Math 540: Project 2

Due Thursday, February 22

1. We show in Example 3.5 that the boundary value problem

$$
\begin{aligned}
& \frac{d^{2} T_{s}}{d x^{2}}=\frac{2(a+b)}{a b} \frac{h}{k}\left[T_{s}(x)-T_{a m b}\right] \\
& \frac{d T_{s}}{d x}(0)=\frac{\Phi}{k} \quad, \quad \frac{d T_{s}}{d x}(L)=\frac{h}{k}\left[T_{a m b}-T_{s}(L)\right]
\end{aligned}
$$

models the steady state temperature $T_{s}(x)$ of an uninsulated rod with source heat flux Φ at $x=0$ and ambient air temperature $T_{\text {amb }}$. The model parameters are $q=[\Phi, h, k]$, where h is the convective heat transfer coefficient and k is the thermal conductivity.

The analytic solution is

$$
y(x, q)=T_{s}(x, q)=c_{1}(q) e^{-\gamma x}+c_{2}(q) e^{\gamma x}+T_{a m b},
$$

where $\gamma=\sqrt{\frac{2(a+b) h}{a b k}}$ and

$$
c_{1}(q)=-\frac{\Phi}{k \gamma}\left[\frac{e^{\gamma L}(h+k \gamma)}{e^{-\gamma L}(h-k \gamma)+e^{\gamma L}(h+k \gamma)}\right] \quad, \quad c_{2}(q)=\frac{\Phi}{k \gamma}+c_{1}(q) .
$$

We suppress the parameter dependence of γ to clarify the notation. In Chapter 7, we will estimate the parameter values $k=2.37, h=0.00191$ and $\Phi=-18.4$, which you can use here. The measured ambient room temperature is $T_{a m b}=21.29^{\circ} \mathrm{C}$ and the rod has cross-sectional dimensions $a=b=$ 0.95 cm and length $L=70 \mathrm{~cm}$.
(a) Use finite-differences to approximate the sensitivity relations $\frac{\partial y}{\partial \Phi}, \frac{\partial y}{\partial h}$ and $\frac{\partial y}{\partial k}$ and plot your solutions at the 15 equally spaced spatial locations $x_{i}=x_{0}+(i-1) \Delta x$, where $x_{0}=10 \mathrm{~cm}$ and $\Delta x=4 \mathrm{~cm}$. Use a discrete line-type so your plot looks like Figure 7.4. Additionally, compute the analytic sensitivity relation $\frac{\partial y}{\partial \Phi}$ and plot with your finite-difference solution to compare their accuracy. If you have time, compute and compare the analytic sensitivities for h and k.
(b) For the parameters $q=[\Phi, h, k]$, construct the sensitivity matrix $\chi_{i j}(q)=\frac{\partial y\left(x_{i}, q\right)}{\partial q_{j}}$ and the matrix $V=\chi^{T} \chi$. Compute the rank of V and discuss the identifiability of the complete parameter set. Discuss why you can deduce this result based on the model.
(c) As detailed in the text, the thermal conductivity k is well-documented for aluminum and copper. Fix this parameter and repeat your analysis for the parameters $q=[\Phi, h]$. Are they identifiable?

2. Consider the Helmholtz energy

$$
\psi(P, q)=\alpha_{1} P^{2}+\alpha_{11} P^{4}+\alpha_{111} P^{6}
$$

where P is the polarization and $q=\left[\alpha_{1}, \alpha_{11}, \alpha_{111}\right]$ are parameters. You can take nominal values to be $\alpha_{1}=-389.4, \alpha_{11}=761.3$ and $\alpha_{111}=61.5$. When sampling for global sensitivity analysis, you should sample each parameter from $\mathcal{U}(0,1)$ and map to the interval $\left[\alpha_{\ell}, \alpha_{r}\right]$ that is 20% above and below the nominal value. For uniformly sampling on the interval $[a, b]$, one would use the command $\mathrm{q}=\mathrm{a}+(\mathrm{b}-\mathrm{a}) * \mathrm{rand}(1,1)$.
(a) Plot the energy for P in the interval $[-0.8,0.8]$. Do you observe the double-well behavior?
(b) Analytically compute the sensitivity matrix χ and matrix $V=\chi^{T} \chi$ using 17 equally spaced polarization values in the domain $[0,0.8]$. Compute the rank of V and discuss the identifiability of the parameters q.
(c) Use Morris screening with forward differences and $r=50, \Delta=1 / 20$, to compute μ_{i}^{*} and σ_{i}^{2}. You can use the scalar response

$$
\begin{equation*}
y(q)=\int_{0}^{0.8} \psi(P, q) d P \tag{1}
\end{equation*}
$$

which you can compute analytically. To check your solution, show that $\mu^{*} \approx\left[\frac{\partial y}{\partial \alpha_{1}}, \frac{\partial y}{\partial \alpha_{11}}, \frac{\partial y}{\partial \alpha_{11}}\right]$. Explain why you would expect $\sigma_{i}^{2} \approx 0$ for a linearly parameterized problem such as this one. Which parameter is least influential?
(d) Use the Saltelli algorithm 15.10 .1 to approximate the Sobol sensitivity indices S_{i} and $S_{T_{i}}$. Show that

$$
\sum_{i=1}^{3} S_{i} \approx 1
$$

What does this indicate about the second-order effects $S_{i j}$ and is this to be expected for a linearly parameterized problem? Use kde.m to plot a kernel density estimate of y_{A} computed in Step 3 of the algorithm. Now fix any noninfluential parameters at their nominal values and recompute y_{A}. Plot the new kde on the same plot as the 3-parameter case and discuss your results and determine if there is a discrepancy with (b). We will revisit this problem when we do Bayesian inference.
3. Exercise 15.5: Do only the Saltelli-Sobol analysis. You can use the following commands to numerically solve the ode and approximate the integral. Here A is the matrix in the Saltelli algorithm.

```
tf = 5;
dt = 0.01;
t_data = 0:dt:tf;
YO = [SO; IO; RO];
M = 1000;
alpha = 0.2;
beta = 15;
A = rand(M,4);
A(:,2) = betarnd(alpha,beta,M,1);
ode_options = odeset('RelTol',1e-6);
for j=1:M
    params = A(j,:);
    [t,Y] = ode45(@SIR_rhs,t_data,Y0,ode_options,params);
    y_A(j) = sum(dt*Y(:,3));
end
```

The associated function is
$\%$
\% SIR_rhs

```
%
    function dy = SIR_rhs(t,y,params);
    N = 1000;
    gamma = params(1);
    k = params(2);
    r = params(3);
    mu = params(4);
    dy = [mu*N - mu*y(1) - gamma*k*y(2)*y(1);
        gamma*k*y(2)*y(1) - (r + mu)*y(2);
        r*y(2) - mu*y(3)];
```

