Complex-Step Derivative Approximations for Sensitivity Analysis

Ralph C. Smith

Department of Mathematics
North Carolina State University

Local Sensitivity Sensitivity Analysis

Motivation:

- Ascertain whether the model is robust or overly fragile with regard to various parameters;
- Determine whether the model can be simplified by fixing insensitive parameters;
- Specify regimes in the parameter space that optimally impact responses or their uncertainties;
- Guide experimental design to determine measurement regimes that have the greatest impact on parameter or response sensitivity.

Models:

$$y = f(\theta)$$

$$y = f(t, \theta)$$

$$y_i = f(t_i, \theta)$$

$$y_i = f(t_i, \theta) + \varepsilon_i$$

Notation:

y: Vector or scalar-valued response

θ: Inputs; e.g., parameters, IC, BC

t: Independent variable; e.g., time

 ε_i : Observation errors

Initial Approach: Consider complex variable z = x + iy and function f(z) = u(x, y) + iv(x, y). For *analytic f*, consider Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 , $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

For real h,

$$\frac{\partial u}{\partial x} = \lim_{h \to 0} \frac{v(x, y + h) - v(x, y)}{h}$$
$$= \lim_{h \to 0} \frac{\operatorname{Im}[f(x + i(y + h))] - \operatorname{Im}[f(x + iy)]}{h}$$

Note: For real-valued f,

$$y = 0$$
, $f(x) = u(x, 0)$, $v(x, 0) = Im[f(x)] = 0$

Complex-Step Approximation:

$$f'(x) \approx \frac{\operatorname{Im}[f(x+ih)]}{h}$$

Complex-Step Approximation:

$$f'(x) pprox \frac{\operatorname{Im}[f(x+ih)]}{h}$$

A Bit of History: Discussed in

 J.N. Lyness and C.B. Moler, "Numerical Differentiation of Analytic Functions," SIAM Journal on Numerical Analysis, 4, pp. 202-210, 1967.

Big Problem: Assumption of analyticity overly restrictive for simulation codes

Solution: For sufficiently smooth f, consider

$$f(x+ih) = f(x) + ihf'(x) - \frac{h^2}{2!}f''(x) - i\frac{h^3}{3!}f^{(3)}(x) + \mathcal{O}(h^4)$$

Complex-Step Approximation:

$$f'(x) = \frac{\operatorname{Im}[f(x+ih)]}{h} + \mathcal{O}(h^2)$$

Note:

- Reduces smoothness requirement
- Numerically demonstrated to be accurate up to points of discontinuity

Complex-Step Approximation:

$$f'(x) = \frac{\operatorname{Im}[f(x+ih)]}{h} + \mathcal{O}(h^2)$$

A Bit More History:

- Used to compute sensitivities for 3-D aero-structural models verified using adjoints: [Martins et al, 2003].
- Noted by Tim Kelley in his green book.
- Employed for delay-differential equations with non-smooth initial functions verified using sensitivity equations: [Banks et al, 2015].

Notes:

- Avoids subtractive cancellation and relatively insensitive to stepsize.
- May require modification of MATLAB functions such as abs, min, max.
- Structure very similar to forward-mode AD.
- Surprisingly robust and difficult to break!

Analytic Example: Based on example in J.N. Lyness and C.B. Moler, 1967.

$$f(x) = \frac{e^{2x}}{\sqrt{\sin^2 x + \cos^2(3x)}}$$

Relative Errors: Complex-step and finite-difference $e_{rel} = \frac{|f' - f'_{exact}|}{|f'_{exact}|}$

Example: 3-parameter SIR model

$$rac{dS}{dt} = \delta(N - S) - \gamma IS$$
 , $S(0) = S_0$ $rac{dI}{dt} = \gamma IS - (r + \delta)I$, $I(0) = I_0$,

Sensitivity Equations:

$$\frac{ds(t)}{dt} = \frac{\partial g}{\partial u}s(t) + \frac{\partial g}{\partial q} \qquad s(t) = \begin{bmatrix} \frac{\partial S}{\partial \delta}, \frac{\partial I}{\partial \delta}, \frac{\partial S}{\partial \gamma}, \frac{\partial I}{\partial \gamma}, \frac{\partial S}{\partial r}, \frac{\partial I}{\partial r} \end{bmatrix}^{T}
s(t_{0}) = 0_{N \cdot p}
\frac{\partial g}{\partial u} = \begin{bmatrix} J & 0 & 0 \\ 0 & J & 0 \\ 0 & 0 & J \end{bmatrix}, J = \begin{bmatrix} -\delta - \gamma I & -\gamma S \\ \gamma I & \gamma S - (r + \delta) \end{bmatrix}
\frac{\partial g}{\partial q} = [(N - S), -I, -IS, IS, 0, -I]^{T}.$$

Example: 3-parameter SIR model

$$rac{dS}{dt} = \delta(N-S) - \gamma IS$$
 , $S(0) = S_0$ $rac{dI}{dt} = \gamma IS - (r+\delta)I$, $I(0) = I_0$,

Results: Representative parameter sensitivities

Results: Representative initial condition sensitivities

Notes:

• Complex-step required modification of two lines of code:

$$S0_{complex} = complex(S0,h); S_S0 = imag(Y(:,1))/h;$$

- Accuracy dictated by accuracy of ODE solver.
- Significantly easier to code than sensitivity equations!

Euler-Bernoulli Model: 0 < x < L, t > 0

$$\rho(x)\frac{\partial^2 w}{\partial t^2} + \gamma \frac{\partial w}{\partial t} + \frac{\partial^2 M}{\partial x^2} = f(t, x)$$

$$M(t,x) = YI(x)\frac{\partial^2 w}{\partial x^2} + cI(x)\frac{\partial^3 w}{\partial x^2 \partial t}$$

Here

$$ho(x) =
ho hb +
ho_{
ho}h_{
ho}b_{
ho}\chi_{
ho}(x),$$
 $YI(x) = YI_b + YI_{
ho}\chi_{
ho}(x),$
 $cI(x) = cI_b + cI_{
ho}\chi_{
ho}(x)$

Observation Model:

$$y_i = f(t_i, \theta) + \varepsilon_i$$

Parameters:

$$\theta = [Yl_b, cl_b, \gamma, k_p, \rho_p, Yl_p, cl_p]$$

Goal: Approximate
$$s_{CS}(t) = \frac{\partial w(t)}{\partial YI_b}$$
 Stiffness coefficient

Finite Difference: $h = 1 \times 10^{-4}$

Complex-Step: $h = 1 \times 10^{-16}$

$$e_{rel} = rac{\max_{t \in [0,T]} |s_{CS}(t) - s_{FD}(t)|}{\max_{t \in [0,T]} |s_{CS}(t)|}$$

Note:

- Complex-step accuracy relatively insensitive to stepsize.
- Difficult to compute reasonable finite-difference sensitivity.

Goal: Approximate
$$s_{CS}(t) = \frac{\partial w(t)}{\partial \gamma}$$
 Air damping

Notes:

- Most affected by primary mode
- Could not get reasonable approximation using finite-differences

Automatic Differentiation

Approach: Apply chain rule to elementary arithmetic operations and functions

Example: Differentiate $f(x_1, x_2) = x_1 x_2^2$ with respect to x_2

Forward AD	Complex-Step Method
$\Delta x_1 = 0$	$h_1 = 0$
$\Delta x_2 = 1$	$h_2 = 10^{-16}$
$f(x_1, x_2) = x_1 x_2^2$	$f = (x_1 + ih_1)(x_2 + ih_2)^2$
$\Delta f = \Delta x_1 x_2^2 + 2x_1 x_2 \Delta x_2$	$f = [x_1(x_2 - h_2^2) - 2x_2h_1h_2]$
-	$+i[h_1(x_2^2-h_2^2)+2x_1x_2h_2]$
$\frac{\partial f}{\partial x_2} = \Delta f = 2x_1 x_2$	$\frac{\partial f}{\partial x_2} = \frac{Im[f]}{h_2} = 2x_1x_2$

Concluding Remarks

Advantages:

- Easy to code.
- Provides second-order accuracy with one function evaluation and relatively insensitive to stepsize.
- Avoids solving coupled sensitivity equations for evolution models.
- Numerical tests demonstrate accuracy up to discontinuities for several applications.
- Close ties to forward AD but does not require AD architectures.

Disadvantages:

- Can fail without numerical warning for problems with insufficient regularity.
- Requires p model evaluations for p inputs. Can be a problem for highdimensional problems.
- Requires modification of certain functions such as abs, min, max.
- Does not run automatically in MATLAB pde toolbox.