Introduction and Motivation

“"Essentially all models are wrong but some are useful,”
George E.P. Box, Industrial Statistician




Terfenol-D Transducer

Schematic of Terfenol-D o v Sl

transducer in the SolidDrive ] -
Terfenol-D rod can be modeled cqmange LT ELET T FO
as a rod with elastic and CCTCCUOTCRUT TR
damped boundary conditions. | |

For uniform input fields, spring et
equation with nonlinear inputs
provides “good” approximation
of rod dynamics.
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Atomic Force Microscope

Current Research: See Murti Salapaka’s work at
http://nanodynamics.ece.umn.edu/research/highlights/highlightsAFM.htm
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Modeling Process
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Goal: Model Terfenol and AFM stage dynamics
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Strategy:

» Use physical understanding to make appropriate assumptions; e.g. uniform
longitudinal forces permit use of lumped or spring model.

* Apply physical principles to develop model; e.g., Newtonian (force and moment
balancing), Lagrangian (variational principles based on kinetic and potential
energy), or Hamiltonian (total energy principles).

» Obtain analytic or numerical solution to model.
« Compare to experimental data (validate and predict).

» Update model to accommodate missing physics or inappropriate assumptions.



Derivation of Spring Model

Newtonian Principles: Balance forces using Newton’s second law

o External Force: f(t) f_(t)>
e Spring Force: F,(t) = —ky(t) k Lyt

o Damping Force: Fy(t) = —c% W o
C

Newton’s Second Law: m% = Fs(t) + F4(t) + f(¢)

2
Spring Model: md—y + cd_y +ky=f

dt? dt
" - dy
Initial Conditions: y(0) = yo , E(O) = Vg

Note: Details regarding classical mechanics can be found in Appendix C
of the supplemental material.



Derivation of Spring Model

Lagrangian Principles: Take c= f =0

e Kinetic Energy: K(y) = %m@'ﬁ

Yy
o Potential Energy: U(y) = / krdx
0

— y(t)

1
= —ky?
oY

e Lagrangian: L(y,y,t) = K(y) — U(y)

1, 1
= —ma? — —ky?
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o Euler-Lagrange Equations: %gﬁ — 35 =0

= my + ky =0

Note: Details regarding calculus of variation and Lagrangian and Hamiltonian

principles can be found in Appendix C of the supplemental material.



Analytic Solution of the Spring Model
Second-Order Model:

d’y  dy
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Homogeneous Model: f(t) =0
e Solve characteristic equation to obtain homogeneous solution y (%)
e Eigenvalue solutions of first-order system

Nonhomogeneous Model:
e Obtain particular solution y,(t) and general solution y(t) = yx(t) + yp(t)
— Method of undetermined coefficients: e.g., f(t) = cos(wt)

— Variation of parameters: e.g., f(¢) = Int

e Laplace transform: e.g., f(t) =d(t — to)



Analytic Solution of the Spring Model

First-Order System: Take z; = y, 22 = 9

e o O | B P
= 5(t) = Az2(t) + F(¢)

Initial Condition: 2(0) = 2z

Analytic Solution:

t
2(t) = ez +/ eAt=%) F(s)ds
0

Importance:
« Analytic solution techniques
* Numerical approximation

» Control design



Analytic Solution of the Spring Model

Example: Takec= f =0

yt)=e" = mr’+ k=0

k

— y(t)

NN

= r = tiy/k/m

= y(t) = Acos(wot) + Bsin(wot) , wo = \/ k/m
e Eigenvalues and eigenvectors of A
+1

e Solution

z(t):A[ cos wot ]+B[ sin wot ]

—wp Sinwgt Wp COS wot



Numerical Solution of the Spring Model

Consider First-Order System:

(2] [ ] (2] [

= 5(t) = Az2(t) + F(¢)

2(0) = 2o

Note: See notes for initial value problems (IVP)



