncertainty quantification since it provides
densities that can be propagated through models. The interpretation of interval
estimates, termed credible intervals, is also natural in the Bayesian framework.

90% chance region q0

(a) (b)

Confidence Interval

contains value

Figure 4.11. Interpretation of a (a) frequentist 90% confidence interval and (b)
Bayesian 90% credible interval.
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Definition 4.65 (Credible Interval). The (1�↵)⇥100% credible interval is that
which has a (1 � ↵) ⇥ 100% chance of containing the expected parameter. A 90%
credible interval is illustrated in Figure 4.11(b).

We next provide details regarding Bayesian inference to provide the back-
ground necessary for Chapter 8.

4.8.2 Bayesian Inference

Bayesian inference is based on the supposition that probabilities, and more generally
our state of knowledge regarding an observed phenomenon, can be updated as
additional information is obtained. In the context of parametric models, parameters
are treated as random variables having associated densities.

Because probabilities and parameter densities are conditioned on observations,
Bayes’ formula

P (A|B) =
P (B|A)P (A)

P (B)

for probabilities provides a natural genesis for Bayesian inference. In the context
of parameters Q = [Q

1

, · · · , Qp] that are quantified based on observations � =
[�

1

, · · · , �n], one employs the relation

⇡(q|�) =
⇡(�|q)⇡

0

(q)

⇡
⌥

(�)
(4.40)

where ⇡
0

(q) and ⇡(q|�) respectively denote the prior and posterior densities, ⇡(�|q)
is a likelihood, and the marginal density ⇡

⌥

(�) is a normalization factor. Here
q = Q(!) denotes realizations of Q. We note that the subscripts which indicate
specific random variables are typically dropped from the prior and posterior in
Bayesian analysis.

The prior density ⇡
0

(q) quantifies any prior knowledge that may be known
about the parameter before data is taken into account. For example, one might
have prior information based on similar previous models, data that is similar to
previous data, or initial parameter densities that have been determined through
other means such as related experiments.

For most model calibration, however, one does not have such prior information
so one uses instead what is termed a noninformative prior. A common choice of
noninformative prior is the uniform density, or unnormalized uniform, posed on the
parameter support. For example, one might employ

⇡
0

(q) = �
[0,1)

(q),

for a positive parameter. This choice is improper in the sense that the integral of
⇡
0

(q) is unbounded. It is recommended that a noninformative prior be used unless
good previous information is known since it is shown in Example 4.66 that incorrect
prior information can degrade (4.40) far more than a noninformative prior.

In “empirical Bayes” inference, one also encounters data-dependent priors in
which priors estimated using frequentist techniques such as maximum likelihood are
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employed in the Bayesian model. It is argued in [35] that this double use of data
is problematic with small sample sizes and is at odds with the tenets of Bayesian
analysis.

The term ⇡(�|q), which is a function of q with � fixed, quantifies the likelihood
L(q|�) of observing � given parameter realizations q as detailed in Section 4.3.2.
We will illustrate various choices for the likelihood function in the examples at the
end of this section and at the beginning of Chapter 8. The joint density is given by

⇡(q, �) = ⇡(�|q)⇡
0

(q)

and is normalized to unity by the marginal density function ⇡
⌥

(�) of all possible
observations.

Finally, the posterior density ⇡(q|�) quantifies the probability of obtaining
parameters q given observations �. It is the posterior density that we will be
estimating using the Bayesian parameter estimation techniques of Chapter 8 and we
point out that the data directly informs the posterior only through the likelihood.
Finally, representation of ⇡

⌥

(�) as the integral over all possible joint densities yields
the Bayes relation

⇡(q|�) =
⇡(�|q)⇡

0

(q)
R

Rp ⇡(�|q)⇡
0

(q)dq
(4.41)

commonly employed for model calibration and data assimilation.
A significant issue, which will be discussed in detail in Chapter 8, concerns

the evaluation of the normalizing integral. It can be analytically evaluated only in
special cases and classical tensored quadrature techniques are e↵ective only in low
dimensions; e.g., p  4. This has spawned significant research on high dimensional
quadrature techniques including adaptive sparse grids for moderate dimensionality
and Monte Carlo techniques for high dimensions; see Chapter 11.

Example 4.66. To illustrate (4.41) in a setting where the posterior density can
be computed explicitly, we consider the results from tossing a possibly biased coin.
The random variable

⌥i(!) =

⇢

0 , ! = T
1 , ! = H

represents the result from the ith toss and the parameter q is the probability of
getting heads. We now consider the probability of obtaining N

1

heads and N
0

tails
in a series of N = N

0

+ N
1

flips of the coin.
Because coin flips are independent events with only two possible outcomes,

the likelihood of observing a sequence � = [�
1

, · · · , �N ], given the probability q, is

⇡(�|q) =
N
Y

i=1

q�i(1 � q)1��i

= q
P

�i(1 � q)N�
P

�i

= qN1(1 � q)N0
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which is simply a scaled binomial density. We consider first a noninformative prior

⇡
0

(q) =

⇢

1 , 0  q  1
0 , else

which yields the posterior density

⇡(q|�) =
qN1(1 � q)N0

R

1

0

qN1(1 � q)N0dq
=

(N + 1)!

N
0

!N
1

!
qN1(1 � q)N0 .

We note that in this special case, the denominator is the integral of a beta function
which admits an analytic solution. In general, however, quadrature techniques must
be employed to approximate the integral.

For a fair coin with q
0

= 1

2

, the posterior densities associated with various
realizations N

1

and N
0

are plotted in Figure 4.12. It is first observed that Bayesian
inference yields a posterior density with just one experiment whereas frequentist
analysis would specify a probability of either 0 or 1. It is also observed that the
variability of ⇡(q|�) decreases as N increases. Finally, the manner in which the data
informs the density is illustrated by comparing the results with 5 Heads, 9 Tails,
which has a mode of 0.36, to those of 49 Heads, 51 tails which has a mode of 0.495.
This illustrates that the method is achieving the goal of having the data inform
when there is no prior information.

We next illustrate the e↵ect of a poor choice for the prior density. For the
same fair coin (q

0

= 1

2

), we consider the choice

⇡
0

(q) =
1

�
p

2⇡
e�(q�µ)2/2�2

with µ = 0.3 and � = 0.1. We cannot analytically evaluate the denominator in this
case so we instead employ Gaussian quadrature. As illustrated in Figure 4.13, even
for a realization of 50 Heads and 50 Tails, the mean of the posterior is still smaller
than q

0

= 1

2

but is significantly better than the result for 5 Heads and 5 Tails. This
illustrates the manner in which a poor informative prior can have negative impact
for a large number of observations. Hence if the validity of an informative prior is
in doubt, it is recommended that a noninformative prior be used instead.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

1 Head, 0 Tails

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5 Heads, 9 Tails

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

49 Heads, 51 Tails

Figure 4.12. Posterior densities associated with a noninformative prior for three
realizations of the coin toss experiment.
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0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

50 Heads, 50 Tails

Figure 4.13. Posterior densities associated with a poor informative prior for two
realizations of the coin toss experiment.

Conjugate Priors

Definition 4.67 (Conjugacy). The property that the prior and posterior distri-
butions have the same parametric form is termed conjugacy. When this occurs, the
prior ⇡

0

(q) is termed a conjugate prior for the likelihood ⇡(�|q). Parameters in the
prior relation are often termed prior hyperparameters to distinguish them from the
model parameters q. The corresponding parameters in the posterior relation are
called posterior hyperparameters.

The use of conjugate priors, when possible, is advantageous since closed form
expressions for the posterior are then available. This will be used when estimating
densities for measurement errors in Chapter 8.

Example 4.68. Consider the binomial model

⇡(�|q) = qN1(1 � q)N�N1 , N
1

=
N
X

i=1

�i

used for the likelihood in the coin toss Example 4.66. We observe that if the prior is
parameterized similarly, the product of the prior and likelihood will be in the same
family. Specifically, we take ⇡

0

(q) to be a beta density with hyperparameters ↵ and
� so that ⇡

0

(q) / q↵�1(1 � q)��1 as shown in Definition 4.16. It then follows that
the posterior density satisfies

⇡(q|�) / qN1(1 � q)N�N1q↵�1(1 � q)��1

= qN1+↵�1(1 � q)N�N1+��1

so it is a beta density with shape parameters N
1

+ ↵ and N � N
1

+ �. The beta
prior distribution is thus a conjugate family for the binomial likelihood.

Example 4.69. Here we consider normally distributed random variables with known
mean µ and unknown variance �2. This will illustrate techniques employed in Chap-
ter 8 to estimate the unknown variance �2

0

of measurement errors. As detailed in
Section 4.3.2, the likelihood of observing � = [�

1

, · · · , �N ] iid measurements under
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these assumptions is

⇡(�|�2) =
1

(2⇡�2)n/2
e�SS/2�2

where the sum of squares error is

SS =
n
X

j=1

(�j � µ)2.

This likelihood is in the inverse-gamma family, defined in Definition 4.14, so the
conjugate prior is ⇡

0

(�2) / (�2)�(↵+1)e�/�
2

. The posterior density can then be
expressed as

⇡(�2|�) / ⇡
0

(�2)⇡(�|�2)

/ (�2)�(↵+1)e��/�2

(�2)�n/2e�SS/2�2

= (�2)�(↵+1+n/2)e�(�+SS/2)/�2

so that
�2|� ⇠ Inv-gamma(↵ + n/2, � + SS/2).

As shown in Definitions 4.13 and 4.14, if X ⇠ Gamma(↵, �), then Y = X�1 ⇠
Inv-gamma(↵, �). This equivalence can be exploited so that the MATLAB com-
mand gamrnd.m can be used to generate random numbers from a gamma distribu-
tion which can then be used to construct random values from an inverse-gamma
distribution.

4.9 Notes and References
This chapter provides an overview of statistical topics that play a role in uncertainty
quantification and we necessarily leave details to the following references. The
text [60] provides a very accessible introduction to probability, point and interval
estimation, hypothesis testing, analysis of variance and linear regression with clearly
stated definitions. The texts [110, 168] are also excellent sources for obtaining an
overview of probability and statistics at an upper undergraduate level. The book
[95] delineates the di↵erence between estimators and estimates by using di↵erent
notation and is an excellent source for details regarding linear regression. Finally,
[80, 81] are classics in the field of probability.

There are a number of excellent supplemental texts on random processes and
Morkov chains including [98, 119, 124, 128, 156, 181, 251]. Additional theory, exam-
ples, and numerical algorithms for random and stochastic di↵erential equations can
be found in [90, 136, 183, 228]. We note that due to the mathematical nature of
the underlying framework required for stochastic di↵erential equations, these latter
texts also provide a measure-theoretic framework for random variables and other
concepts discussed in this chapter. Additional details regarding a measure theoretic
basis for aspects of this material can be found in [36].

The reader is referred to [56, 221] for introductory concepts and examples re-
garding Bayesian analysis and computing and [34,91] for a more in-depth treatment


