Math 573 - Exam 1

(1) The goal in this problem is to model the dynamics of an algae population in a long tube filled with water as depicted in Figure 1. The water flowing into the tube at $x=0$ is pure (no algae) and there is a filter at $x=L$ that prevents algae from leaving the tube. The flow rate is assumed constant and is given by v. The length is sufficiently larger than the radius of a cross-section so you can consider this as a 1-D problem along the center of the tube which is taken to be the x-axis. You should let $\rho(t, x)$ represent the density of the population so the initial density is $\rho_{0}(x)=\rho(0, x)$.
(a) Construct a model for the algae dynamics that incorporates the following contributions:
(i) c_{0} algae eaten by fish per unit time; Is c_{0} positive or negative?
(ii) an exponential growth rate of c_{1};
(iii) a convective term due to the flow of water;
(iv) diffusion with a rate constant of c_{3}.

Be sure to motivate the terms in your model.
(b) Determine appropriate boundary conditions for your model.
(c) Determine the solution for the following scenarios. For a fixed point $0<x<L$, plot the solution as a function of time for each case.

- The exponential growth (ii), convection (iii) and diffusion (iv) are neglected.
- The fish (i), convection (iii) and diffusion (iv) are neglected.
- The fish (i), exponential growth (ii) and diffusion (iv) are neglected.

Figure 1: Algae population affected by consumption, growth, convection and diffusion.
(2) Here we are going to model the population of fish released into a stream having velocity \vec{u}. Let $\rho(t, x, y, z)$ denote the density of fish (fish/unit volume). At time $t=0$, a pail full of fish, with initial densition $\rho(0, x, y, z)=\rho_{0}(x, y, z)$, is released into the river where their movement is governed by the current \vec{u} and diffusion at a rate D.
(a) Derive the continuity equation (conservation of mass) in 3-D and be sure to motivate each step.
(b) Determine an appropriate flux function q to complete your model. You do not need to specify boundary conditions.
(c) Express your model in terms of the material derivative $\frac{D \rho}{D t}$.
(3) Consider the model

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}-D \frac{\partial^{2} \rho}{\partial x^{2}}=\alpha \rho\left(1-\frac{\rho}{m}\right)-E \rho \\
& \rho(t, 0)=\rho(t, H)=0 \\
& \rho(0, x)=\rho_{0}(x) .
\end{aligned}
$$

This models the population $\rho(t, x)$ of fish between the shore, $x=0$, and a distance $x=H$ from the shoreline. Here D is a diffusivity constant, α is the maximum growth rate, m is a carrying density, and $E \rho$ is the harvest rate.

Use central differences in space and forward differences in time to construct a discrete numerical model expressed as a vector-valued system. What issues must be addressed if you replace the forward differencing by backward differencing in time? What would be an advantage to backward differencing?

