Quantum-Informed Continuum Models

Objectives:

- Employ density function theory (DFT) to construct/calibrate continuum energy relations.
 - e.g., Landau energy

UQ and SA Issues:

- Is 6th order term required to accurately characterize material behavior?
- Note: Determines molecular structure

Lead Titanate Zirconate (PZT)

DFT Electronic Structure Simulation

Global Sensitivity Analysis: Analysis of Variance Sobol' Representation: Y = f(q)

$$f(q) = f_{0} + \sum_{i=1}^{p} f_{i}(q_{i}) + \sum_{i \leq i < j \leq p} f_{ij}(q_{i}, q_{j}) + \dots + f_{12\dots p}(q_{1}, \dots, q_{p})$$

$$= f_{0} + \sum_{i=1}^{p} \sum_{|u|=i} f_{u}(q_{u})$$
where
$$f_{0} = \int_{\Gamma} f(q)\rho(q)dq = \mathbb{E}[f(q)]$$

$$f_{i}(q_{i}) = \mathbb{E}[f(q)|q_{i}] - f_{0}$$

$$f_{ij}(q_{i}, q_{j}) = \mathbb{E}[f(q)|q_{i}, q_{j}] - f_{i}(q_{i}) - f_{j}(q_{j}) - f_{0}$$

Typical Assumption: $q_1, q_2, ..., q_p$ independent. Then

$$\int_{\Gamma} f_u(q_u) f_v(q_v) \rho(q) dq = 0 \quad \text{for } u \neq v$$
$$\Rightarrow \operatorname{var}[f(q)] = \sum_{i=1}^{p} \sum_{|u|=i} \operatorname{var}[f_u(q_u)]$$

Sobol' Indices:

$$S_u = rac{\mathrm{var}[f_u(q_u)]}{\mathrm{var}[f(q)]}$$
 , $T_u = \sum_{v \subset u} S_v$

Note: Magnitude of S_i , T_i quantify contributions of q_i to var[f(q)]

Global Sensitivity Analysis

Example: Quantum-informed continuum model

 $\psi(P,q) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6$

Conclusion:

 α_{111} insignificant and can be fixed

DFT Electronic Structure Simulation

Global Sensitivity Analysis

Example: Quantum-informed continuum model

Question: Do we use 4th or 6th-order Landau energy?

 $\psi(\textbf{\textit{P}},\textbf{\textit{q}}) = \alpha_1 \textbf{\textit{P}}^2 + \alpha_{11} \textbf{\textit{P}}^4 + \alpha_{111} \textbf{\textit{P}}^6$

Parameters:

 $q = [\alpha_1, \alpha_{11}, \alpha_{111}]$

Global Sensitivity Analysis:

	α_1	α_{11}	α ₁₁₁
S_k	0.62	0.39	0.01
T_k	0.66	0.38	0.06
μ_k^*	0.17	0.07	0.03

Conclusion:

 α_{111} insignificant and can be fixed

Problem: We obtain different distributions when we perform Bayesian inference with fixed non-influential parameters

Global Sensitivity Analysis

Example: Quantum-informed continuum model

Question: Do we use 4th or 6th-order Landau energy?

$$\psi(P, q) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6$$

Parameters:

 $q = [\alpha_1, \alpha_{11}, \alpha_{111}]$

Global Sensitivity Analysis:

	α ₁	α_{11}	α ₁₁₁
S_k	0.62	0.39	0.01
T_k	0.66	0.38	0.06
μ_k^*	0.17	0.07	0.03

Note: Must accommodate correlation

Problem:

- Parameters correlated
- Cannot fix α_{111}

Global Sensitivity Analysis: Analysis of Variance

Sobol' Representation:

$$f(q) = f_0 + \sum_{i=1}^{p} \sum_{|u|=i} f_u(q_u)$$

One Solution: Take variance to obtain

$$var[f(q)] = \sum_{i=1}^{p} \sum_{|u|=i} cov[f_u(q_u), f(q)]$$

Sobol' Indices:

$$S_u = \frac{\operatorname{cov}[f_u(q_u), f(q)]}{\operatorname{var}[f(q)]}$$

Alternative: Construct active subspaces

Can accommodate parameter correlation

Pros:

 Provides variance decomposition that is analogous to independent case

Cons:

- Indices can be negative and difficult to interpret
- Often difficult to determine underlying distribution
- Monte Carlo approximation often prohibitively expensive.
- Often effective in high-dimensional space; e.g., p = 7700 for neutronics example

Additional Goal: Use Bayesian analysis on active subspace to construct posterior densities for physical parameters.

Active Subspaces

Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y = \exp(0.7q_1 + 0.3q_2)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

A Bit of History:

- Often attributed to Russi (2010).
- Concept same as *identifiable subspaces* from systems and control; e.g., Reid (1977).

• For linearly parameterized problems, active subspace given by SVD or QR; Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912). See 1993 *SIAM Review* paper by Stewart.

Gradient-Based Active Subspace Construction

Active Subspace: Consider

$$f=f(q)$$
 , $q\in \mathbb{Q}\subseteq \mathbb{R}^{
ho}$

and

$$\nabla_q f(q) = \left[\frac{\partial f}{\partial q_1}, \cdots, \frac{\partial f}{\partial q_p}\right]^7$$

- Construct outer product

$$C = \int (\nabla_q f) (\nabla_q f)^T \rho dq^{\prime}$$

• E.g., see [Constantine, SIAM, 2015; Stoyanov & Webster, *IJUQ*, 2015]

 $\rho(q)$: Distribution of input parameters q

Partition eigenvalues: $C = W \wedge W^T$

$$\Lambda = \begin{bmatrix} \Lambda_1 & \\ & \Lambda_2 \end{bmatrix}, \quad W = \begin{bmatrix} W_1 & W_2 \end{bmatrix}$$

Rotated Coordinates:

$$y = W_1^T q \in \mathbb{R}^n$$
 and $z = W_2^T q \in \mathbb{R}^{p-n}$

Active Variables

Active Subspace: Range of eigenvectors in W_1

Gradient-Based Active Subspace Construction

Active Subspace: Consider

$$f=f(q)$$
 , $q\in \mathbb{Q}\subseteq \mathbb{R}^{p}$

and

$$\nabla_q f(q) = \left[\frac{\partial f}{\partial q_1}, \cdots, \frac{\partial f}{\partial q_p}\right]^T$$

Construct outer product

 $C = \int (\nabla_q f) (\nabla_q f)^T \rho dq^{\prime}$

Partition eigenvalues: $C = W \Lambda W^T$

$$\Lambda = \begin{bmatrix} \Lambda_1 & \\ & \Lambda_2 \end{bmatrix}, W = \begin{bmatrix} W_1 & W_2 \end{bmatrix}$$

Rotated Coordinates:

$$y = W_1^T q \in \mathbb{R}^n$$
 and $z = W_2^T q \in \mathbb{R}^{p-n}$

Active Variables

Active Subspace: Range of eigenvectors in W_1

 E.g., see [Constantine, SIAM, 2015; Stoyanov & Webster, *IJUQ*, 2015]

 $\rho(q)$: Distribution of input parameters q

Question: How sensitive are results to distribution, which is typically not known?

Gradient-Based Active Subspace Construction

Active Subspace: Construction based on random sampling

- 1. Draw *M* independent samples $\{q^j\}$ from ρ
- 2. Evaluate $\nabla_q f_j = \nabla_q f(q^j)$
- 3. Approximate outer product

$$C \approx \widetilde{C} = \frac{1}{M} \sum_{j=1}^{M} (\nabla_q f_j) (\nabla_q f_j)^T$$

Note: $\widetilde{C} = GG^T$ where $G = \frac{1}{\sqrt{M}} [\nabla_q f_1, \dots, \nabla_q f_M]$

- 4. Take SVD of $G = W \sqrt{\Lambda} V^T$
 - Active subspace of dimension *n* is first *n* columns of *W*

One Goal: Develop efficient algorithm for codes that do not have adjoint capabilities **Note**: Finite-difference approximations tempting but not effective for high-D

Strategy: Algorithm based on initialized adaptive Morris indices

Morris Screening: Random Sampling of Approximated Derivatives

Example: Consider uniformly distributed parameters on $\Gamma = [0, 1]^p$

Elementary Effect:

$$d_i = rac{f(q^j + \Delta e_i) - f(q^j)}{\Delta}$$

Global Sensitivity Measures: r samples

$$\mu_i^* = \frac{1}{r} \sum_{j=1}^r |d_i^j(q)|$$

$$\sigma_i^2 = \frac{1}{r-1} \sum_{j=1}^r \left(d_i^j(q) - \mu_i \right)^2 \quad , \quad \mu_i = \frac{1}{r} \sum_{j=1}^r d_j^j(q)$$

Adaptive Algorithm:

• Use SVD to adapt stepsizes and directions to reflect active subspace.

• Reduce dimension of differencing as active subspace is discovered.

Note: Gets us to moderate-D but initialization required for high-D