Lecture 1. Motivation and Prototypical Examples

“Essentially all models are wrong, but some are useful,”
George E.P. Box, Industrial Statistician
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Predictive Science

Components: All involve uncertainty

» Experiments

* Models Model Calibration

* Simulations (V \and valaaton
Numerical
Simulations

Essentially, all models are wrong, but some are useful, George E.P. Box, Industrial
Statistician.

— Quantity of Interest (Qol)

V\____/'

Verification

Computational results are believed by no one, except the person who wrote the code,
source anonymous, quoted by Max Gunzburger, Florida State University.

Experimental results are believed by everyone, except for the person who ran the
experiment, source anonymous, quoted by Max Gunzburger, Florida State University.

| have always done uncertainty quantification. The difference now is that it is
capitalized. Bill Browning, Applied Mathematics Incorporated.



Example 1: Weather Models

Challenges:

Horizontal Grid

» Coupling between temperature, pressure (Latitude-Longitude)
gradients, precipitation, aerosol, etc.;

Vertical Grid

* Models and inputs contain uncertainties; (Height or Pressure) |
* Numerical grids necessarily larger than - W %E
many phenomena; e.g., clouds Physical Processes in a Model : EE

radiation radiation
q 'Y

» Sensors positions may be uncertain;
e.g., weather balloons, ocean buoys.

Goal:

 Assimilate data to quantify uncertain
initial conditions and parameters;

Assimilation Period Forecast Period

» Make predictions with quantified
uncertainties.

Observable Quantity

Time

=0 Present Future



Equations of Atmospheric Physics

Conservation Relations:

dp
Mass — + V- =0
5 TV (pv)
1 .
Momentum @ =—v-Vvo— —-Vp—gk—20 xv
ot 0
oT :
Energy pev - +pV-v=-=V-F+V-(kVT)+ pq(T,p,p)
p = pRT Horonal i
O
Water (:';Zj = —U - ij -+ Smj (T, mj) Xja P) 3 .] — 17 27 37 Vertical Grid I
(Height or Pressure) |~ H

OV
Aerosol %:_v'vXj_‘_ij(Tan?p)ajzla"'7<]7

solar  terrestriall

Constitutive Closure Relations: e.g.,
Sm2 =51+ 5+ 55— 54

where

—1
S1 = p(mo — m3)? [1.2 x 107% + (1.569 x 10712 fr )>]



Sources of Uncertainty:
* Model errors or discrepancies

* |nput uncertainties

 Numerical errors and uncertainties
« Measurement errors and uncertainties

Steps:

* Model Calibration: Involves the assimilation
or integration of data to quantify and update

input uncertainties.

Example 1: Weather Models

Horizontal Grid
(Latitude-Longitude) |

Vertical Grid )
(Height or Pressure) |~
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mantum  heat  water  seaice
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* Model Prediction: Here one computes the
response along with statistics, error bounds,
or PDF; extrapolation is important and difficult.

« Estimation of the Validation Regime:

« Goal: Construct best estimate parameters
and responses or quantities of interest with
best estimate reduced uncertainties.

Assimilation Period

Observable Quantity

solar  terrestrial
radiation radiation
S 4

) PN
L7

Forecast Period

=0 Present

Time



Example 1: Weather Models

Sources of Uncertainty:

* Model errors or discrepancies

* |Input uncertainties

« Numerical errors and uncertainties

» Measurement errors and uncertainties

Ensemble Forecasts:

« Run multiple simulations with differing parameter
values or initial conditions drawn from
appropriate pdf.

« A 50% chance of rain means that given present
atmospheric conditions, half of simulations
predict measurable rain amount at random point
in specified area. a _ b
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Example 2: Pressurized Water Reactors (PWR)

Containment Structure

Pressurizer Steam
Gen

Condenser

Models:
* Involve neutron transport, thermal-hydraulics, chemistry.
* |nherently multi-scale, multi-physics.

CRUD Measurements: Consist of low resolution images at limited number of locations.



Example 2: Pressurized Water Reactors (PWR)

3-D Neutron Transport Equations:

1 dp

|U| m +Q-Vo+ 3i(r, E)p(r, E,,t)

/ dQ'/ dE'Ys(E' — E, QY — Q)p(r, E',Q,t)
4

Rod cluster

—/ dQ’/ dE'v(E"YS¢(E")o(r,E', Y, 1)
4 0

control assemblyy\
s
Challenges:
* Linear in the state but function of 7 BN L.
independent variables: % 54
r=uz,y,2 E;Q=0,¢t 2 a7 T
Hedsstiiy 7 5 Fuel rod . Pl
. nozzle , Py e e ug
* Very large number of inputs; e.g., 100,000; gy 777 Gri
Active subspace construction is critical. Y.
@77 Zi i #%- Control rod
. # “ s g::bueie thimblee"r . Pellet
* ORNL Code SCALE: can take minutes to P,
hours to run. ppm—

! Fuel rod

« SCALE TRITON has adjoint capabilities via TSUNAMI-2D and NEWT.



Example 2: Pressurized Water Reactors (PWR)

Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid

0
&‘(afpf) + V- (ajspsvy) = =T

ov
afpfa—tf +aspsvs-Vog+ V- of +afV -0+ arVps

= —F% - F+T(vs —vg)/2+ aspsg

0
a(appres) +V - (agprepvp +Th) = (T — Tf)H + Ti Ag

ot
—T9(H—0agV -h)+h-VT —Tles +T¢(s* — s¢)]
Jay T - .
RZANE I V- (apvg) + B Note: Similar equations for gas
Codes:

« Low-Fidelity Code: COBRA-TF: Takes minutes to run

» Sub-channel code -- cannot resolve between pins; no adjoint capabilities
« High-Fidelity Code: HYDRA: Takes hours to run

= 3-D CFD code; no adjoint capabilities



Example 2: Pressurized Water Reactors (PWR)

Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid
0
5 arPs) +V - (agppup) = =T

ov
afpf('?—tf +appsvs-Vog+ V- af +asV-o+asVpy

= —F% — F +T(vs —vg)/2 + aspsg
0
5p\arpses) V- (appresvs + Th) = (Tg — Ty)H + T Ay
—T4y(H — agV -h)+h-VT —Tles + Tf(s* — sy)]

Oaf r
—Dpy (W + V- (afvy) + E)

Example: Shearon Harris outside Raleigh

UQ Questions:

« What is peak operating temperature?

« What is expected level of CRUD buildup?

« What is risk associated with operating
regime?

« What is expected profit for new design?



Example 3: HIV Model for Characterization/Treatment Regimes

HIV Model: 7, =\, — 4,7, — (1 - )y VTy Notes: 21 parameters
Ty = Xy — do Ty — (1 — fe)ka VT [Adams, Banks et al., 2005]
Tr = (1 —e)k VT, — 6T — m,ET
Ty = (1 — fe)koVTy — 6Ty — moETy
V= Np(T7 +T3) = eV = [(1 = e)prkaT1 + (1 = fe)pakoTo]V
bo(Tf +13) . de(Tf +13) E_ 6pE . dE

TF + T35 + Ky TF+T5 + Ky Notation: £ = o

E:)\E—|—

Compartments:

Uninfected Infectious Infected Non-infectious Immune Effectors
Target Cells  Virus Target Cells Virus (CTLs)



Example 3: HIV Model for Characterization and Control Regimes

HIV Model: Used for characterization and control treatment regimes.
Ty =M —diTy — (1 =)kt VT
Ty =Xy — doTy — (1 — fe)ko VT
TF = (1 —e)k\VTy — 6T} — m,ET}
T3 = (1 — fe)ko VT — 6Ty — moETy
V= Npd(Ty +T5) — ¢V = [(1 — ) prha Ty + (1 — fe)pakaTo]V

be(Ty +13) . de(Ti +73)
Ty +T5 + K, Tr +T5 + Ky

EZ)\E—F E —4gE

Parameters: Most are unknown and must be estimated from data

A1 Target cell 1 production rate p1 Ave. virions infecting type 1 cell
Ao Target cell 2 production rate p2  Ave. virions infecting type 2 cell
d, Target cell 1 death rate bp  Max. birth rate immune effectors
d,  Target cell 2 death rate dr  Max. death rate immune effectors
k1  Population 1 infection rate K, Birth constant, immune effectors
ko  Population 2 infection rate K,; Death constant, immune effectors
¢ Virus natural death rate A Immune effector production rate
0 Infected cell death rate 0  Natural death rate, immune effectors
e  Population 1 treatment efficacy | Ny Virions produced per infected cell
my  Population 1 clearance rate f  Treatment efficacy reduction
mso  Population 2 clearance rate




Example 3: HIV Model for Characterization and Control Regimes

HIV Model: Several sources of uncertainty including viral measurement techniques

Example: Upper and lower limits to assay sensitivity

400
50

virus copies/ml

L -

1 1 I 1
0 200 400 600 800 1000 1200 1400 1600 1800
time (days)

=l .| -

UQ Questions:
« What are the uncertainties in parameters that cannot be directly measured?
« What is expected viral load?

« What is optimal treatment regime that is “safe” for patient?



Example 4: Portfolio Model

Example: Portfolio model

Take
Y =c1Q1 + c2Q2 c1=2,c =1
=2, —
Note: Q1 ~ N(0,0%) with o1 =1

e ()1 and @), represent hedged portfolios

~ N(0,02) with o9 = 3
e c; and c; amounts invested in each portfolio @ (0,02) 92

10 10 ‘ ‘ 5

UQ Questions:
 What is expected investment return?

« What is impact of market uncertainty on investment return?



Example 5: Viscoelastic Material Models

Application: Adaptive materials for legged robotics

° Figure: BI”y Oates VHB Membrane

-«—Inner Frame

| v 6.7x107° Hz
— — —0.047 Hz "

Nominal Stress (kPa)
3




Example 5: Viscoelastic Material Models

280

Material Behavior: Significant rate dependence nao | B 7x10S He
= — — —0.047 Hz
2 200 - 0.10 Hz
w | - 0.335 Hz L7
8 160} 0.50 Hz 7~
- : 2 ——0.67 Hz N
Finite-Deformation Model: 3 1200 AT Aot
€ 80 AP e
- Nonlinear non-affine 2 o AFET
« Hyperelastic energy function PR : y .
1 1\
N 2 2
5 = £ Geli = GeAfya I (BMoax — 1) + Ge Y (Aj + T)
; J
J
Parameters:
q = |Ge, Gey Amax, 17, B, 7] Uncertainty Quantification Goals:
q = [n, B,7]: Viscoelastic parameters « Quantify measurement errors.
G..: Crosslink network modulus * Quantify uncertainty in parameters.
G- Plateau modulus « Use statistics to quantify accuracy
o

. . of considered models.
Amax- Max stretch effective affine tube



Example 6: X-Ray Crystallography

X-ray Photoelectron Spectroscopy

Cu?2p,,
CuZ2p,,
* Reveal relative positions of atoms, their atomic _J\\JL

number, types of chemical bonds, etc. o Beam| = %0 90 9i0 a0

Binding Energy (eV)

Properties:

Intensity (a.u)

X-ray Diffraction

 Applications: determination of of DNA structure,

design of pharmaceuticals, etc.. 3D Crystal

350000 F -
300000 | X 1 Transmitted e
250000 | R . -
~ L 796 757 7581236 1237 1238 | Scanning Transmission Electron Microscopy

Uncertainty Quantification Goals:

Intensity (c
— — N
o n o
o o o
o o o
o o o
o o o

: . /] e Use Bayesian analysis to quantify
uncertainty associated with Rietveld
model and background.

21.51 21.52 40.61 40.62 40.63 |

i I ————— * Quantify heteroskedasticity and

10 2I0 3I0 40 50 .
20 (degrees) correlation of error structure.

-50000
0

Collaborators: Chris Fancher, Zhen Han, Igor Levin, Katherine Page, Brian Reich,
Alyson Wilson, Jacob Jones



Example 7. Quantum-Informed Continuum Models

Objectives: W Yy
« Compute energy about different strain states Y .

using density functional theory (DFT). ‘ .]]l ‘E'”T“d =
« Use DFT energy to calibrate Landau energy- B 2duER T

based continuum models.

L= Z(EljaElJ,K:Pn Q[J yer)

UQ and Sensitivity Analysis Goals:

» Quantify uncertainty introduced when internal

atomic and electronic degrees of freedom are DFT electronic structure simulation
neglected. 500 ‘ ‘ ‘ ‘
. . . . 400 95/% ClI
» Construct credible and prediction intervals to 95% Pl
300  —Continuum

~-DFT

quantify accuracy of continuum models.

« Employ sensitivity analysis to determine
influential model parameters.

0 0.2 0.4 0.6 0.8 1
P3

Landau energy



Experimental Uncertainties and Limitations

Examples: Experimental results are believed by everyone, except for the person
who ran the experiment, Max Gunzburger, Florida State University.

* Pharmaceutical and disease treatment strategies often too dangerous or
expensive for human tests or large segments of the population.

* Climate scenarios cannot be experimentally tested at the planet scale. Instead,
components such as volcanic forcing tested using measurements such as the
1991 Mount Pinatubo data.

» Subsurface hydrology data very limited due to infeasibility of drilling large
numbers of wells. Result: significant uncertainty regarding subsurface structures.
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Model Errors

Examples: Essentially, all models are wrong, but some are useful, George E.P. Box,
Industrial Statistician

* Numerous components of weather and climate models --- e.g., aerosol-induced
cloud formation, greenhouse gas processes --- occur on scales that are much smaller
than numerical grids used to solve the atmospheric equations of physics. These
processes represent highly complex physics that is only partially understood.

« Many biological applications are coupled, complex, highly nonlinear, and driven by
poorly understood or stochastic processes.

=

g

Horizontal Grid

Nizz\  Reflected Solar Incoming Outgoing (Latitude-Longitude) |
22\ Radiation, . Sola'ro 'ﬁn wave
% 9 ; adial
i 342Wm"‘" 235W':1':|"
: Vertical Grid )
& f 40 (Height or Pressure) |
Emitted by /& . Almospheric
Atmosphere J Window
i I\ Aadadt Greenhouse Physical Processes in a Model

solar  terrestrial
radiation radiation
4

87 Atmosphere

S50
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Input Uncertainties

Note: Essentially, all models are wrong, but some are useful, George E.P. Box,
Industrial Statistician

* Phenomenological models used to represent processes such as turbulence in
weather, climate and nuclear reactor models have nonphysical parameters whose
values and uncertainties must be determined using measured data.

 Forcing and feedback mechanisms in climate models serve as boundary inputs.
These parameterized phenomenological relations introduce both model and
parameter uncertainties.

400

350

300

CO, (ppm), N,O (ppb)

Concentrations of Greenhouse Gases from 0 to 2005

Carbon Dioxode (CO,)
Methane (CH,)

—— Nitrous Oxide (N,0)

250 =" ===

|

0.5

B e
Medieval Warm Period
’ - <4

Little Ice Age
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T
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Data from thermometers (red) and from tree rings,
corals, ice cores and historical records (blue),
|
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1200
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Numerical Errors

Note: Computational results are believed by no one, except the person who wrote
the code, Max Gunzburger, Florida State University.

» Roundoff, discretization or approximation errors; e.g., mesh for nuclear subchannel
code COBRA-TF is on the order of subchannel between rods.

* Bugs or coding errors;

« Bit-flipping, hardware failures and uncertainty associated with future exascale and
gquantum computing;

« Grids required for numerical solutions of field equations in applications such as
weather or climate models (e.g., 50~km) are much larger than the scale of physics

being modeled (e.g., turbulence or greenhouse gases).
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Steps in Uncertainty Quantification

Note: Uncertainty quantification requires synergy between statistics, mathematics

and application area.

Input Representation

Local Sensitivity Analysis

Global Sensitivity Analysis

| I

Parameter Selection

—*| Model Discrepancy

T

Surrogate Models

Sparse Grids |—>

Model Calibration

|

|

Stochastic Spectral Methods

I

Uncertainty Propagation

Sparse Grids




Modeling Issues

Model Qualification

[ Reality I

A A

Analysis

\ 4

Conceptual Model }

A

Model
Validation

Computer
Simulation

] Programming

[Computer Model }

Model Verification




Verification Process

Conceptual Model

/ ‘Correct’” Answer

Computational
Model *Analytic solutions
*Highly resolved
v numerical
Computational solutions
Solution Verification Test *Benchmark
solutions

Verification: The process of determining that a model implementation
accurately represents the developer’ s conceptual description of the
model and the solution to the model.

Note: Verification deals with mathematics



Validation Process

Real World
Conceptual
Model ‘Correct’” Answer
l Provided by
Experimental Data
Computational
Model *Benchmark cases
*System analysis
\ 4
Computational |« .| °Statistical analysis
Solution Validation
Process

Validation: The process of determining the degree to which a model is an
accurate representation of the real world from the perspective of the intended
model users.

Note: Validation deals with physics and statistics



Validation Metrics

Experiment Model

\

—/

Response

m  Experiment
—— Model

Response

‘Viewgraph’ Norm

+ Experiment
—$— Model

Input

Numerical Error

Response

Input

Deterministic

m  Experiment
—— Model

Input

Nondeterministic
Computation

Response

$ Experiment
—o— Model

Input

Experimental
Uncertainty



