
Quantum-Informed Continuum Models

Lead	Titanate	Zirconate	(PZT)

DFT	Electronic	Structure	Simulation	

Landau	energy

 (P) = ↵1P2 + ↵11P4 + ↵111P6

UQ and SA Issues:
• Is 6th order term required to accurately 
characterize material behavior?

• Note: Determines molecular structure

Objectives:
• Employ density function theory (DFT) to 

construct/calibrate continuum energy relations.

– e.g., Landau energy
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Global Sensitivity Analysis: Analysis of Variance
Sobol’ Representation: Y = f (q)

f (q) = f0 +
pX

i=1

fi(qi) +
X

i6i<j6p

fij(qi , qj) + · · ·+ f12···p(q1, ... , qp)

= f0 +
pX

i=1

X

|u|=i

fu(qu)

where 

Typical Assumption:  q1, q2, ... , qp independent. Then
Z

�
fu(qu)fv (qv )⇢(q)dq = 0 for u 6= v

) var[f (q)] =
pX

i=1

X

|u|=i

var[fu(qu)]

Su =
var[fu(qu)]

var[f (q)]
, Tu =

X

v✓u

Sv

Sobol’ Indices:  

Note:
Magnitude of Si , Ti quantify

contributions of qi to var[f (q)]

f0 =

Z

�
f (q)⇢(q)dq = E[f (q)]

fi(qi) = E[f (q)|qi ]- f0

fij(qi , qj) = E[f (q)|qi , qj ]- fi(qi)- fj(qj)- f0



Global Sensitivity Analysis
Example: Quantum-informed continuum model

Question: Do we use 4th or 6th-order Landau energy?

Parameters:
q = [↵1,↵11,↵111]

Global Sensitivity Analysis:

Conclusion:
↵

111

insignificant and can be fixed

 (P, q) = ↵1P2 + ↵11P4 + ↵111P6

↵1 ↵11 ↵111

Sk 0.62 0.39 0.01
Tk 0.66 0.38 0.06
µ⇤

k 0.17 0.07 0.03
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Global Sensitivity Analysis
Example: Quantum-informed continuum model

Question: Do we use 4th or 6th-order Landau energy?

Parameters:
q = [↵1,↵11,↵111]

Global Sensitivity Analysis:

Conclusion:
↵

111

insignificant and can be fixed

 (P, q) = ↵1P2 + ↵11P4 + ↵111P6

Problem: We obtain different distributions 
when we perform Bayesian inference with 
fixed non-influential parameters
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µ⇤

k 0.17 0.07 0.03
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Global Sensitivity Analysis
Example: Quantum-informed continuum model

Question: Do we use 4th or 6th-order Landau energy?

Parameters:
q = [↵1,↵11,↵111]

Global Sensitivity Analysis:

Problem:
• Parameters correlated

• Cannot fix ↵111

↵11

↵1

Note: Must accommodate correlation

 (P, q) = ↵1P2 + ↵11P4 + ↵111P6

↵
11↵1 ↵11 ↵111

Sk 0.62 0.39 0.01
Tk 0.66 0.38 0.06
µ⇤

k 0.17 0.07 0.03



Global Sensitivity Analysis: Analysis of Variance
Sobol’ Representation:

One Solution: Take variance to obtain 

f (q) = f0 +
pX

i=1

X

|u|=i

fu(qu)

Sobol’ Indices:

Su =
cov[fu(qu), f (q)]

var[f (q)]

Pros:
• Provides variance decomposition 

that is analogous to independent 
case

Cons:
• Indices can be negative and difficult 

to interpret

• Often difficult to determine underlying 
distribution

• Monte Carlo approximation often 
prohibitively expensive.Alternative: Construct active subspaces

• Can accommodate parameter correlation

• Often effective in high-dimensional space; e.g., p = 7700 for neutronics example

var[f (q)] =
pX

i=1

X

|u|=i

cov[fu(qu), f (q)]

Additional Goal: Use Bayesian analysis on active subspace to construct posterior 
densities for physical parameters.



Example: 
• Varies most in [0.7, 0.3] direction

• No variation in orthogonal direction

Active Subspaces

Note: 
• Functions may vary significantly in only a few directions

• “Active” directions may be linear combination of inputs

y = exp(0.7q
1

+ 0.3q
2

)

!

q 2
q1

A Bit of History: 
• Often attributed to Russi (2010).
• Concept same as identifiable subspaces 
from systems and control; e.g., Reid (1977).

• For linearly parameterized problems, active subspace given by SVD or QR; 
Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912).  
See 1993 SIAM Review paper by Stewart.



Gradient-Based Active Subspace Construction
Active Subspace: Consider

and

Construct outer product

Partition eigenvalues:

Rotated Coordinates:

Active Variables Active Subspace: Range of eigenvectors in

f = f (q) , q 2 Q ✓ Rp

rqf (q) =

@f
@q1

, · · · ,
@f
@qp

�T

C =

Z
(rqf )(rqf )T⇢dq

C = W⇤W T

⇤ =


⇤1

⇤2

�
, W = [W1 W2]

y = W T
1 q 2 Rn and z = W T

2 q 2 Rp-n

W1

• E.g., see [Constantine, SIAM, 2015; 
Stoyanov & Webster, IJUQ, 2015]

⇢(q): Distribution of input parameters q



Gradient-Based Active Subspace Construction
Active Subspace: Consider

and

Construct outer product

Partition eigenvalues:

Rotated Coordinates:

Active Variables Active Subspace: Range of eigenvectors in

f = f (q) , q 2 Q ✓ Rp

rqf (q) =

@f
@q1

, · · · ,
@f
@qp

�T

C =

Z
(rqf )(rqf )T⇢dq

C = W⇤W T

⇤ =


⇤1

⇤2

�
, W = [W1 W2]

y = W T
1 q 2 Rn and z = W T

2 q 2 Rp-n

W1

• E.g., see [Constantine, SIAM, 2015; 
Stoyanov & Webster, IJUQ, 2015]

Question: How sensitive are 
results to distribution, which 
is typically not known?

⇢(q): Distribution of input parameters q



Gradient-Based Active Subspace Construction
Active Subspace: Construction based on random sampling 

3. Approximate outer product

One Goal: Develop efficient algorithm for codes that do not have adjoint capabilities 

Strategy: Algorithm based on initialized adaptive Morris indices 

Note: Finite-difference approximations tempting but not effective for high-D  

1. Draw M independent samples {qj } from ⇢

2. Evaluate rqfj = rqf (qj)

C ⇡ eC =
1
M

MX

j=1

(rqfj)(rqfj)T

Note:

eC = GGT
where G = 1p

M
[rqf

1

, ... ,rqfM ]

4. Take SVD of G = W
p
⇤V T

• Active subspace of dimension n is first n columns of W



Morris Screening: Random Sampling of Approximated Derivatives
Example: Consider uniformly distributed parameters on

Elementary Effect:

Global Sensitivity Measures: r samples

µ⇤
i =

1
r

rX

j=1

|d j
i (q)|

�2
i =

1
r - 1

rX

j=1

⇣
d j

i (q)- µi

⌘2
, µi =

1
r

rX

j=1

d j
i (q)

di =
f (qj +�ei)- f (qj)

�

Adaptive Algorithm:
• Use SVD to adapt stepsizes 
and directions to reflect active 
subspace.

• Reduce dimension of 
differencing as active subspace 
is discovered.
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Note: Gets us to moderate-D but initialization required for high-D


