Population Models

1 keep telling people | don’t see explosive population growth. | do see a heck of
a lot of building.” Hart Hodges



Motivating Example

Motivation: Use of the mosquitofish Gambusia Affinis is a popular means of
controlling mosquitos. This methods of control is a multi-million dollar industry
world wide. Modeling is required to answer the following questions:

* How many fish should be stocked in each paddy?
* How should the fish be initially stocked? All at once or periodically?

* How should they be stocked to augment the control already provided by
endemic fish without highly damaging the local fish populations?




Single Species Model

Notation:

N(t): Number of individuals at time ¢
B: Constant of proportionality for birth rate
w: Constant of proportionality for death rate

Model 1:

ﬂ = Dbirths - deaths
dt

= PN(t) — pN()
aN (t)

= N(t) = Noeat

(i) > 0 Exponential growth
(i) « < 0 Exponential decay

Limitations: Does not incorporate overcrowding, depletion of resources, predators,
size effects, etc.



Single Species Model

Model 2: (Logistic model) Death rate is population dependent

S = BN — [N OIN )

Behavior: Let % = ( so that

N(t) =0o0r N(t) = b

7

Solution: N(t) = b

TI®

p+ (8 — plNo) jze =Pt
= lim N(t) = b

t—o0 /.L

Limitations: Does not incorporate predators or size effects.



Predator-Prey Model

Notation:

N(t): Number of predators at time ¢
E(t) Number of prey at time ¢

Model: Lotka (1925), Volterra (1926)

o = BE(t) — N (OB

o = BNE@IN® — v N ()
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Predator-Prey Model

dN _ N(—pn +BNE)
dE  E(Bg— peN)

Be —peN / —pun + ONE
=>/ N dN = % dE

= BeInN — ugN = —unyIn E + BNE +Ink;

Note:
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Solution Behavior:

population

Limitations: Does not incorporate size effects, gender differences, outside
influences (e.qg., effects of trapping).



Predator-Prey Model

Example:
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Predator-Prey Model

Example: Lynx-Hare data collected by the Hudson Bay Company

Question: Why does the hare population
lag behind the lynx population? See “Do
Hares Eat Lynx”, The American Naturalist,
107(957), pp. 727-730, 1973.
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Size-Structured Models

Note: The logistic model and Lotka-Volterra predator-prey models are aggregate
in the sense that they consider total populations in which individuals are assumed
to have identical characteristics. Introducing individual characteristics is much
more difficulty. Sinko and Streifer balanced the two approaches by assuming

that individuals share common traits.

Notation: u(¢, z) Number of individuals of size z at time ¢
N (t) Number of total individuals

N(t) = Zu(t, x;) , M discrete sizes

1=1

b
Nop(t) = / u(t,€)d¢ , Number of individuals between sizes
. a and b at time ¢



Sinko-Streifer Theory

Assumptions:

(1) Growth rate of same sized individuals is the same and is denoted by g

dx

= — o(t
— g(t,x)

(2) Same sized individuals have same likelihood of death

dN
=Y UN(t
il (1)

(3) There is a smallest size zy and largest size z;

(4) The birth rate is proportional to the population size
RO) = [kt €ult, )de

(5) Population is sufficiently large to permit continuum model



Sinko-Streifer Model
Case 1: No deaths

Flux Balance: Note that u(¢, z) is a “density” and the rate is q(¢t,x) = g(t, z)u(t, x)

ou oy _
ot  oxr
Ou  0(gu)

:>8t+ ox =0

0

First Principles Derivation: Let z(t;to, n) denote the solution to

z(t) = g(t, )
z(to) =

Note: Individuals cannot jump between sizes

=4 Na,b(tO) - Nx(t;to,a),x(t;tob) (t)



Sinko-Streifer Model

Thus

a:(t to b)
/ (to, €)d€ = /
(t to (.L)

d w(t;to,b) ( )
=0=— / u(t, &)de
dt (t'to a)

x(t;to,b) ou
= / —d€ + u(t, z(t;to, b)) x(t; to, b) — u(t, z(t; to, a))z(t; to, a)
x(t;to,a) ot

x(t;to,b) U
= / 8—d§ + u(t, z(t; o, b)) g(t, (t; to, b)) — u(t, z(t; to, a))g(t, (t; to, a))

x(t;to,a) ot
w(t to b) 8“’ CE(t t() b)
= —d, / ut t d
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Sinko-Streifer Model

Case 2: Include deaths using flux balance

Ou  O(gu)
3t+ oxr

Births: Assume they act as flux in (Boundary Condition) at size . Recall that the
rate is ¢ = gu so that

RE) = o(t,0)ults2)|y = [ K Eult e
Initial Condition: (0, z) = ®(z)

Model:

ou O(gu)
8t+ or b

g(t,2Yult,2)|,_, = / B(t, €)ult, €)d

Zo

u(0,z) = ®(x)




Sinko-Streifer Model

Solution: Determined by characteristics

Simplified Example: Take g(¢t,x) = a and u(t,x) =0

Ou + a@ =0
ot ox
u(0,z) = ®(x)

Solution: Recall from the notes on analytic solutions for the wave equation
u(t,z) = ®(z — at)

Total Derivative:

d_u = Ut + U d_:r;
a7t % dt
_ : du
Characteristic Equation: Note: — =0
dt
. .
dt = z(t) = at + 7o = u(t, z) is constant

z(0) = x along characteristics



Sinko-Streifer Model

Model:
ou  O(gu)
ot * or —HE
g(t,zo)u(t,zo) = R(t)
u(0,z) = ®(x)

Characteristic Curve: 2—? = g. Thus

d_u ou dx N ou
dt Ox dt ot
ou ou

0

— —U(t, x)a_wg(tv 113) o ,U,(t, .Z’)’U,(t, a:)

Along characteristic curve, Sinko-Streifer solution satisfies

du

At = _(gm + U)u




Sinko-Streifer Model

Notation: Let (¢, X(¢;¢,4)) denote characteristic curve through (¢, 2) where

—X(t;1,2) = g(t, X(t;1,2))

Note: ¢ > 0= %X > 0so X has aninverse T'(z;t,%) : = — t. Let

G(x) = T(:c; 0, zo) denote curve through (0, zy).



Sinko-Streifer Model
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u(t, z) = voe~ Jo9=(m@)tu(ra)ldr Population

= u(0,x) = vg = ®(x)

= u(t,z) = ®(X(0;t,x))e” [Eg(m, X (15t,2))+u(r, X (T3t,2))]dT

Case 2: t > G(x)

u(t 113) = vp€ f%(wo;t,w)[gm("',m)-i-u('r,a:)]dq-
Y

— [£0 [z (r,20) +u(rao)ldr _ _B(to)
g(th 330)

R(T'(203t,2)) [t 00 [9(r.X (736,0))+1(7, X (73t,2)))dr
9(T'(zo;t, z))

= u(to, To) = voe

= u(t,z) =




Sinko-Streifer Model

Example: Constant growth and mortality: g = go, 1t = 1o

Model:
ou ou

En +908_a: = —HoU
gou(t,xg) = R(t)

u(0,z) = ®(x)

Lo i

Characteristic Curve:

dz Curve through (z, zo):

at ~ G(x) =T(x;0,29) = l(w — Zg)

z(t) =2 90

Initial Condition Driven Solution:

u(t,z) = P(x— got)e” Jo podr
= T(z;t,2) =t + —(z — %) — Bz — got)e Mot



Sinko-Streifer Model
Birth Driven Solution:

1 —
k (t + 5o (%0 a:)) o ftt+%(zo—w) HodT

u(t,x) = 7
R(t 1 (g — )
go

Example: Consider

( 3/4[(at —1) — (at —1)3/3+2/3], te]0,2/q],

1, te (2/a,2/a+p),
R(t)=<{ -3/4[(as—1)— (as—1)3/3-2/3], s=t—2/a—p,
te2/a+B,4/a+ ]

0, otherwise

\

witha=15and =1/«



Sinko-Streifer Model

Example: Recruitment function
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Sinko-Streifer Model

Example: Consider ®(z) = 0,90 = 0.185, uo = 0.9
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