
Implementation Algorithm
Since the computation of the Sobol indices requires high-dimensional integration, the indices

are approximated numerically. If one uses M Monte Carlo evaluations to approximate the mean
E(Y |qi) and repeats the procedure M times to approximate the variance var[E(Y |qi)], a total of M2

evaluations will be required to evaluate a single index. The total number of function evaluations
required is M2p, which is computationally prohibitive for a large parameter dimensions p. This
motivated the author of [2] to provide a more efficient algorithm to compute Sobol indices that
reduces the required evaluations to M(p+2), based on Sobol’s original approach in [4]. The algorithm
was further improved by the authors of [3, 5, 6] and is summarized here.

Algorithm

1. Create two sample matrices A and B

A =

 q1
1 . . . q1

i . . . q1
p

...
...

qM1 . . . qMi . . . qMp

 , and B =

 q̂1
1 . . . q̂1

i . . . q̂1
p

...
...

q̂M1 . . . q̂Mi . . . q̂Mp

 . (1)

The entries qji and q̂ji are pseudo-random numbers drawn from the respective densities.

2. Create A
(i)
B

A
(i)
B =

 q1
1 . . . q̂1

i . . . q1
p

...
...

qM1 . . . q̂Mi . . . qMp

 (2)

which is the matrix A except that ith column is taken from B. Similarly, create B
(i)
A .

3. Create C which is the matrix B appended to matrix A such that

C =

 A
−
B

 . (3)

This matrix is used when estimating the total variance.

4. Compute column vectors f(A), f(B), f(A
(i)
B ) and f(B

(i)
A ) by evaluating the model at input

values from the rows of matrices A, B, A
(i)
B and B

(i)
A . Let f(A)j denote the output computed

from the jth row of A. The computation of f(A) and f(B) requires 2M model evaluations,

whereas the evaluation of f(A
(i)
B ) and f(B

(i)
A ) for i = 1, . . . , p requires 2Mp evaluations. The

total number of model evaluations is 2M(1 + p).

5. Estimate the Sobol indices. The first-order Sobol indices are approximated by

Si ≈

1

M

M∑
j=1

[
f(A)jf(B

(i)
A )j − f(A)jf(B)j

]
1

2M

2M∑
j=1

f(C)jf(C)j − E2[f(C)]

(4)

1



and the total Sobol indices are approximated by

ST i ≈

1

2M

M∑
j=1

[
f(A)j − f(A

(i)
B )j

]2

1

2M

2M∑
j=1

f(C)jf(C)j − E2[f(C)]

. (5)

In the last step, variances are approximated using Monte Carlo approximation. The denominator
in (4) and (5) is the approximation for the total variance with E(Y 2) ≈ 1

2M

∑2M
j=1 f(C)jf(C)j and

(E(Y ))2 approximates the squared expectation of f(C). In (4), the term 1
M

∑M
j=1 f(A)jf(B

(i)
A )j

approximates E(E(Y |qi))2. In essence, we are taking the mean of responses when all input parameters

are varied except qi. The effect of qi is fixed since the ith column is the same in both A and B
(i)
A .

The second term in (4),

1

M

M∑
j=1

f(A)jf(B)j , (6)

represents the squared mean, f2
0 , using the identity

f2
0 =

∫
Γ2

f(x)f(x′)dxdx′. (7)

This approximation is shown in [5] to reduce the loss of accuracy when computing D, compared to

f2
0 ≈

 1

M

M∑
j=1

f(A)j

 1

M

M∑
j=1

f(B)j

 , (8)

which is used in the previous versions of the algorithm.
The computation of ST i follows from the derivations in [1], which uses the approximation

E[var(Y |q∼i)] ≈
1

2M

M∑
j=1

[
f(A)j − f(A

(i)
B )j

]2
(9)

instead of the approximation

var[E(Y |q∼i)] ≈
1

M

M∑
j=1

f(A)jf(A
(i)
B )j − f2

0 (10)

The comparison of different versions of the algorithm can be found in [3].
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