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Local Sensitivity Sensitivity Analysis

Motivation:

» Ascertain whether the model is robust or overly fragile with regard to various
parameters;

» Determine whether the model can be simplified by fixing insensitive parameters;

« Specify regimes in the parameter space that optimally impact responses or their
uncertainties;

« Guide experimental design to determine measurement regimes that have the
greatest impact on parameter or response sensitivity.

Models: Notation:
y = f(0) y . Vector or scalar-valued response
y = f(t, 0) 0 : Inputs; e.qg., parameters, IC, BC

t . Independent variable; e.g., time
yi = f(1;,0)

yi=f(t,0) + ¢

¢; . Observation errors



Complex-Step Derivative Approximation

Initial Approach: Consider complex variable z = x + iy and function
f(z) = u(x,y) +iv(x,y). For analytic f, consider Cauchy-Riemann equations

u_ov ou_ v
Ox dy ~ dy  0Ox

For real h,
ou . vix,y+h —v(x,y)
— = |im
0Xx h—0 h
_im Im[f(x + i(y + h))] — Im[f(x + iy)]
 h—0 h

Note: For real-valued f,

y=0,f(x) =u(x,0),v(x,0) =Im[f(x)] =0

Complex-Step Approximation:

F(x) ~ Im[f(xh+ ih)]




Complex-Step Derivative Approximation

Complex-Step Approximation:

F(x) ~ Im[f(xh+ ih)]

A Bit of History: Discussed in

* J.N. Lyness and C.B. Moler, “Numerical Differentiation of Analytic Functions,”
SIAM Journal on Numerical Analysis, 4, pp. 202-210, 1967.

Big Problem: Assumption of analyticity overly restrictive for simulation codes

Solution: For sufficiently smooth f, consider

h h
f(x + ih) = f(x) + ihf’ (x) — Ef”(x) — igf(g’) (x) + O(h*)
Complex-Step Approximation: Note:
Im|f h « Reduces smoothness requirement
r(x) = X o) }
h * Numerically demonstrated to be

accurate up to points of discontinuity



Complex-Step Derivative Approximation

Complex-Step Approximation:

F(x) — Im[f(xh+ ih)] o

A Bit More History:

Used to compute sensitivities for 3-D aero-structural models — verified using
adjoints: [Martins et al, 2003].

Noted by Tim Kelley in his green book.

Employed for delay-differential equations with non-smooth initial functions —
verified using sensitivity equations: [Banks et al, 2015].

Notes:

Avoids subtractive cancellation and relatively insensitive to stepsize.
May require modification of MATLAB functions such as abs, min, max.
Structure very similar to forward-mode AD.

Surprisingly robust and difficult to break!



Complex-Step Derivative Approximation

Analytic Example: Based on example in J.N. Lyness and C.B. Moler, 1967.
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Complex-Step Derivative Approximation

Example: 3-parameter SIR model

ds
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Sensitivity Equations:
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Complex-Step Derivative Approximation

Example: 3-parameter SIR model

asS
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, S(0)

, 1(0) = Iy,

Results: Representative parameter sensitivities
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Complex-Step Derivative Approximation

Results: Representative initial condition sensitivities
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Notes:

« Complex-step required modification of two lines of code:
S0 _complex = complex(S0,h); S_S0 =imag(Y(:,1))/h;

* Accuracy dictated by accuracy of ODE solver.

« Significantly easier to code than sensitivity equations!



Complex-Step Derivative Approximation

Euler-Bernoulli Model: 0 <x<L,t>0

02w ow  0°M

- — f
P S Y57 + 5z = f(LX)

2w Bw
M = YI(xX) —= /

Here
p(x) = phb + pphpbpxp(X),
YI(x) = Ylp + Ylpxp(x),
cl(x) = clp + clyXp(X)

Observation Model:

yi=fF(t,0)+ ¢

Parameters:

O = [Ylp, Clp, v, Kp, Pp, Yo, Clp]

1 %107

BN
‘””””H”””!

Displacement (m)

- - Data
—Model
-1 ‘ ‘




Complex-Step Derivative Approximation

. _ow(t) . -
Goal: Approximate Scs(t) = VI, Stiffness coefficient

2
0.015 r——Fe-Difference| | 107 ]
—— Complex-Step ' ]
0.01! |
0.005 | S 10"} :
. L [
5 0 2 .
© | .
-0.005 | T 10°F .
-0.01 | ’ .
-0.015 ‘ ‘ ‘ ot b
0 1 o2 3 10 10° 107 107 10®
Time (s) Finite-Difference Stepsize (h)
Finite Difference: h=1 x 10~*
te Difference 0 . maX;c(o, 1] [Scs(t) — Spp(t)]
- —16 rel —
Complex-Step: h=1 x 10 max;co. 71 1Scs(t)]
Note:

« Complex-step accuracy relatively insensitive to stepsize.

 Difficult to compute reasonable finite-difference sensitivity.



Complex-Step Derivative Approximation
. ow(t) . .
Goal: Approximate Sgs(t) = oy Air damping
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Notes:
» Most affected by primary mode

« Could not get reasonable approximation using finite-differences



Automatic Differentiation

Approach: Apply chain rule to elementary arithmetic operations and functions

Example: Differentiate f(x, x2) = x; x5 with respect to x»

Forward AD Complex-Step Method
AX1 — h1 =

Axo =1 h, =10"1°

f(x1, X2) = x1x2 = (X1 + ihy) (X2 + ihp)?

Af = AX1 X22 + 2X4 X2AX2

of

X2

= Af = 2X1X2

f = [x1(x — h5) — 2x2hy o)
(X5 — h5) 4+ 2x1 X2 ho]
]




Concluding Remarks
Advantages:

« Easy to code.

* Provides second-order accuracy with one function evaluation and relatively
insensitive to stepsize.

* Avoids solving coupled sensitivity equations for evolution models.

« Numerical tests demonstrate accuracy up to discontinuities for several
applications.

» Close ties to forward AD but does not require AD architectures.

Disadvantages:
« Can fail without numerical warning for problems with insufficient regularity.

« Requires p model evaluations for p inputs. Can be a problem for high-
dimensional problems.

« Requires modification of certain functions such as abs, min, max.

* Does not run automatically in MATLAB pde toolbox.



