Statistical Techniques for Parameter Estimation

It will be to little purpose to tell my Reader, of how great Antiquity the playing of
dice is.” John Arbuthnot, Preface to Of the Laws of Chance, 1692.



Statistical Model

Observation Process: There are errors and noise in the model so consider
y;i = y(tj;q) + €5
where y, denotes data collected at times ¢;,5 = 1,--- ,n and y(t;; q) are
observed model values specified by
dz

o= Az(t;q) + F(t)

y(t;q) = Cz(t;9)

Strategy: Assume ¢; are random variables
and that y; is a realization of a
random variable Y

estimates ¢ and 62 of the

Y; =y(tj; q0) + € (Discrete)
or

Y (t) = y(t;q0) + €(t) (Continuous)

Strategy: Treat Q as a random variable for which we seek to find estimates ¢ and §*
of the true parameter g and the variance of ¢;.



Nonlinear Ordinary Least Squares (OLS) Results

Motivation: See the linear theory in “Aspects of Probability and Statistics.”
These results are analogous to those summarized on Slides 30-31.

Reference: See the paper “An inverse problem statistical methodology
summary” by H.T. Banks, M. Davidian, J.R. Samuels, Jr., and K.L. Sutton in
the References

Assumptions: E(g;) =0 , €, iid with var(e;) = 0§

Least Squares Estimator and Estimate: Note that E(Q) = qo

Q= argnéirglz Y; — y(ts; q))
q= gmmz lv; —y(tjq

Variance Estimator and Estimate:

y(t; Q)

n

52 = Z[yj—y(tj;d)]z

n—p

Jj=1



Nonlinear Ordinary Least Squares (OLS) Results

Covariance Estimator and Estimate:
—1
COV(Q) = 0(2) [XT(QO)X(QO)]

ov(Q) = 52 X" (@x(d)]

Here the sensitivity matrix is defined by

oy O0y(tse) - L0z(tia) | y(ti a4 he) —y(ts;9)

where hy, is a p—vector with a nonzero entry only in the £t* component

Spring Example: Page 9



Nonlinear Ordinary Least Squares (OLS) Results
Statistical Properties: (if e ~ N(0,03) or in the limit n — o)

¢ Q~ Ny(q0,08(xT(q0)x(q0))7")

e The (1 — a) x 100% confidence interval for g is

A

(Qk — tn—p,l—a/ZSEk(Cj)a (jk: + tn—p,l—a/2SEk(Q))

A

where SEk(4) = \/cov(Q)kk , k=1,---,p



Generalized Least Squares (GLS) Motivation
Model Fit to Beam Data:
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Generalized Least Squares (GLS) Motivation

Residual Plots:
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Observation: Residuals (and hence errors) are not iid.

Strategy: Consider a statistical model where the errors are model-dependent

Y; = y(tj;90)(1 + &)



Generalized Least Squares (GLS)

Note: Under the assumption that E(e;) = 0 and var(e;) = o3, it follows that

E(Y;) = y(tj;90)
var(Y;) = o3y°(t; qo)

ldea: Consider a weighted least squares estimator
QcLs arggréngl;wg[ i —y(ts;9)]
where

w; =y *(t;;QaLs)
Algorithm: See Section 3.2.7 of the book

Note: The GLS does NOT changes the properties of the underlying model



Nonlinear Ordinary Least Squares (OLS) Example

Example: Consider the unforced spring model

Note: We can compute the sensitivity matrix explicitly. Since

—c++/c2 — 4km
2m

_ 2 — 2
A cos Vdkm —c t | + Bsin Vakm — ¢ t
2m 2m

for the underdamped case ¢ — 4km < 0.

r1,2 =

solutions have the form

y(t) _ e(—c/2m)t




Nonlinear Ordinary Least Squares (OLS) Example

Reformulation: Take

d2
W‘FC +Ky=0

= y(t) = e~ Ct/2 [Acos (\/K— C2/4t) + Bsin (\/K— C’2/4t)]

dy _ —t —cie Acos (/K — C?/4t) + Bsin (v/K — C?/4t)]

e Ct/2 _4\/55%02/4 sin (\/K — C2/4t) — 4\/155%02/4 COS (\/K — 02/475)]

5—?{, = ¢ Ct/2 [2\/1(_?7502/4 sin (\/K — C2/4t) + 2\/KB—tC2/4 Ccos (\/K — 02/41%)]



Nonlinear Ordinary Least Squares (OLS) Example

Sensitivity Matrix:

x(q) =




