## MA 573 - PROJECT 4

## Due: Monday, October 16

## Problem 1.

In class, we showed that the solution to the diffusion model

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}=D \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \rho}{\partial r}\right)  \tag{1}\\
& \rho(0, r)=M \delta_{0}(r)
\end{align*}
$$

is

$$
\begin{equation*}
\rho(t, r)=\frac{M}{\sqrt{(4 \pi D t)^{3}}} e^{-r^{2} / 4 D t} . \tag{2}
\end{equation*}
$$

We also collected the data in Table 1 where times are reported in seconds and distances in both inches and meters. You should use the metric measurements for your computations.

For this project, you can assume that $\rho(t, r)=1$ when the durian smell was first noted. For each $(t, r)$ pair, (2) then has the form

$$
1-M \cdot f(D)=0,
$$

where $f(D)$ is the Gaussian function evaluated for specific values of $t$ and $r$.
(i) We will initially solve for $D$ and take $M=1000$. The easiest way to do this is to plot the equation for a range of $D$-values and zoom in on the region where it crosses the axis. This zooming process can be done with arbitrary accuracy so you can get a good estimate for $D$. Note that there will likely be two roots so you can choose the first. Report the five values that you recover for $D$ and discuss assumptions and sources of error.
(ii) Try varying the value of $M$ and discuss its effect on your solution. You do not need to do this here, but you would typically estimate it in addition to $D$.
(iii) The diffusion constant for certain gasses is reported to be $2 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. How do your results compare to this value?

| $t(\mathrm{~s})$ | $r$ (inches) | $r(\mathrm{~m})$ |
| :---: | :---: | :---: |
| 2.1 | 62 |  |
| 27.1 | 88 |  |
| 41.4 | 115 |  |
| 96.6 | 153 |  |
| 112 | 170 |  |

Table 1: Times and distances noted for the durian scent.

