Quantum-Informed Continuum Models

Objectives:

- Employ density function theory (DFT) to construct/calibrate continuum energy relations.
- e.g., Landau energy

$$
\psi(P)=\alpha_{1} P^{2}+\alpha_{11} P^{4}+\alpha_{111} P^{6}
$$

Landau energy

UQ and SA Issues:

- Is $6^{\text {th }}$ order term required to accurately characterize material behavior?
- Note: Determines molecular structure

Lead Titanate Zirconate (PZT)

DFT Electronic Structure Simulation

Global Sensitivity Analysis: Analysis of Variance
Sobol' Representation: $Y=f(q)$

$$
\begin{aligned}
f(q) & =f_{0}+\sum_{i=1}^{p} f_{i}\left(q_{i}\right)+\sum_{i \leqslant i<j \leqslant p} f_{i j}\left(q_{i}, q_{j}\right)+\cdots+f_{12 \ldots p}\left(q_{1}, \ldots, q_{p}\right) \\
& =f_{0}+\sum_{i=1}^{p} \sum_{|u|=i} f_{u}\left(q_{u}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{0}=\int_{\Gamma} f(q) \rho(q) d q=\mathbb{E}[f(q)] \\
& f_{i}\left(q_{i}\right)=\mathbb{E}\left[f(q) \mid q_{i}\right]-f_{0}
\end{aligned}
$$

$$
f_{i j}\left(q_{i}, q_{j}\right)=\mathbb{E}\left[f(q) \mid q_{i}, q_{j}\right]-f_{i}\left(q_{i}\right)-f_{j}\left(q_{j}\right)-f_{0}
$$

Typical Assumption: $q_{1}, q_{2}, \ldots, q_{p}$ independent. Then

$$
\begin{aligned}
& \int_{\Gamma} f_{u}\left(q_{u}\right) f_{v}\left(q_{v}\right) \rho(q) d q=0 \quad \text { for } u \neq v \\
& \Rightarrow \operatorname{var}[f(q)]=\sum_{i=1}^{p} \sum_{|u|=i} \operatorname{var}\left[f_{u}\left(q_{u}\right)\right]
\end{aligned}
$$

Sobol' Indices:

$$
S_{u}=\frac{\operatorname{var}\left[f_{u}\left(q_{u}\right)\right]}{\operatorname{var}[f(q)]} \quad, \quad T_{u}=\sum_{v \subseteq u} S_{v}
$$

Note: Magnitude of S_{i}, T_{i} quantify contributions of q_{i} to $\operatorname{var}[f(q)]$

Global Sensitivity Analysis

Example: Quantum-informed continuum model
Question: Do we use $4^{\text {th }}$ or $6^{\text {th }}$-order Landau energy?

$$
\psi(P, q)=\alpha_{1} P^{2}+\alpha_{11} P^{4}+\alpha_{111} P^{6}
$$

Parameters:

$$
q=\left[\alpha_{1}, \alpha_{11}, \alpha_{111}\right]
$$

Landau energy

Global Sensitivity Analysis:

	α_{1}	α_{11}	α_{111}
S_{k}	0.62	0.39	0.01
T_{k}	0.66	0.38	0.06
$\mu_{k}^{* *}$	0.17	0.07	0.03

DFT Electronic Structure Simulation

Conclusion:

α_{111} insignificant and can be fixed

Global Sensitivity Analysis

Example: Quantum-informed continuum model
Question: Do we use $4^{\text {th }}$ or $6^{\text {th }}$-order Landau energy?

$$
\psi(P, q)=\alpha_{1} P^{2}+\alpha_{11} P^{4}+\alpha_{111} P^{6}
$$

Parameters:

$$
q=\left[\alpha_{1}, \alpha_{11}, \alpha_{111}\right]
$$

Global Sensitivity Analysis:

	α_{1}	α_{11}	α_{111}
S_{k}	0.62	0.39	0.01
T_{k}	0.66	0.38	0.06
μ_{k}^{*}	0.17	0.07	0.03

Conclusion:

α_{111} insignificant and can be fixed

Problem: We obtain different distributions when we perform Bayesian inference with fixed non-influential parameters

Global Sensitivity Analysis

Example: Quantum-informed continuum model
Question: Do we use $4^{\text {th }}$ or $6^{\text {th }}$-order Landau energy?

$$
\psi(P, q)=\alpha_{1} P^{2}+\alpha_{11} P^{4}+\alpha_{111} P^{6} \quad \text { Problem: }
$$

Parameters:

$$
q=\left[\alpha_{1}, \alpha_{11}, \alpha_{111}\right]
$$

Global Sensitivity Analysis:

	α_{1}	α_{11}	α_{111}
S_{k}	0.62	0.39	0.01
T_{k}	0.66	0.38	0.06
μ_{k}^{*}	0.17	0.07	0.03

Note: Must accommodate correlation

Global Sensitivity Analysis: Analysis of Variance

Sobol' Representation:

$$
f(q)=f_{0}+\sum_{i=1}^{p} \sum_{|u|=i} f_{u}\left(q_{u}\right)
$$

One Solution: Take variance to obtain

$$
\operatorname{var}[f(q)]=\sum_{i=1}^{p} \sum_{|u|=i} \operatorname{cov}\left[f_{u}\left(q_{u}\right), f(q)\right]
$$

Sobol' Indices:

$$
S_{u}=\frac{\operatorname{cov}\left[f_{u}\left(q_{u}\right), f(q)\right]}{\operatorname{var}[f(q)]}
$$

Alternative: Construct active subspaces

- Can accommodate parameter correlation
- Often effective in high-dimensional space; e.g., $p=7700$ for neutronics example

Additional Goal: Use Bayesian analysis on active subspace to construct posterior densities for physical parameters.

Active Subspaces

Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y=\exp \left(0.7 q_{1}+0.3 q_{2}\right)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

A Bit of History:

- Often attributed to Russi (2010).
- Concept same as identifiable subspaces from systems and control; e.g., Reid (1977).

- For linearly parameterized problems, active subspace given by SVD or QR; Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912). See 1993 SIAM Review paper by Stewart.

Gradient-Based Active Subspace Construction

Active Subspace: Consider

$$
f=f(q), q \in \mathcal{Q} \subseteq \mathbb{R}^{p}
$$

and

- E.g., see [Constantine, SIAM, 2015; Stoyanov \& Webster, IJUQ, 2015]

$$
\nabla_{q} f(q)=\left[\frac{\partial f}{\partial q_{1}}, \cdots, \frac{\partial f}{\partial q_{p}}\right]^{T}
$$

Construct outer product

$$
C=\int\left(\nabla_{q} f\right)\left(\nabla_{q} f\right)^{\top}(\rho d q)^{\rho(q): \text { Distribution of input parameters } q}
$$

Partition eigenvalues: $C=W \wedge W^{T}$

$$
\Lambda=\left[\begin{array}{ll}
\Lambda_{1} & \\
& \Lambda_{2}
\end{array}\right], W=\left[\begin{array}{ll}
W_{1} & W_{2}
\end{array}\right]
$$

Rotated Coordinates:

$$
y_{\Omega}=W_{1}^{T} q \in \mathbb{R}^{n} \quad \text { and } \quad z=W_{2}^{T} q \in \mathbb{R}^{p-n}
$$

Active Variables \quad Active Subspace: Range of eigenvectors in W_{1}

Gradient-Based Active Subspace Construction

Active Subspace: Consider

$$
f=f(q), q \in \mathcal{Q} \subseteq \mathbb{R}^{p}
$$

and

- E.g., see [Constantine, SIAM, 2015; Stoyanov \& Webster, IJUQ, 2015]

$$
\nabla_{q} f(q)=\left[\frac{\partial f}{\partial q_{1}}, \cdots, \frac{\partial f}{\partial q_{p}}\right]^{T}
$$

Construct outer product

$$
\left.C=\int\left(\nabla_{q} f\right)\left(\nabla_{q} f\right)^{\top} \rho d q\right)^{\rho}
$$

$\rho(q)$: Distribution of input parameters q
Question: How sensitive are results to distribution, which is typically not known?

$$
\Lambda=\left[\begin{array}{ll}
\Lambda_{1} & \\
& \Lambda_{2}
\end{array}\right], W=\left[\begin{array}{ll}
W_{1} & W_{2}
\end{array}\right]
$$

Rotated Coordinates:

$$
y_{r}=W_{1}^{T} q \in \mathbb{R}^{n} \quad \text { and } \quad z=W_{2}^{T} q \in \mathbb{R}^{p-n}
$$

Active Variables \quad Active Subspace: Range of eigenvectors in W_{1}

Gradient-Based Active Subspace Construction

Active Subspace: Construction based on random sampling

1. Draw M independent samples $\left\{q^{j}\right\}$ from ρ
2. Evaluate $\nabla_{q} f_{j}=\nabla_{q} f\left(q^{j}\right)$
3. Approximate outer product

$$
C \approx \widetilde{C}=\frac{1}{M} \sum_{j=1}^{M}\left(\nabla_{q} f_{j}\right)\left(\nabla_{q} f_{j}\right)^{T}
$$

Note: $\widetilde{C}=G G^{T}$ where $G=\frac{1}{\sqrt{M}}\left[\nabla_{q} f_{1}, \ldots, \nabla_{q} f_{M}\right]$
4. Take SVD of $G=W \sqrt{\Lambda} V^{T}$

- Active subspace of dimension n is first n columns of W

One Goal: Develop efficient algorithm for codes that do not have adjoint capabilities
Note: Finite-difference approximations tempting but not effective for high-D
Strategy: Algorithm based on initialized adaptive Morris indices

Morris Screening: Random Sampling of Approximated Derivatives

Example: Consider uniformly distributed parameters on $\Gamma=[0,1]^{p}$

Elementary Effect:

$$
d_{i}=\frac{f\left(q^{j}+\Delta e_{i}\right)-f\left(q^{j}\right)}{\Delta}
$$

Global Sensitivity Measures: r samples

$$
\begin{aligned}
& \mu_{i}^{*}=\frac{1}{r} \sum_{j=1}^{r}\left|d_{i}^{j}(q)\right| \\
& \sigma_{i}^{2}=\frac{1}{r-1} \sum_{j=1}^{r}\left(d_{i}^{j}(q)-\mu_{i}\right)^{2} \quad, \quad \mu_{i}=\frac{1}{r} \sum_{j=1}^{r} d_{i}^{j}(q)
\end{aligned}
$$

Note: Gets us to moderate-D but initialization required for high-D

Adaptive Algorithm:

- Use SVD to adapt stepsizes and directions to reflect active subspace.
- Reduce dimension of differencing as active subspace is discovered.

