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Example 1: Nuclear Pressurized Water Reactors (PWR)

Models:
• Involve neutron transport, thermal-hydraulics, chemistry, fuels

• Inherently multi-scale, multi-physics – Must be incorporated in surrogate models

Objective: Develop Virtual Environment for Reactor Applications (VERA)



Motivation for Active Subspace Construction
3-D Neutron Transport Equations: 

Challenges:
• Very large number of inputs; e.g., 100,000; 
Active subspace construction critical.

• One then constructs surrogate models on the 
active subspace.

• ORNL Code SCALE: can take minutes to 
hours to run.

• SCALE TRITON has adjoint capabilities via 
TSUNAMI-2D and NEWT.
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Motivation for Inference on Active Subspaces
Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid 

Note: 
• Codes can have 15-30 closure relations and up to 75 parameters.

• Codes and closure relations often ”borrowed” from other physical phenomena; 
e.g., single phase fluids, airflow over a car (CFD code STAR-CCM+)

• Calibration is necessary and closure relations can conflict. 

• Codes do not have adjoint capabilities.

Notes:
• Similar relations for gas 

and bubbly phases

• Surrogate models must 
conserve mass, energy 
and momentum; e.g., 
subchannel codes
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Example 2. Multiscale Model Development
Example: PZT-Based Macro-Fiber Composites

Homogenized Energy Model (HEM)
Continuum Energy Relations
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Quantum-Informed Continuum Models

Lead	Titanate	Zirconate	(PZT)

DFT	Electronic	Structure	Simulation	

Landau	energy

 (P) = ↵1P2 + ↵11P4 + ↵111P6

UQ and SA Issues:
• Is 6th order term required to accurately 
characterize material behavior?

• Note: Determines molecular structure

Objectives:
• Employ density function theory (DFT) to 

construct/calibrate continuum energy relations.

– e.g., Landau energy
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Quantum-Informed Continuum Models

DFT	Electronic	Structure	Simulation	

Broad Objective:
• Use UQ/SA to help bridge scales 
from quantum to system

Lead	Titanate	Zirconate	(PZT)

Landau	energy

 (P) = ↵1P2 + ↵11P4 + ↵111P6

UQ and SA Issues:
• Is 6th order term required to accurately 
characterize material behavior?

• Note: Determines molecular structure

Objectives:
• Employ density function theory (DFT) to 

construct/calibrate continuum energy relations.

– e.g., Landau energy



Global Sensitivity Analysis: Analysis of Variance
Sobol’ Representation: Y = f (q)

f (q) = f0 +
pX

i=1

fi(qi) +
X

i6i<j6p

fij(qi , qj) + · · ·+ f12···p(q1, ... , qp)

= f0 +
pX

i=1

X

|u|=i

fu(qu)

where 

Typical Assumption:  q1, q2, ... , qp independent. Then
Z

�
fu(qu)fv (qv )⇢(q)dq = 0 for u 6= v

) var[f (q)] =
pX

i=1

X

|u|=i

var[fu(qu)]

Su =
var[fu(qu)]

var[f (q)]
, Tu =

X

v✓u

Sv

Sobol’ Indices:  

Note:
Magnitude of Si , Ti quantify

contributions of qi to var[f (q)]

f0 =

Z

�
f (q)⇢(q)dq = E[f (q)]

fi(qi) = E[f (q)|qi ]- f0

fij(qi , qj) = E[f (q)|qi , qj ]- fi(qi)- fj(qj)- f0



Global Sensitivity Analysis
Example: Quantum-informed continuum model

Question: Do we use 4th or 6th-order Landau energy?

Parameters:
q = [↵1,↵11,↵111]

Global Sensitivity Analysis:

Conclusion:
↵

111

insignificant and can be fixed

 (P, q) = ↵1P2 + ↵11P4 + ↵111P6

↵1 ↵11 ↵111

Sk 0.62 0.39 0.01
Tk 0.66 0.38 0.06
µ⇤

k 0.17 0.07 0.03

Landau	energy

DFT	Electronic	Structure	Simulation	



Global Sensitivity Analysis
Example: Quantum-informed continuum model

Question: Do we use 4th or 6th-order Landau energy?

Parameters:
q = [↵1,↵11,↵111]

Global Sensitivity Analysis:

Conclusion:
↵

111

insignificant and can be fixed

 (P, q) = ↵1P2 + ↵11P4 + ↵111P6

Problem: We obtain different distributions 
when we perform Bayesian inference with 
fixed non-influential parameters
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Global Sensitivity Analysis
Example: Quantum-informed continuum model

Question: Do we use 4th or 6th-order Landau energy?

Parameters:
q = [↵1,↵11,↵111]

Global Sensitivity Analysis:

Problem:
• Parameters correlated

• Cannot fix ↵111

↵11

↵1

Note: Must accommodate correlation

 (P, q) = ↵1P2 + ↵11P4 + ↵111P6

↵
11↵1 ↵11 ↵111

Sk 0.62 0.39 0.01
Tk 0.66 0.38 0.06
µ⇤

k 0.17 0.07 0.03



Global Sensitivity Analysis: Analysis of Variance
Sobol’ Representation:

One Solution: Take variance to obtain 

f (q) = f0 +
pX

i=1

X

|u|=i

fu(qu)

Sobol’ Indices:

Su =
cov[fu(qu), f (q)]

var[f (q)]

Pros:
• Provides variance decomposition 

that is analogous to independent 
case

Cons:
• Indices can be negative and difficult 

to interpret

• Often difficult to determine underlying 
distribution

• Monte Carlo approximation often 
prohibitively expensive.

var[f (q)] =
pX

i=1

X

|u|=i

cov[fu(qu), f (q)]



Global Sensitivity Analysis: Analysis of Variance
Sobol’ Representation:

One Solution: Take variance to obtain 

f (q) = f0 +
pX

i=1

X

|u|=i

fu(qu)

Sobol’ Indices:

Su =
cov[fu(qu), f (q)]

var[f (q)]

Pros:
• Provides variance decomposition 

that is analogous to independent 
case

Cons:
• Indices can be negative and difficult 

to interpret

• Often difficult to determine underlying 
distribution

• Monte Carlo approximation often 
prohibitively expensive.Alternative: Construct active subspaces

• Can accommodate parameter correlation

• Often effective in high-dimensional space; e.g., p = 7700 for neutronics example

var[f (q)] =
pX

i=1

X

|u|=i

cov[fu(qu), f (q)]

Additional Goal: Use Bayesian analysis on active subspace to construct posterior 
densities for physical parameters.



Example: 
• Varies most in [0.7, 0.3] direction

• No variation in orthogonal direction

Active Subspaces

Note: 
• Functions may vary significantly in only a few directions

• “Active” directions may be linear combination of inputs

y = exp(0.7q
1

+ 0.3q
2

)

!

q 2
q1
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Example: 
• Varies most in [0.7, 0.3] direction

• No variation in orthogonal direction

Active Subspaces

Note: 
• Functions may vary significantly in only a few directions

• “Active” directions may be linear combination of inputs

y = exp(0.7q
1

+ 0.3q
2

)

!

q 2
q1

A Bit of History: 
• Often attributed to Russi (2010).
• Concept same as identifiable subspaces 
from systems and control; e.g., Reid (1977).

• For linearly parameterized problems, active subspace given by SVD or QR; 
Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912).  
See 1993 SIAM Review paper by Stewart.



Gradient-Based Active Subspace Construction
Active Subspace: Consider

and

Construct outer product

Partition eigenvalues:

Rotated Coordinates:

Active Variables Active Subspace: Range of eigenvectors in

f = f (q) , q 2 Q ✓ Rp

rqf (q) =

@f
@q1

, · · · ,
@f
@qp

�T

C =

Z
(rqf )(rqf )T⇢dq

C = W⇤W T

⇤ =


⇤1

⇤2

�
, W = [W1 W2]

y = W T
1 q 2 Rn and z = W T

2 q 2 Rp-n

W1

• E.g., see [Constantine, SIAM, 2015; 
Stoyanov & Webster, IJUQ, 2015]

⇢(q): Distribution of input parameters q



Gradient-Based Active Subspace Construction
Active Subspace: Consider

and

Construct outer product

Partition eigenvalues:

Rotated Coordinates:

Active Variables Active Subspace: Range of eigenvectors in

f = f (q) , q 2 Q ✓ Rp

rqf (q) =

@f
@q1

, · · · ,
@f
@qp

�T

C =

Z
(rqf )(rqf )T⇢dq

C = W⇤W T

⇤ =


⇤1

⇤2

�
, W = [W1 W2]

y = W T
1 q 2 Rn and z = W T

2 q 2 Rp-n

W1

• E.g., see [Constantine, SIAM, 2015; 
Stoyanov & Webster, IJUQ, 2015]

Question: How sensitive are 
results to distribution, which 
is typically not known?

⇢(q): Distribution of input parameters q



Gradient-Based Active Subspace Construction
Active Subspace: Construction based on random sampling 

3. Approximate outer product

One Goal: Develop efficient algorithm for codes that do not have adjoint capabilities 

Strategy: Algorithm based on initialized adaptive Morris indices 

Note: Finite-difference approximations tempting but not effective for high-D  

1. Draw M independent samples {qj } from ⇢

2. Evaluate rqfj = rqf (qj)

C ⇡ eC =
1
M

MX

j=1

(rqfj)(rqfj)T

Note:

eC = GGT
where G = 1p

M
[rqf

1

, ... ,rqfM ]

4. Take SVD of G = W
p
⇤V T

• Active subspace of dimension n is first n columns of W



Morris Screening: Random Sampling of Approximated Derivatives
Example: Consider uniformly distributed parameters on

Elementary Effect:

Global Sensitivity Measures: r samples

µ⇤
i =

1
r

rX

j=1

|d j
i (q)|

�2
i =

1
r - 1

rX

j=1
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d j

i (q)- µi

⌘2
, µi =

1
r

rX

j=1

d j
i (q)

di =
f (qj +�ei)- f (qj)

�

Adaptive Algorithm:
• Use SVD to adapt stepsizes 
and directions to reflect active 
subspace.

• Reduce dimension of 
differencing as active subspace 
is discovered.
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Note: Gets us to moderate-D but initialization required for high-D



Initialization Algorithm
1. Inputs: ` iterations, h function evaluations per iteration

2. Sample w1

from surface of unit sphere where approximately linear

For j = 1, ... , `

3. Sample {ṽ j
1

, ... , ṽ j
h} from surface of sphere

4. Use Lagrange multiplier to determine

uj
max

= a+
0

wj +
hX

i=1

a+
i v j

i

that maximizes g(u) = f (q0 + R-1u).

, v1
i = ṽ1

i

Transform
Ellipsoid

Sphere

q0

f (q0 + R-1u)

h = 3

Note: For h=1, maximizing 
great circle through             

Example: Let

g(u) = ‘QUIETness’ of 
seatmate on flight

w1, v1

w1 = Atlanta,
v1 = London, and

(z - q0)T S(z - q0) = 1
S = RT R



Initialization Algorithm
1. Inputs: ` iterations, h function evaluations per iteration

2. Sample w1

from surface of unit sphere where approximately linear

For j = 1, ... , `

3. Sample {ṽ j
1

, ... , ṽ j
h} from surface of sphere

4. Use Lagrange multiplier to determine

uj
max

= a+
0

wj +
hX

i=1

a+
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i

that maximizes g(u) = f (q0 + R-1u).
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i = ṽ1
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Initialization Algorithm
1. Inputs: ` iterations, h function evaluations per iteration

2. Sample w1

from surface of unit sphere where approximately linear

For j = 1, ... , `

3. Sample {ṽ j
1

, ... , ṽ j
h} from surface of sphere

4. Use Lagrange multiplier to determine

uj
max

= a+
0

wj +
hX

i=1

a+
i v j

i

that maximizes g(u) = f (q0 + R-1u).

Set wj+1 = uj
max

.

5. Take C = [wj
, v j

1

, ... , v j
h] and set Puj

max

= uj
max

(uj
max

)T

7. Take v j
i =

(Im - PCj?)ṽ
j
i

k(Im - PCj?)ṽ
j
i k

, i = 1, ... , h and repeat

6. Let Cj? =
h
span

⇣
C(j-1)?, (Im - Puj

max

C
⌘i
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j?Cj?)-1CT

j?
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i = ṽ1

i
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Example: Initialization Algorithm to Approximate Gradient

Example: Family of elliptic PDE’s

with the random field representations 

Quantity of interest: e.g., strain along edge at n levels 

Problem Dimensions:
• Parameter dimension: p = 100

• Active subspace dimension: n = 1
• Finite element approximation

�2

-rs · (a(q, s, `)rsu(s, a(q, s, `)) = 1 , s = [0, 1]2 , ` = 1, · · · , n

a(q, s, `) = amin + ea(s,`)+
Pp

i=1 q`
k�i�i(s)

f
�
q1, ... , qn� ⇡

nX

`=1

1
|�2|

Z

�2

u(q, s, `)ds



h = 1 h = 2

h = 3 h = 4

Results: Cosine of angle between ’analytic’ and computed gradient

Example: Initialization Algorithm to Approximate Gradient

Note: Convergence 
within         iterationsh · `

Recall: p=100



SCALE6.1: High-Dimensional Example

!
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Figure 5: (a) Response surface errors for each method using a 5th-order multivariate
polynomial regression fit.

4.3 Example 3: 7700 input example SCALE6.1

Our final example has an input space of R7700, rendering our gradient-free algorithms
computationally infeasible without the use of the initialization algorithm of Section 3.
The problem construction is identical to that of Example 4.2, where we perturb the cross-
sections for the materials and reactions specified in Table 3, and fix all others to their
reference values provided by the SCALE6.1 cross-section libraries.

Due to the size of the input space, we use only the initialized adaptive Morris al-
gorithm, comparing our results to the gradient-based results obtained from the SAMS
module. The initialization algorithm allows us to begin Algorithm 2 with a subset of 147
important directions rather than approximating directional derivatives in all 7700 original
input directions. The adaptive Morris algorithm is quickly able to improve upon the di-
rections contributed by the initialization algorithm and reduce the number of important

Materials Reactions
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U 10
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P ⌃
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50
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n Ñ t

1

1

H 23

11

Na 120

50

Sn ⌫̄ n Ñ 3He

16

8

O 27

13

Al
40

Zr � n Ñ ↵

6

C
14

Si
19

K n Ñ n

1
n Ñ 2n

Table 3: Materials and reactions for the 7700-input example.

20

Setup: Cross-section computations SCALE6.1
• Input Dimension: 7700

• Output        : Governs reactionskeff

Really Annoying Reality for Allie and Kayla: Cross-section libraries are binary 
and require conversion to floating point for perturbations. 



SCALE6.1: High-Dimensional Example

Setup:
• Input Dimension: 7700

SCALE Evaluations:
• Gradient-Based: 1000

• Initialized Adaptive Morris: 18,392 
• Projected Finite-Difference: 7,701,000
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Active Subspace Dimensions: 

(a) (b) (c)

Figure 8: (a) First 300 eigenvalues for the 7700-input example. (b) Response surface RMSE
values for the first 450 dimensions. (c) First 350 error upper bounds given by Algorithm 3
for the 7700-input example.

methods are plotted in Figure 8(a).
In Table 4, we report the dimensions selected by the criteria of Section 2. We again

observe the first major gaps in the eigenvalue spectrum after the first eigenvalue for both
methods. The PCA and error-based criteria yield more conservative estimates for the
gradient-based method. The error upper bounds are plotted in Figure 8(c). We observe a
steady decline in the error for the gradient-based method over the first 350 dimensions. For
the initialized adaptive Morris method, the errors are machine epsilon once the eigenvalues
drop o↵, since the error-based criteria is strongly related to the decay in the eigenvalue
spectrum.

The root mean squared errors (5) for the 1st-order multivariate polynomial response
surfaces are plotted in Figure 8(b) for the first 450 dimensions. The slower decay observed
in the initialized adaptive Morris errors is due to di↵erence in eigenvalue spectrum; columns
3 through 450 contribute very little to the decrease in response surface error because of their
correspondingly insignificant eigenvalues. To visually depict the accuracy of the response
surfaces, we plot the observed k

e↵

values for 100 testing points versus the predicted outputs
using the 25-, 75-, 150-, and 300-dimensional active subspaces for the two methods in
Figure 9. As the number of dimensions increases, we observe a tighter fit to the diagonal
axis that represents a perfect match in predicted versus observed outputs.

Gap PCA Error Tolerance

Method 0.75 0.90 0.95 0.99 10´3 10´4 10´5 10´6

Gradient-Based 1 2 6 9 24 1 13 90 233
Initialized AM 1 1 1 1 2 1 2 2 2

Table 4: Active subspace dimension selections for gap-based criteria [6], principal com-
ponent analysis with varying threshold values [9], and error-based criteria with varying
tolerances [7] for the 7700-input example.

22

Notes: Computing converged adjoint solution is expensive and often not achieved

Note: Analytic eigenvalues: 0, 1

For surrogate sampled off space
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for the 7700-input example.

methods are plotted in Figure 8(a).
In Table 4, we report the dimensions selected by the criteria of Section 2. We again

observe the first major gaps in the eigenvalue spectrum after the first eigenvalue for both
methods. The PCA and error-based criteria yield more conservative estimates for the
gradient-based method. The error upper bounds are plotted in Figure 8(c). We observe a
steady decline in the error for the gradient-based method over the first 350 dimensions. For
the initialized adaptive Morris method, the errors are machine epsilon once the eigenvalues
drop o↵, since the error-based criteria is strongly related to the decay in the eigenvalue
spectrum.

The root mean squared errors (5) for the 1st-order multivariate polynomial response
surfaces are plotted in Figure 8(b) for the first 450 dimensions. The slower decay observed
in the initialized adaptive Morris errors is due to di↵erence in eigenvalue spectrum; columns
3 through 450 contribute very little to the decrease in response surface error because of their
correspondingly insignificant eigenvalues. To visually depict the accuracy of the response
surfaces, we plot the observed k

e↵

values for 100 testing points versus the predicted outputs
using the 25-, 75-, 150-, and 300-dimensional active subspaces for the two methods in
Figure 9. As the number of dimensions increases, we observe a tighter fit to the diagonal
axis that represents a perfect match in predicted versus observed outputs.

Gap PCA Error Tolerance

Method 0.75 0.90 0.95 0.99 10´3 10´4 10´5 10´6

Gradient-Based 1 2 6 9 24 1 13 90 233
Initialized AM 1 1 1 1 2 1 2 2 2

Table 4: Active subspace dimension selections for gap-based criteria [6], principal com-
ponent analysis with varying threshold values [9], and error-based criteria with varying
tolerances [7] for the 7700-input example.
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Notes: Computing converged adjoint solution is expensive and often not achieved

Note: Analytic eigenvalues: 0, 1

• Surrogate construction now trivial!

For surrogate sampled off space



Bayesian Inference on Active Subspaces

!

Example: 

Full Space Inference: 
• Parameters not jointly identifiable

• Result: Prior for 2nd parameter is minimally informed.
• Goal: Use active subspace to quantify parameter 

sensitivity and guide inference.
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Bayesian Inference on Active Subspaces

Example: 

Active Subspace: For gradient matrix G, form SVD 

Eigenvalue spectrum indicates 1-D active subspace 
with basis 

Strategy: Inference based on active subspace

physical parameters
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5
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7
Response Surface
Testing Points

G = U⇤V T

U(:, 1) = [0.91 , 0.39]

g(y)

y

• For values {qj }Mj=1

, compute y j = U(:, 1)T qj
and fit response surface g(y)

• Because model is “invariant” to z = U(:, 2)T q, draw {zj } ⇠ N(0, 1)

• Transform to qj = U(:, 1)y j + U(:, 2)zj
to obtain posterior densities for

y = exp(0.7q
1

+ 0.3q
2

)

• Perform Bayesian inference for y



Bayesian Inference on Active Subspaces
Results: Inference based on active subspace
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Global Sensitivity: For active subspace of dimension n, consider vector of 
activity scores

Present Example: Here n = 1 and 

Conclusion: First parameter is more influential and better informed during 
Bayesian inference. 

w2
1 = U(:, 1). ⇤ U(:, 1) = [0.912 , 0.392]

↵i(n) =
nX

j=1

�jw2
i ,j , i = 1, ... , p



Bayesian Inference on Active Subspaces

Example: Family of elliptic PDE’s – Same as initialization example

with the random field representations 

Quantity of interest: e.g., strain along edge at n levels 

Problem Dimensions:
• Parameter dimension: p = 91

• Active subspace dimension: n = 3
• Finite element approximation

�2

Example: Family of elliptic PDE’s

with the random field representations 

Quantity of interest: e.g., strain along edge at n levels 

�2

-rs · (a(q, s, `)rsu(s, a(q, s, `)) = 1 , s = [0, 1]2 , ` = 1, · · · , n

a(q, s, `) = amin + ea(s,`)+
Pp

i=1 q`
k�i�i(s)

f
�
q1, ... , qn� ⇡

nX

`=1

1
|�2|

Z

�2

u(q, s, `)ds



Bayesian Inference on Active Subspaces

Singular Values: Recall n = 3 
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Activity Scores: Quantify global sensitivity 
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Conclusion: Parameters 1, 38, 66 are 
most influential and will be primarily 
informed during Bayesian inference  



Bayesian Inference on Active Subspaces

Recall: Parameters 1, 38, 66 are most influential and will be primarily informed 
during Bayesian inference  
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Note:
• Full space: 18 hours

• Reduced: 20 seconds



Bayesian Inference on Active Subspaces

Note: 
• Chains for full space not converging well due to parameter nonidentifiability

• Hence full space inference is less reliable 
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Experimental Design for Nuclear Power Plant Analysis 

COBRA−TF, CTFFuel

Calibration Experiment
Validation Experiment

Inputs: θ

Inputs: θ

χ2

χ3

χ1

Inputs: θ or g(θ)

(ξn)Sn
Errors εn

Observation

(ξn)δ (ξn)N n (ξn)Sn (ξn)dn = dl (θ,ξn ) + + + + εn

(ξn)N n

(ξn)δ

(ξn)+ εndn = d (h ξn )~ ~

Experiments
Physical

Navier−Stokes, Fuels

Gaussian Process

Response Surface

Surrogate Models

Statistical Models

Hi2Lo Framework

Verification

STAR−CCM+, BISON

+

+

Validation
Regime

+ + +

+

+
+ +

+

Validation
Calibration

Design of Experiments
Prediction Intervals

Low−Fidelity
High−Fidelity

Fuels or Chemistry ODE

Physical Models

Low−Fidelity

Verification
High−Fidelity

Simulation Codes

Code Requirements:
• Computational budgets dictate that a 

limited number of high-fidelity 
simulations – e.g., STAR or BISON – will 
be available to generate synthetic data 
to calibrate low-fidelity code – e.g., CTF 
or CTFFuel.
– Necessitates efficient experimental design when calibrating surrogate models



Low-Fidelity Stat Model 

High-Fidelity: STAR-CCM+ or experimental data 

Low-Fidelity: COBRA-TF (CTF) or statistical surrogate for code; e.g., GP 

dn = d`(✓, ⇠n) + �(⇠n) + "n(⇠n)

Model; 
e.g., CTF

Model 
discrepancy

High-Fidelity Stat Model 

edn = dh(⇠n) + e"n(⇠n)

Model; 
e.g., STAR

Designs; e.g., 
Initial pressure, 
temp, inlet 
mass flow rate

Calibration 
Parameters; 
e.g., Beta

Observation or 
discretization 
errors

Observation or 
discretization 
errors

Experimental Design-Based Hi2Lo Framework



Experimental Design-Based Hi2Lo Framework

dn = d`(✓, ⇠n) + �(⇠n) + "n(⇠n)

Model; 
e.g., CTF

Model 
discrepancy

DesignsCalibration Parameters Observation errors

edn = dh(⇠n) + e"n(⇠n)

Model; 
e.g., STAR

Observation errors

⇠n ✓Choose new design       to reduce uncertainty in 

Delayed Rejection Adaptive Metropolis (DRAM) 

kNN  Estimate of Mutual Information 

Calibrate parameters of low-fidelity model: d`(✓, ⇠n)

Evaluate high-fidelity model at  ⇠n : edn = dh(⇠n) + e"n(⇠n)



Mutual Information

Bayesian Framework: Quantifies change in knowledge due to new data 

Goal: 

p(✓|Dn) =
p(Dn|✓)p(✓)

p(Dn)
=

p(edn, Dn-1|✓)p(✓)
p(edn, Dn-1)

Provide framework to optimize information in

edn based on design ⇠n

Dn-1 = {ed1, ed2, · · · , edn-1}

• Choose design condition that yields largest mutual information 

• Implementation: kth nearest neighbor (kNN) algorithm [Kraskov et al., 2004] 

Strategy: 
• Marginalize over set of unknown future observations to compute average amount 
of information provided by design      : ⇠n

I(✓; dn|Dn-1, ⇠n) =

Z

D

U(dn, ⇠n)p(dn|Dn-1, ⇠n)ddn

⇠⇤
n = arg max

⇠n2⌅
I(✓; dn|Dn-1

, ⇠n)



Example 2: Turbulent Mixing in (CTF) 
Problem Setup:
• Design Variables in STAR-CCM+

– Initial pressure of fluid domain

– Initial temperature in fluid domain

– Inlet mass flow rate

– Average linear heat rate per rod

• Calibration Variable in COBRA-TF (CTF)

– BETA: Turbulent mixing factor

Computational Requirements:
• MI requires 5000 independent samples

• MCMC required 18,750 iterations

• This necessitated construction and 
verification of fast surrogate for CTF

• Gaussian process (GP) surrogate trained 
and verified for all 36 subchannels

Design Step M
ut
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BETA Posteriors

Design Step



Concluding Remarks
Notes:
• Parameter selection critical to isolate identifiable and 
influential parameters.

• Active subspace construction necessary for models with 
high-dimensional parameter spaces; e.g., 7700.

• Due to complexity of physical models, surrogate models 
typically required.  Algorithms utilizing mutual information 
can maximize information gain when calibrating. 

• Future research directions: 

– Relax Gaussian constraints on priors when 
performing inference on active subspaces.

– Construction of surrogate models that conserve;  
e.g., mass, momentum and energy.

– Surrogate models for multi-physics problems.

• Prediction is very difficult, especially if it’s about the 
future, Niels Bohr.
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