Fundamental Probability and Statistics

"There are known knowns. These are things we know that we know. There are
known unknowns. That is to say, there are things that we know we don't know.

But there are also unknown unknowns. There are things we don't know we don't
know," Donald Rumsfeld



Probability Theory

Reference: G.R. Grimmett and D.R. Stirzaker, Probability and Random
Processes, Oxford Science Publications, 1997

Probability Space: (2, F, P)
(2 — Sample Space — set of all possible outcomes of an experiment
F — o-field of subsets of (2 that contains all events of interest
P : F — |0,1]: probability or measure that satisfies

(i) P(0)=0

(ii)) P(R2) =1

(ili) A; € Fand A;NA; =0 implies P (U AZ-) =) P(A;)
1=1 )

Example: Toss possibly biased coin once

Q={H,T}
F={0,H,T, Q}
Take

P@)=0, P(H)=p, P(T)=1—p, P() =1 Note: Fair coin if p = 1/2



Probability Theory

Example: Two coins tossed possibly multiple times and outcome is ordered pair
Q= {(H7 H)v (Ta H)v (Ha T)a (T7 T)}
F = {@, (HaH)’ (T’H)a (H’T)a (T,T),Q,{(H,H), (Ta H)}a ) }
Let

A= {(H’H)v(TvH)}
B = {(H’H)v(H’T)}

Then
P(4)=, P(B)=;
1 3

Definition: Events A and B are independent if

P(AN B) = P(A)P(B)



Random Variables and Distributions

Definition: A random variable is a function X : 2 — R with the property that
{fwe | X(w) <z} eF foreach z € R.

Definition: The value of a random variable X at a point w € 2
= X(w)

IS a realization of X.

Definition: Associated with every random variable X is a cumulative distribution
function F : R — [0, 1] given by
Flz) = P{weQ|X(w) <Lz}
= PX)<«z

Example: Take 2 ={(H,H),(T,H),(H,T),(T,T)} and define X(w) as
number of heads

(0 if <0
X(H,H) =2 L
X(H,T)=X(T,H) =1 F)={ %
X(T,T) =0 .

L1 if z>2




Distributions and Densities

Definition: A random variable X is discrete if it takes values in a countable subset
{z1,z2,---}, only, of R.

Definition: X is continuous if its distribution function can be expressed as

:/w f(s)ds, z€R

for some integrable function f : R — [0, 00) where f is called the
probability density function (PDF) of X.

Definition: The probability mass function of a discrete random variable X is a function
f:R —[0,1] given by f(z) = P(X = z).

PDF Properties:
(i) ) >0

11/f

(iii) P(x1 < X < z9) = F(z2) — F(z1) = f;lz f(x)dx



Density Properties

Example:
)
(. <
X(x) = < v
\ 1 , z2>x
( 0 , =<z
F(x) = = f(z) = d(x — zo)
\ 1 , 2>z
Example:
1 2 2
f(x) = e~ @H)/207 | _ o<z <00
oV 2w
xr 1 —
F(z) = f(s)ds = = [1 + erf (x “)]
oo 2 oV 2
where
2 [T _ g2
erf(x) = — | e * ds
T Jo

Lo



Density Properties
Additional Properties:
(i) Mean, first moment or expected value

p=FEX)= /]Ra:f(x)da:
(i) n** moment

B(X™) = /R 2 f(z)dz

(iif) Second central moment (difference between X and p)
7t = var(X) = B(X =] = [ (@ wPf(@)o
Note:
02 — E(X2) . M2

(iv) The covariance of X and Y is
cov(X,Y) = E[(X - E(X))(Y —E(Y))
= EXY)—-EX)E(Y)

Note: X and Y are uncorrelated if cov(X,Y) =0



Multivariate Distributions

Note: Important for longitudinal data
X = (X17X2a e vX'n)
= X : ) > R™ Random Vector

Joint CDF: F : R™ — [0,1] by
F(zi,---,zn) = PlweQ|Xjw)<zi,j=1,---,n}
= P(X <«x)

Joint Density (if it exists): f : R™ — [0, 00)

F(x):/_Z/_Zf(Sl’ ’Sn)dsl...dsn

Example: Let X ~ N(u,V)

1 1 ~1(p _ )T
o) =~ exp |5 (@ = WV @ =)




Multivariate Distributions

Example: Let X ~ N(u, V)

1 1 ~1 T
flz) = 2] P —5 @ =V (z—p)

Note:
o E(X)=p so E(X;)=p,
o V = (v;;) is the covariance matrix since v;; = cov(X;, X;). This is often written

V=E(X—p"(X—p)

Note:
 var(X;) cov(Xi,X2) -+ cov(X1,Xp) T

cov(X1, X2) var(Xs) <o cov(Xa, Xp)
V =cov(X) =

| cov(Xy,X,) cov(Xg,X,) --- var(X,,)



Multivariate Distributions

Definition: The marginal distribution functions of X and Y are
Fx(z) = P(X <)

= / (/ f(u, y)dy> du
with a similar definition for Fy (y).

Definition: Marginal density function of X
fx(@) = [ fla)dy

Definition: X and Y are independent if and only if

F(z,y) = Fx(z)Fy(y)
or

f(z,y) = fx(z)fr(y)

Note: X and Y are independent = cov(X,Y) =0 < X andY are uncorrelated



Estimators and Estimates

Definition: An estimator is a function or procedure for deriving an estimate from
observed data. An estimator is a random variable whereas an estimate is a real
number.

Example: Suppose we want to estimate the variance var(Y) = o of a random
variable Y using a sample of n independent observations. Consider
two statistics.

n

1
§* =~ > (Y5 —p)?
j=1

T2: %Z(YJ—YVWhereY: %[Y1+Y2+—|—Yn]

E(S?) = H ZE (Y; — p)? %Z = 0 but p is often unknown

E(T?) = o so biased

1 n B
Unbiased estimator: 72 = D (Y —Y)?

n—14%
J=1




Other Estimators

Commonly Employed Estimators:
* Maximum likelihood
» Bayes estimators
* Particle filter (Sequential Monte Carlo (SMC))
» Markov chain Monte Carlo (MCMC)
« Kalman filter

* Wiener filter



Linear Regression

Consider
y=XB+¢
where
[y [ X1 - Xip | [ f1 | [ e1 |
y=1| i | . X=]| | B | e=
L Yn | Xn1 o Xip | | Bp | En
Observations Design Matrix Unknown Errors
Parameters

Example: y; = (6o + 51 X;)+¢€j, j=1,---,n




Linear Regression

Statistical Model:
Y =X0By+¢

Assumptions:
(i) E(e)=0
(ii) eiid (independent and identically distributed)
= var(e;) = o
El(e; — E(ei))(ej — E(g;))] = cov(ei,e;) =0 fori # j
(ii*) If e ~ N(0,0%) and hence Y; ~ N(X o, 08), maximum likelihood
estimator (MLE) provides expression for 3, and o2.

(iv*) Generalized least squares employed if nonconstant variance.

Goals:

(1) Contruct a ‘good’ estimator B for 3.

(2) Construct an estimator S2 for o3.



Least Squares Problem
Minimize
T=(y—XB8)"(y—X0B)

Note: General result for quadratic forms

Q=AT®A

= VsQ = 2(VgAT)®A
Thus

VT =2[V(y— XB)"]ly — XB

where

Valy — XB)" = -V ' X" = -X"

Least Squares Estimate: b= (XTX) 1 XxTy

Least Squares Estimator: B = (X7 X))~ !XTy

Note: B = arg mﬁin(Y — XB3)T(Y — Xp)



Estimator Mean:

E(B)

Parameter Estimator Properties

E[(XTX)'X"Y]
(XTX)'XTE(Y)
Bo

Here 3, denotes the ‘true’ parameters that generate Y

Estimator Covariance: Let A = (XTX)~1Xx7T

cov(B)

E[(B - B0)(B — fo)"]

E[(Bo + Ae — Bo)(Bo + Ae — Bo)*] since B
AE(eeT) AT

oo (XTX) ' xT . Xx(xXTx) T

oo (XTX)™!

AY
A(X,BO + E)
Bo + Ae



Variance Estimator Properties

Goal: Construct an estimator S? for o

Residual: R=Y — XB

Variance Estimator: S2% = R'R
n—p
Note:
R = Y-XX'X)"'XTy
= (I,—H)Y
where

H=XXx"x)"'x"

Properties of H:
HT = H (symmetric)
H? =H (idempotent)
(I — H)? = (I, — H)
(I, - HX=X-XX'TX)"'XTX=0



Variance Estimator Properties

Note:
R = (I,—H)Y
= (In—H)(Xfo+e¢)
= (I, — H)e
SO
R'R = [(In— H)e]" [(In — H)e]
= el'(I,— H)e
Thus
RTR — Z zgijeiej
i=1 j=1
SO

E(RTR) = ZZgijE(EiEj)

i=1 j=1

= Z Zgijcov(ei, ;) since E(g;) = E(e;) =0

i=1 j=1

= Zgiivar(ei) = odtr(I, — H)

=1



Variance Estimator Properties
Note:
tr(A+ B) =tr(B+ A)
tr(AB) = tr(BA)
Thus
tr(l, —H) = n—tr[(XTX)"'X"X]

p— n—p

Unbiased Estimator:
B RTR
= — )

52

Unbiased Estimate:




Parameter Estimator Properties
Properties of B: Assume ¢; are iid with E(e;) = 0 constant variance o
1. E(B) = fo
2. cov(B) =03 (X1 X)™?
3. Suppose in addition that £; ~ N(0,0§). Then B ~ N, (8o, 05(X1X)™1).

4. Suppose ¢; are iid with E(e;) = 0, constant variance o, and unknown
distribution. Then in the limit n — oo,

B ~ N, (Bo,03(XTX)™)

Proof: Involves Central Limit Theorem

Central Limit Theorem:

Let X, X5, - be a sequence of iid random variables with mean . and
variance o. Then

Sn —
n”gN(O,l)aanoo

no?
where

Sn:X1+X2++Xn



Example

Example: Consider the height-weight data from the 71975 World Almanac and Book
of Facts

Height | 58 | 59 60 |61 |62 |63 |64 (65 |66 (67 (68 |69 |70 (71 |72
(in)
Weight | 115 [ 117 | 120 | 123 [ 126 | 129 | 132 | 135 | 139 | 142 | 146 | 150 | 154 | 159 | 164
(Ibs)

Consider the model 70
y] :ﬁO+/81($]/12)+/82($.7/12)3+6.7 160} -

150+ o

140’ [

Weight (Ibs)

130+ °

120+ °

: 1%5 Gb 65 7J0 75
Height (in)




Here

4.83
4.92
5.00
2.08
5.17
9.25
9.33
0.42
9.50
0.08
5.67
5.7
0.83
2.92
6.00

I
e T e S e S e S e S G e T

112.91
118.85
125.00
131.35
137.92
144.70
151.70
158.93
166.38
174.05
181.96
190.11
198.50
207.12

216.00 |

Example

Least Square Estimate:

(XTX)o=XTy

- 15 81 2415 bo 2051
= | 81 442 13255 by | = | 11190
| 2415 13255 404171 | | b, | 337421 |
bo = 146.59 70
= by =—23.77 ol
by = 0.74 s
%140»
§130-
1200 o Data ||

— Model

11()55

Note: cond(X?X) = 8.4 x 10°

Note: eig(H) = eig(X(XTX) ' XT) = 0,1

60

65
Height (in)

70

75



Variance Estimate:

AT/\
~ rtr 1
52 =

Parameter Covariance Estimate:

———

cov(B) = §*(XTX)™!
Note: This yields variances and standard deviations for parameter estimates

bo = 146.59 £ 15.9
by = —23.77+ 4.4
by = 0.74 4+ 0.05

Goal: Can we additionally compute confidence intervals? Yes, but we need
a little more statistics.



Hypothesis:

One way to check the hypothesis of iid is to plot the residuals

Residual

0.6

0.4r

0.2

021
-0.4r

06+

-0.%

Example

0,

60

65
Height (in)

70

75



Random Variables Related to the Normal

Chi-Square Random Variables:

If X ~ N(0,1), then the random variable Y = X? is said to have a
x2-distribution with 1 dof. Furthermore, if Y;,7 = 1,--- , n are independent

x? random variables with 1 dof, then their sum
X(n)=>Y;
1=1

is a x? random variable with n dof.

T Random Variables:

If Z ~ N(0,1) and x?(n) is a chi-square random variable with n dof
that is independent from Z, then

Z
x%(n)/n

has a (Student’s) ¢-distribution with n dof.




Variance Estimator Properties

Assumption: Assume that ¢; ~ N(0,03) are iid (use asymptotic results if not normal).

Property 1: (n — p)S?/02 has a x2-distribution with n — p dof.
Property 2: If §; denotes the k" diagonal element of (X X)~1, then

T, — By, — Bok
SV/ok

has a t-distribution with n — p dof.

Verification of 1: Recall that
(n—p)$*/of = SRR

= (& Un—H)e)
= % <€, QAQT5> , @ orthogonal
0

— L (QTe, AQTe)
<)



Variance Estimator Properties

Note: The eigenvalues of H are either 0 or 1 and tr(/,, — H) = rank(l, — H) =n —p.
Thus

A =
0 0

In_p O ]

Note: Q7 orthogonal implies that g = Q%e ~ N(0,0¢) since e ~ N(0,0¢). Thus

(0,A0) _ &
73 2

1=1
is the sum of squares of n — p independent N (0,1) random variables.

Result: (n — p)S?%/02 is x%(n — p).



Variance Estimator Properties

Verification of 2: Recall that By — fox ~ N (0,088x) s0 =720 ~ N(0,1). Now

T, = By — Bor _ (Bk — Bok)/ o0V Ok _ A
S\/& S/O'o \/X2(n—p)/(n—p)

Result: T3, has a t-distribution with n — p dof.

Confidence Interval: The (1 — a) x 100% confidence interval for [y, is

(Bk: - tn—p,l—a/2S V 5k:a Bk + tn—p,l—a/2S V 5/9)
since

P [_tn—p,l—a/2 S Tk S tn—p,l—a/2] =1- a

By, — Bok <4

S\/(Tk = n—p,l—a/2] =1-«
= P | By — tn—p,l—a/2S\/ o < ﬂOk < By + tn—p,l—a/2S\/ 5k] =1-«

= P _tn—p,l—a/2 <




Example
Previous Example:
For a = .05, t,,_, 1_4/2 = 2.2. The 95% confidence intervals are thus
bo € [111.6,181.5]
b, € [—33.5,—14.1]
b, € [.63,.85]

Note: This is consistent with the results on Slide 23 with 20 = 94.45%.



Summary of Linear Theory
Statistical Model:
Y=X0Bo+e , Bp€RP
y=Xpo+¢ (Realization)

Assumptions: E(e;) =0 , ¢; iid with var(e;) = o
Least Squares Estimator and Estimate: Note that E(B) = (o

B=(XTX)"'XTy , b=(XTX) X7y

Variance Estimator and Estimate: R=Y - XB, =y — XB

SZZRTR ’ §2:
n—p n—p

PT7

Covariance Estimator and Estimate:

COV(B) zgg(XTX)_l y CEJ(E) :.§2(XTX)_1



Summary of Linear Theory
Statistical Properties: (if e ~ N(0,03) or in the limit n — o)

* B~ Ny (Bo,05(X X))

n—p
. -—S5% ~ x*(n — p)
0o

e The (1 —a) x 100% confidence interval for by is

A

(bk‘ - tn—p,l—a/2SEka Bk + tn—p,l—a/2SEk)

A

where SE; = \/cov(B)kk yk=1,---,p



Hypothesis Testing

Statistical Testing:

» An objective of statistics is to make inferences about unknown population
parameters and models based on information in sample data.

* Inferences may be estimates of parameters or tests of hypotheses regarding
their values.

Hypothesis Testing:

 Largely originated with Ronald Fisher, Jerzy Neyman, Karl Pearson and Egon
Pearson

 Fisher: Agricultural statistician: emphasized rigorous experiments and designs
 Neyman: Emphasized mathematical rigor
 Early Paper: R. Fisher, “"Mathematics of a Lady Tasting Tea,” 1956
-- Question: Could lady determine means of tea preparation based on taste?
-- Null Hypothesis: Lady had no such ability

-- Fisher asserted that no alternative hypothesis was required



Hypothesis Testing

Elements of Test:
e Let X be arandom variable with density f(z;0)
e Assume 6 can take values in two possible sets ©, or ©;

o Based on experiment, we want to decide if § € ©50or 6 € O,

e Null Hypothesis H|: statement that § € ©,

o Alternative Hypothesis H;: statement that § € ©,

Strategy:
e Take random sample of size n of X
e Decide infavor of Hy if x = (z1,--- ,x,) € So C R*(X)

e Decide in favorof H, ifz € S; = S,

e The partition (Sp, S1) of the sample space R"(X) is termed a test of the
hypothesis H, against H,



Hypothesis Testing

Elements of Test;

1. Null hypothesis H

2. Alternative hypothesis H;

3. Test statistics

4. Rejection or critical region S,

Definitions:
» Test Statistic: Function of sample measurement upon which decision is made.

* Rejection Region: Value of test statistic for which null hypothesis is rejected.

Definitions:

o A Type | error is made if Hy is rejected when Hj, is true. The probability
of a Type | error is denoted «.

o A Type Il error is made if Hy is accepted when H; is true. The probability
of a Type Il error is denoted £.



Hypothesis Testing

Example: Donovan is running for Student body president and thinks he will
gain more than 50% of the votes and hence win. His committee is very
pragmatic and wants to test the hypothesis that he will receive less than 50%
of the vote. Here we take

Hy:p=20.5
Hi:p<0.5
Sample Size: n = 15 in poll
Test Statistic X: Number of sampled voters favoring Donovan
Case i: Calculate o if S1 = {z < 2}
a = P(Type I error)
= P(rejecting Hy when Hj is true)
= P(value of test statistic is in S; when Hj is true)
= P(X <2 whenp=0.5)
Note: X is a binomial random variable with n = 15 and p = 0.5. Thus

o= 22: ( 1;’ ) (0.5)* = 0.004

=0



Hypothesis Testing

Example: Is this test equally protect us from erroneously concluding that
Donovan is the winner when, in fact, he will lose? Suppose that he will really
win 30% of the vote so that p = 0.3. What is the probability of a Type Il error?

Here

15 P(Type II error)

= P(accepting Hy when H; is true)

= P(value of test statistic is not in S; when H; is true)

Consider value of 3 when p = 0.3 (a value in H,):

B = P(X >2whenp=0.3)
15
_ Z( 1o )(0.3)@"(0.7)1“
T
=3
= 0.873

Note: The test using this rejection region protects Donovan from Type | errors but
not Type Il errors.



Hypothesis Testing

One Solution: Use a larger critical or rejection region.
e.g., Consider S; = {z < 5}. In this case,
a = 0.151 when p=0.5
B =0.278 when p = 0.3

Conclusion: This provides a better balance between Type | and Type Il errors.

Question: How can we reduce both errors?



