
Pressurized Water Reactors (PWR)
3-D Neutron Transport Equations: 

Challenges:

• Linear in the state but function of 7 
independent variables:

• Very large number of inputs; e.g., 100,000; 
Active subspace construction is critical.

• ORNL Code SCALE: can take minutes to 
hours to run.

• SCALE TRITON has adjoint capabilities via TSUNAMI-2D and NEWT.



Example: 
• Varies most in [0.7, 0.3] direction
• No variation in orthogonal direction

Active Subspaces

Note: 
• Functions may vary significantly in only a few directions
• “Active” directions may be linear combination of inputs

y = exp(0.7q1 + 0.3q2)

!

q 2
q1

A Bit of History: 
• Often attributed to Russi (2010).
• Concept same as identifiable subspaces 
from systems and control; e.g., Reid (1977).

• For linearly parameterized problems, active subspace given by SVD or QR; 
Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912).  
See 1993 SIAM Review paper by Stewart.



Active Subspaces

Note: Sensitivity analysis isolate subsets of influential parameters but ineffective 
for subspaces that are not aligned with coordinate axes.

Linearly Parameterized Problems: y = Aq , y 2 Rn , q 2 Rp , A is n ⇥ p

Example: yi = q2xi , i = 1, 2, 3
q = [q1, q2]
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Note: N(AT A) = N(A) , R(AT A) = R(AT )

Good Reference: Ilse C.F. Ipsen, Numerical Matrix Analysis, SIAM, 2009

Null space of A

R(AT ) = {b 2 Rp | b = AT z for some z 2 Rn}

N(A) = {q 2 Rp |Aq = 0}

Range



Active Subspaces

Example: y = [2 1]
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Deterministic Algorithms

Linearly Parameterized Problems: y = Aq , y 2 Rn , q 2 Rp , A is n ⇥ p

Singular Value Decomposition (SVD):

A = U⌃V T , ⌃ = [S 0]

S =

2

6664

�1
. . .

�r
0

3

7775 , �1 > �2 > · · · > �r > "

and
U = [Ur Un-r ] , Ur 2 Rn⇥r , Un-r 2 Rn⇥(n-r)

V = [Vr Vp-r ] , Vr 2 Rp⇥r , Vp-r 2 Rp⇥(p-r)

Rank Revealing QR Decomposition:

Problem: Neither is directly applicable when n or p are very large; e.g., millions. 

Solution: Random range finding algorithms. 



Random Range Finding Algorithms: Linear Problems

Algorithm: Halko, Martinsson and Tropp, SIAM Review, 2011 

Example: 
2
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Example: m = 101, p = 1000: Analytic value for rank is 49 

Random Range Finding Algorithms: Linear Problems
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Deterministic Algorithm
Random Algorithm

Aliasing

Singular Values Absolute Difference Between Singular Values 

Example: m = 101, p = 1,000,000: Random algorithm still viable



Example: 
• Varies most in [0.7, 0.3] direction
• No variation in orthogonal direction

Active Subspaces for Nonlinearly Parameterized Problems

Note: 
• Functions may vary significantly in only a few directions
• “Active” directions may be linear combination of inputs

y = exp(0.7q1 + 0.3q2)

!

q 2
q1

A Bit of History: 
• Often attributed to Russi (2010).
• Concept same as identifiable subspaces 
from systems and control; e.g., Reid (1977).

• For linearly parameterized problems, active subspace given by SVD or QR; 
Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912).  
See 1993 SIAM Review paper by Stewart.



Gradient-Based Active Subspace Construction

Active Subspace: Consider

and

Construct outer product

Partition eigenvalues:

Rotated Coordinates:

Active Variables Active Subspace: Range of eigenvectors in

f = f (q) , q 2 Q ✓ Rp

rqf (q) =

@f
@q1

, · · · ,
@f
@qp

�T

C =

Z
(rqf )(rqf )T⇢dq

C = W⇤W T

⇤ =


⇤1

⇤2

�
, W = [W1 W2]

y = W T
1 q 2 Rn and z = W T

2 q 2 Rp-n

W1

• E.g., see [Constantine, SIAM, 2015; 
Stoyanov & Webster, IJUQ, 2015]

Question: How sensitive are 
results to distribution, which 
is typically not known?

⇢(q): Distribution of input parameters q



Gradient-Based Active Subspace Construction
Active Subspace: Construction based on random sampling 

3. Approximate outer product

One Goal: Develop efficient algorithm for codes that do not have adjoint capabilities 

Strategy: Algorithm based on initialized adaptive Morris indices 

Note: Finite-difference approximations tempting but not effective for high-D  

1. Draw M independent samples {qj } from ⇢

2. Evaluate rqfj = rqf (qj)

C ⇡ eC =
1
M

MX

j=1

(rqfj)(rqfj)T

Note: eC = GGT where G = 1p
M
[rqf1, ... ,rqfM ]

4. Take SVD of G = W
p
⇤V T

• Active subspace of dimension n is first n columns of W



Gradient-Based Active Subspace Construction
Example: Consider

y = ec1q1+c2q2 = f (q)

so

rqf (q) =

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Values: c1 = 0.7 , c2 = 0.3

Analytic C:

C =


1.4652 0.6279
0.6279 0.2691

�

Monte Carlo Approx:

C =


1.4532 0.6228
0.6228 0.2669
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C =
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1.4654 0.6280
0.6280 0.2692
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�
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Morris Screening: Random Sampling of Approximated Derivatives
Example: Consider uniformly distributed parameters on 

Elementary Effect:

Global Sensitivity Measures: r samples

µ⇤
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1
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�

Adaptive Algorithm:
• Use SVD to adapt stepsizes 
and directions to reflect active 
subspace.

• Reduce dimension of 
differencing as active subspace 
is discovered.
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Note: Gets us to moderate-D but initialization required for high-D 



Initialization Algorithm
1. Inputs: ` iterations, h function evaluations per iteration
2. Sample w1 from surface of unit sphere where approximately linear

For j = 1, ... , `

3. Sample {ṽ j
1, ... , ṽ j

h} from surface of sphere

4. Use Lagrange multiplier to determine

uj
max = a+

0 wj +
hX

i=1

a+
i v j

i

that maximizes g(u) = f (q0 + R-1u).

, v1
i = ṽ1

i

Transform
Ellipsoid

Sphere

q0

f (q0 + R-1u)

h = 3

Note: For h=1, maximizing 
great circle through             

Example: Let

g(u) = ‘QUIETness’ of 
seatmate on flight

w1, v1

w1 = Atlanta,
v1 = London, and

(z - q0)T S(z - q0) = 1
S = RT R



Initialization Algorithm
1. Inputs: ` iterations, h function evaluations per iteration
2. Sample w1 from surface of unit sphere where approximately linear

For j = 1, ... , `

3. Sample {ṽ j
1, ... , ṽ j

h} from surface of sphere

4. Use Lagrange multiplier to determine

uj
max = a+

0 wj +
hX

i=1

a+
i v j

i

that maximizes g(u) = f (q0 + R-1u).

, v1
i = ṽ1
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Initialization Algorithm
1. Inputs: ` iterations, h function evaluations per iteration
2. Sample w1 from surface of unit sphere where approximately linear

For j = 1, ... , `

3. Sample {ṽ j
1, ... , ṽ j

h} from surface of sphere

4. Use Lagrange multiplier to determine

uj
max = a+

0 wj +
hX

i=1

a+
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that maximizes g(u) = f (q0 + R-1u).

Set wj+1 = uj
max.

5. Take C = [wj , v j
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h] and set Puj
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j
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j
i
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j
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Example: Initialization Algorithm to Approximate Gradient

Example: Family of elliptic PDE’s

with the random field representations 

Quantity of interest: e.g., strain along edge at n levels 

Problem Dimensions:
• Parameter dimension: p = 100

• Active subspace dimension: n = 1

• Finite element approximation

�2

-rs · (a(q, s, `)rsu(s, a(q, s, `)) = 1 , s = [0, 1]2 , ` = 1, · · · , n

a(q, s, `) = amin + ea(s,`)+
Pp

i=1 q`
k�i�i(s)

f
�
q1, ... , qn� ⇡

nX

`=1

1
|�2|

Z

�2

u(q, s, `)ds



h = 1 h = 2

h = 3 h = 4

Results: Cosine of angle between ’analytic’ and computed gradient

Example: Initialization Algorithm to Approximate Gradient

Recall: p=100

Note: Convergence 
within         iterationsh · `



SCALE6.1: High-Dimensional Example

!

    6 ss-304 - bpr clad
    5 air in bprs
    4 borosilicate glass
    3 water
    2 cladding
    1 2.561 wt % enriched fuel
    7 rod n-9
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Figure 5: (a) Response surface errors for each method using a 5th-order multivariate
polynomial regression fit.

4.3 Example 3: 7700 input example SCALE6.1

Our final example has an input space of R7700, rendering our gradient-free algorithms
computationally infeasible without the use of the initialization algorithm of Section 3.
The problem construction is identical to that of Example 4.2, where we perturb the cross-
sections for the materials and reactions specified in Table 3, and fix all others to their
reference values provided by the SCALE6.1 cross-section libraries.

Due to the size of the input space, we use only the initialized adaptive Morris al-
gorithm, comparing our results to the gradient-based results obtained from the SAMS
module. The initialization algorithm allows us to begin Algorithm 2 with a subset of 147
important directions rather than approximating directional derivatives in all 7700 original
input directions. The adaptive Morris algorithm is quickly able to improve upon the di-
rections contributed by the initialization algorithm and reduce the number of important

Materials Reactions

234
92U

10
5B

31
15P ⌃t n Ñ �

235
92U

11
5B

55
25Mn ⌃e n Ñ p

236
92U

14
7N 26Fe ⌃f n Ñ d

238
92U

15
7N

116
50Sn ⌃c n Ñ t

1
1H

23
11Na

120
50Sn ⌫̄ n Ñ 3He

16
8O

27
13Al 40Zr � n Ñ ↵

6C 14Si 19K n Ñ n1 n Ñ 2n

Table 3: Materials and reactions for the 7700-input example.

20

Note: We cannot efficiently approximate all directional derivatives 
required to approximate the gradient matrix. Requires efficient 
initialization algorithm.

Setup: Cross-section computations SCALE6.1
• Input Dimension: 7700
• Output keff



SCALE6.1: High-Dimensional Example

Setup:
• Input Dimension: 7700

SCALE Evaluations:
• Gradient-Based: 1000

• Initialized Adaptive Morris: 18,392 

• Projected Finite-Difference: 7,701,000
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Active Subspace Dimensions: 

(a) (b) (c)

Figure 8: (a) First 300 eigenvalues for the 7700-input example. (b) Response surface RMSE
values for the first 450 dimensions. (c) First 350 error upper bounds given by Algorithm 3
for the 7700-input example.

methods are plotted in Figure 8(a).
In Table 4, we report the dimensions selected by the criteria of Section 2. We again

observe the first major gaps in the eigenvalue spectrum after the first eigenvalue for both
methods. The PCA and error-based criteria yield more conservative estimates for the
gradient-based method. The error upper bounds are plotted in Figure 8(c). We observe a
steady decline in the error for the gradient-based method over the first 350 dimensions. For
the initialized adaptive Morris method, the errors are machine epsilon once the eigenvalues
drop o↵, since the error-based criteria is strongly related to the decay in the eigenvalue
spectrum.

The root mean squared errors (5) for the 1st-order multivariate polynomial response
surfaces are plotted in Figure 8(b) for the first 450 dimensions. The slower decay observed
in the initialized adaptive Morris errors is due to di↵erence in eigenvalue spectrum; columns
3 through 450 contribute very little to the decrease in response surface error because of their
correspondingly insignificant eigenvalues. To visually depict the accuracy of the response
surfaces, we plot the observed ke↵ values for 100 testing points versus the predicted outputs
using the 25-, 75-, 150-, and 300-dimensional active subspaces for the two methods in
Figure 9. As the number of dimensions increases, we observe a tighter fit to the diagonal
axis that represents a perfect match in predicted versus observed outputs.

Gap PCA Error Tolerance
Method 0.75 0.90 0.95 0.99 10´3 10´4 10´5 10´6

Gradient-Based 1 2 6 9 24 1 13 90 233
Initialized AM 1 1 1 1 2 1 2 2 2

Table 4: Active subspace dimension selections for gap-based criteria [6], principal com-
ponent analysis with varying threshold values [9], and error-based criteria with varying
tolerances [7] for the 7700-input example.

22

Notes: Computing converged adjoint solution is expensive and often not achieved

Note: Analytic eigenvalues: 0, 1

For surrogate sampled off space
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Bayesian Inference on Active Subspaces

Example: 

Full Space Inference: 
• Parameters not jointly identifiable

• Result: Prior for 2nd parameter is minimally informed.

• Goal: Use active subspace to quantify parameter 
sensitivity and guide inference.
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Bayesian Inference on Active Subspaces

Example: 

Active Subspace: For gradient matrix G, form SVD 

Eigenvalue spectrum indicates 1-D active subspace 
with basis 

Strategy: Inference based on active subspace

physical parameters

-2 -1 0 1 2
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5

6

7
Response Surface
Testing Points

G = U⇤V T

U(:, 1) = [0.91 , 0.39]

g(y)

y

• For values {qj }Mj=1, compute y j = U(:, 1)T qj and fit response surface g(y)

• Use DRAM to calibrate y

• Because model is “invariant” to z = U(:, 2)T q, draw {zj } ⇠ N(0, 1)

• Transform to qj = U(:, 1)y j + U(:, 2)zj to obtain posterior densities for

y = exp(0.7q1 + 0.3q2)



Bayesian Inference on Active Subspaces

Results: Inference based on active subspace
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Global Sensitivity: For active subspace of dimension N, consider vector of 
activity scores

Note: Here N = 1 and 

Conclusion: First parameter is more influential and better informed during 
Bayesian inference. 

↵(N) =
NX

j=1

�jw2
j

w2
j = U(:, 1). ⇤ U(:, 1) = [0.912 , 0.392]



Bayesian Inference on Active Subspaces

Example: Family of elliptic PDE’s 

with the random field representations 

Quantity of interest: e.g., strain along edge at N levels 

Problem Dimensions:
• Parameter dimension: p = 91

• Active subspace dimension: N = 3

• Finite element space:  1372 triangular elements, 727 nodes

�2

a(q, s, `) = amin + ea(s,`)+
Pp

i=1 q`
k�i�i(s)

f
�
q1, ... , qn� ⇡

nX

`=1

1
|�2|

Z

�2

u(q, s, `)ds

-rs · (a(q, s, `)rsu(s, a(q, s, `)) = 1 , s = [0, 1]2 , ` = 1, · · · , n



Bayesian Inference on Active Subspaces

Singular Values: Recall N = 3 
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Activity Scores: Quantify global sensitivity 

Parameter
0 20 40 60 80 100

Ac
tiv

ity
 S

co
re

10-15

10-10

10-5

100

105

Conclusion: Parameters 1, 38, 66 are 
most influential and will be primarily 
informed during Bayesian inference  



Bayesian Inference on Active Subspaces

Recall: Parameters 1, 38, 66 are most influential and will be primarily informed 
during Bayesian inference  
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Note:
• Full space: 18 hours

• Reduced: 20 seconds



Bayesian Inference on Active Subspaces

Note: 
• Chains for full space not converging well due to parameter nonidentifiability

• Hence full space inference is less reliable 
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