MATLAB ® / R Reference

David Hiebeler Dept. of Mathematics and Statistics University of Maine Orono, ME 04469-5752 http://www.math.umaine.edu/~hiebeler

I wrote the first version of this reference during Spring 2007, as I learned R while teaching my Modeling & Simulation course at the University of Maine. The course covers population and epidemiological modeling, including deterministic and stochastic models in discrete and continuous time, along with spatial models. Earlier versions of the course had used MATLAB. In Spring 2007, some biology graduate students in the class asked if they could use R; I said "yes." My colleague Bill Halteman was a great help as I frantically learned R to stay ahead of the class. As I went along, I started building this reference for my own use. In the end, I was pleasantly surprised that most things I do in MATLAB have fairly direct equivalents in R. I was also inspired to write this after seeing the "R for Octave Users" reference written by Robin Hankin, and have continued to add to the document.

This reference is organized into general categories. There is also a MATLAB index and an R index at the end, which should make it easy to look up a command you know in one of the languages and learn how to do it in the other (or if you're trying to read code in whichever language is unfamiliar to you, allow you to translate back to the one you are more familiar with). The index entries refer to the item numbers in the first column of the reference document, rather than page numbers.

Any corrections, suggested improvements, or even just notification that the reference has been useful are appreciated. I hope all the time I spent on this will prove useful for others in addition to myself and my students. Note that sometimes I don't necessarily do things in what you may consider the "best" way in a particular language. I often tried to do things in a similar way in both languages, and where possible I've avoided the use of MATLAB toolboxes or R packages which are not part of the core distributions. But if you believe you have a "better" way (either simpler, or more computationally efficient) to do something, feel free to let me know.

For those transitioning from MATLAB to R, you should check out the **pracma** package for R ("Practical Numerical Math Routines") — it has more than 200 functions which emulate MATLAB functions, which you may find very handy.

Acknowledgements: Thanks to Juan David Ospina Arango, Berry Boessenkool, Robert Bryce, Thomas Clerc, Alan Cobo-Lewis, Richard Cotton, Stephen Eglen, Andreas Handel, Niels Richard Hansen, Luke Hartigan, Roger Jeurissen, David Khabie-Zeitoune, Seungyeon Kim, Michael Kiparsky, Isaac Michaud, Andy Moody, Ben Morin, Lee Pang, Manas A. Pathak, Rachel Rier, Rune Schjellerup Philosof, Rachel Rier, William Simpson, David Winsemius, Corey Yanofsky, and Jian Ye for corrections and contributions.

Permission is granted to make and distribute verbatim copies of this manual provided this permission notice is preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.

Contents

1	Help			
2	Entering/building/indexing matrices 2.1 Cell arrays and lists 2.2 Structs and data frames	3 6 7		
3	Computations 3.1 Basic computations 3.2 Complex numbers 3.3 Matrix/vector computations 3.4 Root-finding 3.5 Function optimization/minimization 3.6 Numerical integration / quadrature 3.7 Curve fitting	8 9 9 16 16 17 18		
4	Conditionals, control structure, loops	19		
5	Functions, ODEs	23		
6	Probability and random values	25		
7	Graphics 7.1 Various types of plotting	29 29 37 38		
8	Working with files	39		
9	Miscellaneous 9.1 Variables 9.2 Strings and Misc.	40 40 41		
10	Spatial Modeling	45		
In	dex of MATLAB commands and concepts	46		
In	index of R commands and concepts 53			

1 Help

No.	Description	Matlab	R
1	Show help for a function (e.g.	help sqrt, or helpwin sqrt to see	help(sqrt) or ?sqrt
	sqrt	it in a separate window	
2	Show help for a built-in key-	help for	help('for') or ?'for'
	word (e.g. for)		
3	General list of many help top-	help	library() to see available libraries,
	ics		or library(help='base') for very
			long list of stuff in base package which
			you can see help for
4	Explore main documentation	doc or helpbrowser (previously it	help.start()
	in browser	was helpdesk, which is now being	
		phased out)	
5	Search documentation for	lookfor binomial	help.search('binomial')
	keyword or partial keyword		
	(e.g. functions which refer to		
	"binomial")		

2 Entering/building/indexing matrices

No.	Description	Matlab	R
6	Enter a row vector \vec{v} =	v=[1 2 3 4]	v=c(1,2,3,4) or alternatively
	$\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$		v=scan() then enter "1 2 3 4" and
			press Enter twice (the blank line
			terminates input)
7	Enter a column vector $\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$	[1; 2; 3; 4]	c(1,2,3,4)
			and column vectors.)
8	Enter a matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	[1 2 3 ; 4 5 6]	To enter values by row: matrix(c(1,2,3,4,5,6), nrow=2, byrow=TRUE) To enter values by column: matrix(c(1,4,2,5,3,6), nrow=2)
9	Access an element of vector \mathbf{v}	v(3)	v[3]
10	Access an element of matrix A	A(2,3)	A[2,3]
11	Access an element of matrix A using a single index: in- dices count down the first col- umn, then down the second column, etc.	A(5)	A[5]
12	Build the vector $\begin{bmatrix} 2 & 3 & 4 & 5 & 6 & 7 \end{bmatrix}$	2:7	2:7
13	Build the vector $[7\ 6\ 5\ 4\ 3\ 2]$	7:-1:2	7:2
14	Build the vector $\begin{bmatrix} 2 & 5 & 8 & 11 & 14 \end{bmatrix}$	2:3:14	seq(2,14,3)

No.	Description	Matlab	R
15	Build a vector containing	linspace(a,b,n)	<pre>seq(a,b,length.out=n) or just</pre>
	n equally-spaced values be-		<pre>seq(a,b,len=n)</pre>
	tween a and b inclusive		
16	Build a vector containing	logspace(a,b,n)	10 ^{seq(a,b,len=n)}
	n logarithmically equally-		
	spaced values between 10^a		
	and 10^b inclusive		
17	Build a vector of length k	zeros(k,1) (for a column vector) or	rep(0,k)
	containing all zeros	zeros(1,k) (for a row vector)	
18	Build a vector of length k	j*ones(k,1) (for a column vector)	rep(j,k)
	containing the value j in all	or j*ones(1,k) (for a row vector)	
10	positions		
19	Build an $m \times n$ matrix of zeros	zeros(m,n)	matrix(0,nrow=m,ncol=n) or just
	D 11		matrix(0,m,n)
20	Build an $m \times n$ matrix con-	j*ones(m,n)	matrix(j,nrow=m,ncol=n) or just
- 91	taining <i>j</i> in an positions		matrix(j,m,n)
21	$n \times n$ identity matrix I_n	diam(11)	diag(II)
	ing elements of vector u as di	diag(v)	diag(v, nrow=iength(v)) (Note: If
	agonal optrios		you are sure the length of vector \mathbf{v} is 2 or more, you can simply say diag(y)
23	Extract diagonal elements of	v=diag(A)	$u=diag(\Lambda)$
25	matrix A	V-ulag(h)	V-ulag(N)
24	"Glue" two matrices a1 and	[a1_a2]	chind(a1 a2)
21	$\mathbf{a2}$ (with the same number of		
	rows) side-by-side		
25	"Stack" two matrices a1 and	[a1: a2]	rbind(a1.a2)
	a2 (with the same number of		
	columns) on top of each other		
26	Given $r \times c$ matrix A , build an	repmat(A,m,n)	<pre>kronecker(matrix(1,m,n),A) or</pre>
	$rm \times cn$ matrix by sticking m		<pre>matrix(1,m,n) %x% A</pre>
	copies of A horizontally and		
	n copies vertically		
27	Given vectors \mathbf{x} and \mathbf{y} of	<pre>[X,Y]=meshgrid(x,y)</pre>	Use the meshgrid function from
	lengths m and n respectively,		the pracma package as follows:
	build $n \times m$ matrices X whose		<pre>tmp=meshgrid(x,y); X=tmp\$X;</pre>
	rows are copies of \mathbf{x} and \mathbf{Y}		Y=tmp\$Y Or do the following:
	whose columns are copies of		m = length(x): $n = length(y)$.
	У		X=matrix(rep(x,each=n),nrow=n):
			Y=matrix(rep(v,m),nrow=n)
28	Given vectors \mathbf{x} and \mathbf{y} of	bsxfun(@(x,y)	<pre>outer(exp(-x), sin(3*y))</pre>
	lengths m and n respectively,	exp(-x).*sin(3*y), x, y)'	
	build $n \times m$ matrices A where	Note that \mathbf{x} must be a row vector	
	element $a_{ij} = e^{-x_i} \sin(3y_j)$	and \mathbf{y} must be a column vector;	
		use $\mathbf{x}(:)$ and $\mathbf{y}(:)$ to ensure this if	
		necessary	
29	Reverse the order of elements	v(end:-1:1)	rev(v)
	in vector \mathbf{v}		

No.	Description	Matlab	R
30	Column 2 of matrix A	A(:,2)	A[,2] Note: that gives the result as a vector. To make the result a $m \times 1$ matrix instead, do A[,2,drop=FALSE]
31	Row 7 of matrix \mathbf{A}	A(7,:)	A[7,] Note: that gives the result as a vector. To make the result a $1 \times n$ matrix instead, do A[7,,drop=FALSE]
32	All elements of A as a vector, column-by-column	A(:) (gives a column vector)	c(A)
33	Rows 2–4, columns 6–10 of \mathbf{A} (this is a 3 × 5 matrix)	A(2:4,6:10)	A[2:4,6:10]
34	A 3×2 matrix consisting of rows 7, 7, and 6 and columns 2 and 1 of A (in that order)	A([7 7 6], [2 1])	A[c(7,7,6),c(2,1)]
35	Circularly shift the rows of matrix A down by s_1 ele- ments, and right by s_2 ele- ments	circshift(A, [s1 s2])	<pre>circshift(A, c(s1,s2)) where circshift is in the pracma pack- age. Or modulo arithmetic on indices will work: m=dim(A)[1]; n=dim(A)[2]; A[(1:m-s1-1)%/m+1, (1:n-s2-1)%/n+1]</pre>
36	Flip the order of elements in each row of matrix A	fliplr(A)	<pre>fliplr(A) using fliplr from the pracma package, or t(apply(A,1,rev)) or A[,ncol(A):1]</pre>
37	Flip the order of elements in each column of matrix A	flipud(A)	<pre>flipud(A) using flipud from the pracma package, or apply(A,2,rev) or A[nrow(A):1,]</pre>
38	Given a single index ind into an $m \times n$ matrix A , compute the row r and column c of that position (also works if ind is a vector)	<pre>[r,c] = ind2sub(size(A), ind)</pre>	<pre>arrayInd(ind, c(m,n)) or r = ((ind-1) %% m) + 1 c = floor((ind-1) / m) + 1 or r=row(A)[ind]; c=col(A)[ind]</pre>
39	Given the row \mathbf{r} and column \mathbf{c} of an element of an $m \times n$ matrix \mathbf{A} , compute the single index ind which can be used to access that element of \mathbf{A} (also works if \mathbf{r} and \mathbf{c} are vec- tors)	<pre>ind = sub2ind(size(A), r, c)</pre>	ind = (c-1)*m + r
40	Given equal-sized vectors \mathbf{r} and \mathbf{c} (each of length k), set elements in rows (given by \mathbf{r}) and columns (given by \mathbf{c}) of matrix \mathbf{A} equal to 12. That is, k elements of A will be modified.	<pre>inds = sub2ind(size(A),r,c); A(inds) = 12;</pre>	inds = cbind(r,c) A[inds] = 12
41	Truncate vector \mathbf{v} , keeping only the first 10 elements	v = v(1:10)	v = v[1:10], or length(v) = 10 also works

No.	Description	Matlab	R
42	Extract elements of vector \mathbf{v}	v(a:end)	v[a:length(v)]
	from position \mathbf{a} to the end		
43	All but the k^{th} element of	v([1:(k-1) (k+1):end]) or	v[-k]
	vector \mathbf{v}	v([k]) = [] (but this will modify	
		the original vector \mathbf{v})	
44	All but the j^{th} and k^{th} ele-	<pre>v(~ismember(1:length(v),[j k]))</pre>	v[c(-j,-k)]
	ments of vector \mathbf{v}	or $v([j k]) = []$ (but this will	
		modify the original vector \mathbf{v})	
45	Reshape matrix A , making it	A = reshape(A,m,n)	$\dim(A) = c(m,n)$
	an $m \times n$ matrix with ele-		
	ments taken columnwise from		
	the original A (which must		
	have mn elements)		
46	Extract the lower-triangular	L = tril(A)	L = A; L[upper.tri(L)]=0
	portion of matrix A		
47	Extract the upper-triangular	U = triu(A)	U = A; U[lower.tri(U)]=0
	portion of matrix A		
48	Enter $n \times n$ Hilbert matrix H	hilb(n)	Hilbert(n), but this is part of the
	where $H_{ij} = 1/(i+j-1)$		Matrix package which you'll need to
			install (see item 348 for how to in-
			stall/load packages).
49	Enter an n -dimensional array,	reshape(1:24, 3, 4, 2) or	array(1:24, c(3,4,2)) (Note that
	e.g. a $3 \times 4 \times 2$ array with the	reshape(1:24, [3 4 2])	a matrix is 2-D, i.e. rows and
	values 1 through 24		columns, while an array is more gen-
			erally N -D)

2.1 Cell arrays and lists

No.	Description	Matlab	R
50	Build a vector v of length n , capable of containing differ- ent data types in different el- ements (called a <i>cell array</i> in MATLAB, and a <i>list</i> in R)	<pre>v = cell(1,n) In general, cell(m,n) makes an $m \times n$ cell array. Then you can do e.g.: v{1} = 12 v{2} = 'hi there' v{3} = rand(3)</pre>	<pre>v = vector('list',n) Then you can do e.g.: v[[1]] = 12 v[[2]] = 'hi there' v[[3]] = matrix(runif(9),3)</pre>
51	Extract the i^{th} element of a cell/list vector \mathbf{v}	<pre>w = v{i} If you use regular indexing, i.e. w = v(i), then w will be a 1 × 1 cell matrix containing the contents of the ith element of v.</pre>	<pre>w = v[[i]] If you use regular indexing, i.e. w = v[i], then w will be a list of length 1 containing the contents of the ith element of v.</pre>
52	Set the name of the i^{th} element in a list.	(MATLAB does not have names asso- ciated with elements of cell arrays.)	<pre>names(v)[3] = 'myrandmatrix' Use names(v) to see all names, and names(v)=NULL to clear all names.</pre>

2.2 Structs and data frames

No.	Description	Matlab	R
53	Create a matrix-like object	avals=2*ones(1,6);	v=c(1,5,3,2,3,7); d=data.frame(
	with different named columns	yvals=6:-1:1; v=[1 5 3 2 3 7];	cbind(a=2, yy=6:1), v)
	(a <i>struct</i> in MATLAB, or a	d=struct('a',avals,	
	data frame in R)	'yy', yyvals, 'fac', v);	

Note that I (surprisingly) don't use R for statistics, and therefore have very little experience with data frames (and also very little with MATLAB structs). I will try to add more to this section later on.

3 Computations

3.1 Basic computations

No	. Description	Matlab	R
54	a+b, a-b, ab, a/b	a+b, a-b, a*b, a/b	a+b, a-b, a*b, a/b
55	\sqrt{a}	sqrt(a)	sqrt(a)
56	a^b	a^b	a^b
57	a (note: for complex ar-	abs(a)	abs(a)
	guments, this computes the		
	modulus)		
58	e^a	exp(a)	exp(a)
59	$\ln(a)$	log(a)	log(a)
60	$\log_2(a), \log_{10}(a)$	log2(a), log10(a)	log2(a), log10(a)
61	$\sin(a), \cos(a), \tan(a)$	sin(a), cos(a), tan(a)	<pre>sin(a), cos(a), tan(a)</pre>
62	$\sin^{-1}(a), \cos^{-1}(a), \tan^{-1}(a)$	asin(a), acos(a), atan(a)	asin(a), acos(a), atan(a)
63	$\sinh(a), \cosh(a), \tanh(a)$	<pre>sinh(a), cosh(a), tanh(a)</pre>	<pre>sinh(a), cosh(a), tanh(a)</pre>
64	$\sinh^{-1}(a), \qquad \cosh^{-1}(a),$	asinh(a), acosh(a), atanh(a)	asinh(a), acosh(a), atanh(a)
	$\tanh^{-1}(a)$		
65	$n \mod k$ (modulo arith-	mod(n,k)	n %% k
	metic)		
66	Round to nearest integer	round(x)	round(x) (Note: R uses IEC 60559
			standard, rounding 5 to the even digit
			— so e.g. round(0.5) gives $0, \text{ not } 1.$)
67	Round down to next lowest	floor(x)	floor(x)
	integer		
68	Round up to next largest in-	ceil(x)	ceiling(x)
	teger		
69	Round toward zero	fix(x)	trunc(x)
70	Sign of $x (+1, 0, \text{ or } -1)$	<pre>sign(x) (Note: for complex values,</pre>	sign(x) (Does not work with com-
		this computes x/abs(x).)	plex values)
71	Error function $\operatorname{erf}(x) =$	erf(x)	2*pnorm(x*sqrt(2))-1
	$(2/\sqrt{\pi})\int_0^x e^{-t^2} dt$		
72	Complementary er-	erfc(x)	2*pnorm(x*sqrt(2),lower=FALSE)
	ror function $\operatorname{cerf}(x) =$		
	$(2/\sqrt{\pi}) \int_{\pi}^{\infty} e^{-t^2} dt = 1 \text{-} \text{erf}(x)$		
73	Inverse error function	erfinv(x)	anorm((1+x)/2)/sart(2)
74	Inverse complementary error	erfcinv(x)	anorm(x/2, lower=FALSE)/sqrt(2)
	function		4
75	Binomial coefficient	nchoosek(n.k)	choose(n.k)
	$\binom{n}{n} = n! / (n! (n-k)!)$		
	$\left(\begin{array}{c} k \end{array} \right) = \frac{n!}{(n!(n-\kappa)!)}$		
76	Bitwise logical operations	bitcmp, bitand, bitor, bitxor,	bitwNot, bitwAnd, bitwOr, bitwXor,
	(NOT, AND, OR, XOR,	bitshift	bitwShiftL, bitwShiftR
	bit-shifting)		

Note: the various functions above (logarithm, exponential, trig, abs, and rounding functions) all work with vectors and matrices, applying the function to each element, as well as with scalars.

3.2 Complex numbers

No.	Description	Matlab	R
77	Enter a complex number	1+2i	1+2i
78	Modulus (magnitude)	abs(z)	abs(z) or Mod(z)
79	Argument (angle)	angle(z)	Arg(z)
80	Complex conjugate	conj(z)	Conj(z)
81	Real part of z	real(z)	Re(z)
82	Imaginary part of z	<pre>imag(z)</pre>	Im(z)

3.3 Matrix/vector computations

No.	Description	Matlab	R
83	Vector dot product $\vec{x} \cdot \vec{y} = \vec{x}^T \vec{y}$	dot(x,y)	<pre>sum(x*y)</pre>
84	Vector cross product $\vec{x} \times \vec{y}$	cross(x,y)	Not in base R, but you can use cross(x,y) after loading the pracma package (see item 348 for how to install/load packages)
85	Matrix multiplication AB	A * B	A %*% B
86	Element-by-element multiplication of A and B	A .* B	A * B
87	Transpose of a matrix, A^T	A' (This is actually the complex conjugate (i.e. Hermitian) transpose; use A.' for the non-conjugate transpose if you like; they are equivalent for real matrices.)	t(A) for transpose, or Conj(t(A)) for conjugate (Hermitian) transpose
88	Solve $A\vec{x} = \vec{b}$	A\b Warning: if there is no solution, MATLAB gives you a least-squares "best fit." If there are many solu- tions, MATLAB just gives you one of them.	solve(A,b) Warning: this only works with square invertible matrices.
89	Reduced echelon form of A	rref(A)	R does not have a function to do this
90	Determinant of \mathbf{A}	det(A)	det(A)
91	Inverse of A	inv(A)	solve(A)
92	Trace of \mathbf{A}	trace(A)	<pre>sum(diag(A))</pre>
93	AB^{-1}	A/B	A %*% solve(B)
94	Element-by-element division of A and B	A ./ B	A / B
95	$A^{-1}B$	A\B	solve(A,B)
96	Square the matrix A	A^2	A %*% A
97	Raise matrix A to the k^{th} power	A^k	(No easy way to do this in R other than repeated multiplication A %*% A %*% A)
98	Raise each element of A to the k^{th} power	A.^k	A^k
99	Rank of matrix A	rank(A)	qr(A)\$rank
100	Set \mathbf{w} to be a vector of eigenvalues of \mathbf{A} , and \mathbf{V} a matrix containing the corresponding eigenvectors	[V,D]=eig(A) and then w=diag(D) since MATLAB returns the eigenval- ues on the diagonal of D	<pre>tmp=eigen(A); w=tmp\$values; V=tmp\$vectors</pre>

No.	Description	Matlab	R
101	Permuted LU factorization of	[L,U,P]=lu(A) then the matrices	<pre>tmp=expand(lu(Matrix(A)));</pre>
	a matrix	satisfy $PA = LU$. Note that this	L=tmp\$L; U=tmp\$U; P=tmp\$P then
		works even with non-square matrices	the matrices satisfy $A = PLU$, i.e.
			$P^{-1}A = LU$. Note that the lu and
			expand functions are part of the Ma-
			trix package (see item 348 for how to
			install/load packages). Also note that
			this doesn't seem to work correctly
			with non-square matrices. L, U, and D will be of close Matrix rather than
			P will be of class Matrix rather than along matrix: to make them the latter
			instead do I - ac matrix (tmp\$I)
			II=as matrix(tmp\$II) and
			P=as matrix(tmp\$P) above
102	Singular-value decomposi-	$[P.S.\Omega] = svd(A. econ')$	tmp=syd(A): P=tmp\$u: Q=tmp\$y:
102	tion: given $m \times n$ matrix		S=diag(tmp\$d)
	A with $k = \min(m, n)$, find		
	$m \times k$ matrix P with or-		
	thonormal columns, diagonal		
	$k \times k$ matrix S, and $n \times k$		
	matrix Q with orthonormal		
	columns so that $PSQ^T = A$		
103	Schur decomposi-	[Q,T]=schur(A)	<pre>tmp=Schur(Matrix(A)); T=tmp@T;</pre>
	tion of square matrix,		Q=tmp@Q Note that Schur is part of
	$A = QTQ^* = QTQ^{-1} \text{ where }$		the Matrix package (see item 348 for
	Q is unitary (i.e. $Q^*Q = I$)		how to install/load packages). T and
	and I is upper triangular; $O^* = \overline{O^T}$ is the Hermitian		Q will be of class Matrix rather than
	$Q = Q^2$ is the Hermitian (conjugate) transpose		instead do T-ag matrix (tmp@T) and
	(conjugate) transpose		Π and Π a
104	Cholesky factorization of a	B = chol(A)	R = chol(A)
104	square symmetric positive		
	definite matrix $A = R^*R$.		
	where R is upper-triangular		
105	QR factorization of matrix A ,	[Q,R]=qr(A) satisfying $QR = A$, or	<pre>z=qr(A); Q=qr.Q(z); R=qr.R(z);</pre>
	where Q is orthogonal (sat-	[Q,R,E]=qr(A) to do permuted QR	E=diag(n)[,z\$pivot] (where n is
	isfying $QQ^T = I$ and R is	factorization satisfying $AE = QR$	the number of columns in A) gives
	upper-triangular		permuted QR factorization satisfying
			AE = QR
106	Vector norms	norm(v,1) for 1-norm $\ \vec{v}\ _1$,	${\sf R}$ does not have a ${\bf norm}$ func-
		norm(v,2) for Euclidean norm	tion for vectors; only one for
		$\ \vec{v}\ _2$, norm(v, inf) for infinity-norm	matrices. But the following will
		$ v _{\infty}$, and norm(v,p) for <i>p</i> -norm	work: norm(matrix(v), '1') for
		$\ \vec{v}\ _p = \left(\sum v_i ^p\right)^{1/p}$	1-norm $ v _1$, norm(matrix(v),'i')
			10r infinity-norm $ v _{\infty}$, and
			$\sup(abs(v) p)(1/p)$ for p-norm
			$ v _p = (\sum v_i ^p)^{1/p}$

No.	Description	Matlab	R
107	Matrix norms	norm(A,1) for 1-norm $ A _1$,	norm(A,'1') for 1-norm $ A _1$,
		norm(A) for 2-norm $ A _2$,	<pre>max(svd(A,0,0)\$d) for 2-norm</pre>
		norm(A,inf) for infinity-norm	$ A _2$, norm(A,'i') for infinity-
		$ A _{\infty}$, and norm(A,'fro') for	norm $ A _{\infty}$, and norm(A,'f') for
		Frobenius norm $\left(\sum_{i} (A^T A)_{ii}\right)^{1/2}$	Frobenius norm $\left(\sum_{i} (A^T A)_{ii}\right)^{1/2}$
108	Condition number $cond(A) =$	cond(A,1) (Note: MATLAB also has	1/rcond(A,'1')
	$ A _1 A^{-1} _1$ of A, using 1-	a function rcond(A) which computes	
	norm	reciprocal condition estimator using	
		the 1-norm)	
109	Condition number $cond(A) =$	cond(A,2)	kappa(A, exact=TRUE) (leave out
	$ A _2 A^{-1} _2$ of A, using 2-		the "exact=TRUE" for an esti-
	norm		mate)
110	Condition number $cond(A) =$	<pre>cond(A,inf)</pre>	1/rcond(A,'I')
	$ A _{\infty} A^{-1} _{\infty}$ of A , using		
	infinity-norm		
111	Orthnormal basis for null	null(A)	null(A) with this function provided
	space of matrix A		by the pracma package
112	Orthnormal basis for im-	orth(A)	orth(A) with this function provided
	age/range/column space of		by the pracma package
	matrix A		
113	Mean of all elements in vector	<pre>mean(v) for vectors, mean(A(:)) for</pre>	<pre>mean(v) or mean(A)</pre>
	or matrix	matrices	
114	Means of columns of a matrix	mean(A)	colMeans(A)
115	Means of rows of a matrix	mean(A,2)	rowMeans(A)
116	Standard deviation of all ele-	<pre>std(v) for vectors, std(A(:)) for</pre>	sd(v) for vectors, sd(A) for matrices.
	ments in vector or matrix	matrices. This normalizes by $n-1$.	This normalizes by $n-1$.
		Use $std(v,1)$ to normalize by n .	
117	Standard deviations of	std(A). This normalizes by $n-1$.	apply(A,2,sd). This normalizes by
	columns of a matrix	Use std(A,1) to normalize by n	n-1. Note: in previous versions of
			R, sd(A) computed this.
118	Standard deviations of rows	std(A,0,2) to normalize by $n-1$,	apply(A,1,sd). This normalizes by
	of a matrix	std(A,1,2) to normalize by n	n-1.
119	Variance of all elements in	<pre>var(v) for vectors, var(A(:)) for</pre>	<pre>var(v) for vectors, var(c(A)) for</pre>
	vector or matrix	matrices. This normalizes by $n-1$.	matrices. This normalizes by $n-1$.
		Use $var(v, 1)$ to normalize by n .	
120	Variance of columns of a ma-	var(A). This normalizes by $n - 1$.	apply(A,2,var). This normalizes by
	trix	Use var(A,1) to normalize by n	n-1.
121	Variance of rows of a matrix	var(A,0,2) to normalize by $n-1$,	apply(A,1,var). This normalizes by
		var(A,1,2) to normalize by n	n-1.
122	Mode of values in vector \mathbf{v}	mode(v) (chooses smallest value in	No simple function built in,
		case of a tie), or [m,f,c]=mode(v);	but some approaches are:
		c{1} (gives list of all tied values)	as.numeric(names(sort(-table(v)
)))[1] (chooses smallest
			value in case of a tie), or
			as.numeric(names(table(v))[
			<pre>table(v) == max(sort(table(v)))])</pre>
			(gives vector of all tied val-
			ues), or tmp = unique(v);
			<pre>tmp[which.max(tabulate(match(v,</pre>
			tmp)))] (in case of a tie, chooses
			whichever tied value occurs first in \mathbf{v})

No.	Description	Matlab	R
123	Median of values in vector ${\bf v}$	median(v)	median(v)
124	Basic summary statistics of	<pre>summary(dataset(v)) Note: only</pre>	summary(v)
	values in vector \mathbf{v}	works if \mathbf{v} is a column vector; use	
		<pre>summary(dataset(v(:))) to make</pre>	
		it work regardless of whether \mathbf{v} is a	
		row or column vector.	
125	Covariance for two vectors of	$cov(v,w)$ computes the 2 \times 2 co-	cov(v,w)
	observations	variance matrix; the off-diagonal ele-	
		ments give the desired covariance	
126	Covariance matrix, giving co-	cov(A)	<pre>var(A) or cov(A)</pre>
	variances between columns of		
	matrix A		
127	Given matrices A and B ,	I don't know of a direct way to	cov(A,B)
	build covariance matrix C	do this in Matlab. But one way is	
	where c_{ij} is the covariance be-	[Y,X]=meshgrid(std(B),std(A));	
	tween column i of A and col-	X.*Y.*corr(A,B)	
100	$\frac{\text{umn } j \text{ of } B}{D}$		
128	Pearson's linear correlation	$\operatorname{corr}(\mathbf{v},\mathbf{w})$ Note: \mathbf{v} and \mathbf{w}	cor(v,w)
	of motors a and m	must be column vectors. Or	
	of vectors v and w	both your and column yestors	
120	Kandall'a tau completion	both row and column vectors.	aan(x, x, mathed=) kandall)
129	statistic for vectors v and w	coll(V,w, type , kendall)	cor(v,w,method- kendarr)
130	Spearman's rho correlation	corr(y y 'type' 'spearman')	cor(w w method='spearman')
100	statistic for vectors \mathbf{v} and \mathbf{w}	corr(v,w, type , spearman)	cor(v,w,meenou spearman)
131	Pairwise Pearson's corre-	corr(A) The 'type' argument may	cor(A) The method argument may
101	lation coefficient between	also be used as in the previous two	also be used as in the previous two
	columns of matrix A	items	items
132	Matrix C of pairwise Pear-	corr(A,B) The 'type' argument	cor(A,B) The method argument
	son's correlation coefficients	may also be used as just above	may also be used as just above
	between each pair of columns	· ·	
	of matrices A and B, i.e. c_{ij}		
	is correlation between column		
	i of A and column j of B		
133	Sum of all elements in vector	<pre>sum(v) for vectors, sum(A(:)) for</pre>	<pre>sum(v) or sum(A)</pre>
	or matrix	matrices	
134	Sums of columns of matrix	sum(A)	colSums(A)
135	Sums of rows of matrix	sum(A,2)	rowSums(A)
136	Product of all elements in	prod(v) for vectors, prod(A(:)) for	prod(v) or prod(A)
107	vector or matrix	matrices	
137	Products of columns of ma-	prod(A)	apply(A,2,prod)
100	UTIX		
138	Products of rows of matrix	prod(A,2)	apply(A,1,prod)
139	Matrix exponential $e^{i} = \sum_{k=1}^{\infty} \frac{k}{k!}$	expm(A)	expm(Matrix(A)), but this is part of
	$\sum_{k=0} A^{*}/\kappa!$		the Iviatrix package which you'll need
			to install (see item 348 for now to in-
140	Cumulativo sum of volues in		stan/toau packages).
140	vector		
1/1	Cumulative sums of columns		ann lu(A 2 cumsum)
1.41	of matrix		appry(A,2,Cumoum)
	OI IIIdUIIX		

No.	Description	Matlab	R
142	Cumulative sums of rows of	cumsum(A,2)	<pre>t(apply(A,1,cumsum))</pre>
	matrix		
143	Cumulative sum of all ele-	<pre>cumsum(A(:))</pre>	cumsum(A)
	ments of matrix (column-by-		
	column)		
144	Cumulative product of ele-	cumprod(v) (Can also be used in the	cumprod(v) (Can also be used in the
145	ments in vector \mathbf{v}	various ways cumsum can)	various ways cumsum can)
145	Cumulative minimum or		cummin(v) or cummax(v)
	maximum of elements in	<pre>w=zeros(size(v)); w(1)=v(1);</pre>	
	vector v	<pre>for i=2:length(v)</pre>	
		w(i)=min(w(i-1),v(i));	
		end	
		This actually runs very efficiently be-	
		cause MATLAB optimizes /accelerates	
		simple for loops	
146	Differences between consecu-	diff(v)	diff(v)
	tive elements of vector \mathbf{v} . Re-		
	sult is a vector ${\bf w}$ 1 element		
	shorter than \mathbf{v} , where ele-		
	ment i of \mathbf{w} is element $i+1$		
	of \mathbf{v} minus element i of \mathbf{v}		
147	Make a vector \mathbf{y} the same size	z = [3 4]; y = z((x > 5)+1)	y = ifelse(x > 5, 4, 3)
	as vector \mathbf{x} , which equals 4	Or this will also work: $w=2^{+}\cos(\alpha i \pi a(w))$, $w(w)=5^{-}$	
	than 5 and equals 3 every	y=3*011es(size(x)); y(x>5)=4	
	where else (done via a vector-		
	ized computation).		
148	Minimum of values in vector	min(v)	min(v)
	v		
149	Minimum of all values in ma-	min(A(:))	min(A)
	trix A		
150	Minimum value of each col-	min(A) (returns a row vector)	apply(A,2,min) (returns a vector)
151	umn of matrix A	$min(\Lambda [] 0)$ (notume a column	ann lu (A 1 min) (naturna a matan)
101	matrix \mathbf{A}	vector)	apply (A, I, min) (leturns a vector)
152	Given matrices A and B ,	min(A,B)	pmin(A,B)
	compute a matrix where each		-
	element is the minimum of		
	the corresponding elements of		
	A and B		
153	Given matrix A and scalar	min(A,c)	pmin(A,c)
	c, compute a matrix where		
	each element is the minimum		
	on c and the corresponding element of \mathbf{A}		
154	Find minimum among all val-	$\min([\Lambda(\cdot)] \cdot B(\cdot)])$	min(A B)
101	ues in matrices \mathbf{A} and \mathbf{B}	······(·······························	
155	Find index of the first time	[y, ind] = min(v)	ind = which.min(v)
	$\min(\mathbf{v})$ appears in \mathbf{v} , and	-	
	store that index in ind		

Notes:

- MATLAB and R both have a max function (and R has pmax and which.max as well) which behaves in the same ways as min but to compute maxima rather than minima.
- Functions like exp, sin, sqrt etc. will operate on arrays in both MATLAB and R, doing the computations for each element of the matrix.

No.	Description	Matlab	R
156	Number of rows in A	size(A,1)	<pre>nrow(A) or dim(A)[1]</pre>
157	Number of columns in A	size(A,2)	<pre>ncol(A) or dim(A)[2]</pre>
158	Dimensions of A , listed in a	size(A)	dim(A)
	vector		
159	Number of elements in vector	length(v)	length(v)
	v		
160	Total number of elements in	numel(A)	length(A)
	matrix A		
161	Max. dimension of A	length(A)	<pre>max(dim(A))</pre>
162	Sort values in vector \mathbf{v}	sort(v)	sort(v)
163	Sort values in \mathbf{v} , putting	[s,idx]=sort(v)	<pre>tmp=sort(v,index.return=TRUE);</pre>
	sorted values in \mathbf{s} , and indices		s=tmp\$x; idx=tmp\$ix
	in \mathbf{idx} , in the sense that $\mathbf{s}[\mathbf{k}]$		
	= x[idx[k]]		
164	Sort the order of the rows of	sortrows(m)	m[order(m[,1]),]
	matrix \mathbf{m}	This sorts according to the first col-	This only sorts according to the first
		umn, then uses column 2 to break	column. To use column 2 to break
		ties, then column 3 for remaining	ties, and then column 3 to break fur-
		ties, etc. Complex numbers are	ther ties, do
		sorted by $abs(x)$, and ties are then	m[order(m[,1], m[,2], m[,3]),]
		broken by angle (x).	Complex numbers are sorted first by
			real part, then by imaginary part.
165	Sort order of rows of matrix	sortrows(m, [x y z])	m[order(m[,x], m[,y], m[,z]),]
	m , specifying to use columns		
	$\mathbf{x}, \mathbf{y}, \mathbf{z}$ as the sorting "keys"		

No.	Description	Matlab	R
166	Same as previous item, but	sortrows(m, [-x -y z])	<pre>m[order(-m[,x], -m[,y],</pre>
	sort in decreasing order for		m[,z]),]
	columns \mathbf{x} and \mathbf{y}		
167	Sort order of rows of matrix	[y,i] = sortrows(m)	i=order(m[1,]); y=m[i,]
	\mathbf{m} , and keep indices used for		
	sorting		
168	To count how many values in	sum((v > 4) & (v <= 7))	sum((v > 4) & (v <= 7))
	the vector \mathbf{v} are between 4		
	and 7 (inclusive on the upper		
1.00	end)		
169	Given vector \mathbf{v} , return list of	find(v > 5)	which(v > 5)
	indices of elements of \mathbf{v} which		
170	are greater than 5		
170	Given matrix A, return list	find(A > 5)	Which(A > 5)
	of indices of elements of A		
	ing single indexing		
171	Given matrix A generate	[r, c] = find(A > 5)	w = which(A > 5 arr ind=TRUE).
111	vectors \mathbf{r} and \mathbf{c} giving rows		r=w[.1]: c=w[.2]
	and columns of elements of A		,,,
	which are greater than 5		
172	Given vector \mathbf{x} , build a vector	unique(x) gives the values sorted	unique(x) gives the values in
	containing the unique values	numerically; unique(x, 'stable')	the order they appear in \mathbf{x} ;
	in \mathbf{x} (i.e. with duplicates re-	gives them in the order they appear	<pre>sort(unique(x)) builds a sorted set</pre>
	moved).	in \mathbf{x}	of unique values
173	Given vector \mathbf{x} (of presum-	<pre>v = unique(x); c = hist(x,v);</pre>	<pre>w=table(x); c=as.numeric(w);</pre>
	ably discrete values), build a		v=as.numeric(names(w))
	vector v listing unique val-		
	ues in x , and corresponding		
	times these values appear in		
	v		
174	Given vector \mathbf{x} (of presum-	[c.m] = hist(x,k)	w=hist(x_seq(min(x)_max(x))
111	ably continuous values), di-		<pre>length.out=k+1). plot=FALSE):</pre>
	vide the range of values into k		m=w\$mids: c=w\$counts
	equally-sized bins, and build		
	a vector \mathbf{m} containing the		
	midpoints of the bins and a		
	corresponding vector \mathbf{c} con-		
	taining the counts of values in		
	the bins		
175	Convolution / polynomial	conv(x,y)	<pre>convolve(x,rev(y),type='open')</pre>
	multiplication (given vectors		Note: the accuracy of this is not
	\mathbf{x} and \mathbf{y} containing polyno-		as good as MATLAB; e.g. doing
	lution is a vector containing		v=c(1,-1); for (1 in 2:20)
	coefficients of the product of		$t_{v} = c_{v} = c_{v$
	the two polynomials)		20 th -degree Wilkinson polynomial
	the two polynomiais)		$W(x) = \prod_{i=1}^{20} (x-i)$ gives a coefficient
			of ≈ -780.19 for x^{19} . rather than the
			correct value -210.

3.4 Root-finding

No.	Description	Matlab	R
176	Find roots of polynomial	roots(v)	polyroot(rev(v)) (This function
	whose coefficients are stored		really wants the vector to have the
	in vector \mathbf{v} (coefficients in \mathbf{v}		constant coefficient first in v; rev re-
	are highest-order first)		verses their order to achieve this.)
177	Find zero (root) of a function	Define function $f(x)$, then do	Define function $f(x)$, then do
	f(x) of one variable	<pre>fzero(f,x0) to search for a root</pre>	uniroot(f, c(a,b)) to find a root
		near x0 , or fzero(f,[a b]) to find	between a and b , assuming the sign
		a root between a and b , assuming	of $f(x)$ differs at $x = a$ and $x = b$.
		the sign of $f(x)$ differs at $x = a$	Default forward error tolerance (i.e.
		and $x = b$. Default forward error	error in x) is fourth root of machine
		tolerance (i.e. error in x) is machine	epsilon, $(\epsilon_{\rm mach})^{0.25}$. To specify e.g.
		epsilon $\epsilon_{\rm mach}$.	a tolerance of 2^{-52} , do uniroot(f,
			c(a,b), tol=2^-52).

3.5 Function optimization/minimization

No	Description	MATTAD	D
110.			
178	Find value <i>m</i> which mini-	Define function $f(\mathbf{x})$, then do	Define function $\mathbf{f}(\mathbf{x})$, then do
	mizes a function $f(x)$ of one	m = fminhnd(0f - h)	m = ontimizo(f c(o h)) (minimum
	variable within the interval	m - iminona(er, a, b)	m = optimize(1,c(a,b))@minimum
	from a to b		
179	Find value m which mini-	Define function $f(x,p1,p2)$, then use	Define function $f(x,p1,p2)$, then:
	mizes a function $f(x, p_1, p_2)$	an "anonymous function":	
	with given extra parameters		# first define values for pl
	(but minimization is only oc-	% first define values for p1	# and p2, and then do:
	curing over the first argu-	% and p2, and then do:	m = optimize(f, c(a,b), p1=p1,
	ment), in the interval from a	<pre>m=fminbnd(@(x) f(x,p1,p2),a,b)</pre>	p2=p2)\$minimum
	to b.		
180	Find values of x, y, z which	First write function $f(\mathbf{v})$ which ac-	First write function $f(\mathbf{v})$ which ac-
	minimize function $f(x, y, z)$.	cepts a vector argument \mathbf{v} containing	cepts a vector argument \mathbf{v} containing
	using a starting guess of $r =$	values of r u and z and returns the	values of r u and z and returns the
	1 $u = 22$ and $z = 3.4$	scalar value $f(x, y, z)$ then do:	scalar value $f(x, y, z)$ then do:
	1, y = 2.2, and z = 5.4.	Sealar value $f(x, y, z)$, then do.	Scalar value $f(x, y, z)$, then do.
		fminsearch(@f,[1 2.2 3.4])	optim(c(1,2.2,3.4),f)\$par
181	Find values of x, y, z	First write function f(v,p1,p2)	First write function f (v , p1 , p2) which
	which minimize function	which accepts a vector argument	accepts a vector argument \mathbf{v} contain-
	$f(x, y, z, p_1, p_2)$, using a	v containing values of x , y , and	ing values of x, y , and z , along with
	starting guess of $r = 1$	z along with the extra parame-	the extra parameters and returns the
	u = 2.2 and $z = 3.4$ where	ters and returns the scalar value	scalar value $f(x \mid y \mid z \mid p_1 \mid p_2)$ then do:
	the function takes some extra	$f(x y z p_1 p_2)$ then do:	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$
	parameters (useful e g for	$J(w, g, \sim, p_1, p_2),$ onen de.	optim(c(1,2.2,3.4), f, p1=p1,
	doing things like nonlinear	fminsearch(@f,[1 2.2 3.4],	p2=p2)\$par
	logat aquanage optimization	[], p1, p2)	
	reast-squares optimization		
	where you pass in some data	Or use an anonymous function:	
	vectors as extra parameters).		
		$f(x,p1,p2), \ldots$	
		[1 2.2 3.4])	

No.	Description	Matlab	R
182	Numerically integrate func-	quad(f,a,b) uses adaptive Simp-	integrate(f,a,b) uses adaptive
	tion $f(x)$ over interval from	son's quadrature, with a default	quadrature with default absolute
	a to b	absolute tolerance of 10^{-6} . To	and relative error tolerances being
		specify absolute tolerance, use	the fourth root of machine epsilon,
		quad(f,a,b,tol)	$(\epsilon_{\rm mach})^{0.25} \approx 1.22 \times 10^{-4}$. Tol-
			erances can be specified by using
			<pre>integrate(f,a,b, rel.tol=tol1,</pre>
			abs.tol=tol2). Note that the func-
			tion \mathbf{f} must be written to work even
			when given a vector of x values as its
			argument.
183	Simple trapezoidal numerical	<pre>trapz(x,y)</pre>	<pre>sum(diff(x)*(y[-length(y)]+</pre>
	integration using (x, y) values		y[-1])/2)
	in vectors \mathbf{x} and \mathbf{y}		

3.6 Numerical integration / quadrature

3.7 Curve fitting

No	Description	MATLAR	R
18/	Fit the line $u = c_1 x + c_2$ to	WATLAD	
104	data in vectors \mathbf{x} and \mathbf{y} .	<pre>p = polyfit(x,y,1)</pre>	p = coef(lm(y ~ x))
		The return vector \mathbf{p} has the coefficients in descending order, i.e. $\mathbf{p(1)}$ is c_1 , and $\mathbf{p(2)}$ is c_0 .	The return vector \mathbf{p} has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is c_0 , and $\mathbf{p}[2]$ is c_1 .
185	Fit the quadratic polynomial $y = c_2 x^2 + c_1 x + c_0$ to data in vectors x and y .	p = polyfit(x,y,2) The return vector p has the coeffi-	$p = coef(lm(y ~ x + I(x^2)))$ The return vector p has the coeffi-
		cients in descending order, i.e. $\mathbf{p}(1)$ is c_2 , $\mathbf{p}(2)$ is c_1 , and $\mathbf{p}(3)$ is c_0 .	cients in ascending order, i.e. $\mathbf{p}[1]$ is c_0 , $\mathbf{p}[2]$ is c_1 , and $\mathbf{p}[3]$ is c_2 .
186	Fit n^{th} degree polynomial $y = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0$ to data in vectors x and y .	p = polyfit(x,y,n) The return vector p has the coefficients in descending order, $p(1)$ is c^n , $p(2)$ is c^{n-1} , etc.	No simple built-in way. But this will work: coef(lm(as.formula(paste('y [~] , paste('I(x [^] , 1:n, ')', sep='', collapse='+'))))) This more concise "lower- level" method will also work: coef(lm.fit(outer(x,0:n,'^'),y)) Note that both of the above return the coefficients in ascending order. Also see the polyreg function in the mda package (see item 348 for how to install/load packages).
187	Fit the quadratic polynomial with zero intercept, $y = c_2 x^2 + c_1 x$ to data in vectors x and y .	(I don't know a simple way do this in MATLAB, other than to write a function which computes the sum of squared residuals and use fmin- search on that function. There is	$p=coef(lm(y \sim -1 + x + I(x^2)))$ The return vector p has the coefficients in ascending order, i.e. p[1] is
		Statistics Toolbox.)	c_1 , and $\mathbf{p}[2]$ is c_2 .
188	Fit natural cubic spline $(S''(x) = 0$ at both endpoints) to points (x_i, y_i) whose coordinates are in vectors x and y ; evaluate at points whose x coordinates are in vector xx , storing corresponding y's in yy	<pre>pp=csape(x,y,'variational'); yy=ppval(pp,xx) but note that csape is in MATLAB's Spline Toolbox</pre>	<pre>tmp=spline(x,y,method='natural', xout=xx); yy=tmp\$y</pre>
189	Fit cubic spline using Forsythe, Malcolm and Moler method (third deriva- tives at endpoints match third derivatives of exact cu- bics through the four points at each end) to points (x_i, y_i) whose coordinates are in vectors x and y ; evaluate at points whose x coordinates are in vector xx , storing corresponding y's in vv	I'm not aware of a function to do this in MATLAB	<pre>tmp=spline(x,y,xout=xx); yy=tmp\$y</pre>

No.	Description	Matlab	R
190	Fit cubic spline such that	<pre>pp=csape(x,y); yy=ppval(pp,xx)</pre>	I'm not aware of a function to do this
	first derivatives at endpoints	but csape is in MATLAB's Spline	in R
	match first derivatives of ex-	Toolbox	
	act cubics through the four		
	points at each end) to points		
	(x_i, y_i) whose coordinates are		
	in vectors \mathbf{x} and \mathbf{y} ; evaluate		
	at points whose x coordinates		
	are in vector xx , storing cor-		
	responding y 's in $\mathbf{y}\mathbf{y}$		
191	Fit cubic spline with periodic	<pre>pp=csape(x,y,'periodic');</pre>	<pre>tmp=spline(x,y,method=</pre>
	boundaries, i.e. so that first	yy=ppval(pp,xx) but csape is in	'periodic', xout=xx); yy=tmp\$y
	and second derivatives match	MATLAB's Spline Toolbox	
	at the left and right ends		
	(the first and last y values		
	of the provided data should		
	also agree), to points (x_i, y_i)		
	whose coordinates are in vec-		
	tors \mathbf{x} and \mathbf{y} ; evaluate at		
	points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in $\mathbf{y}\mathbf{y}$		
192	Fit cubic spline with "not-	<pre>yy=spline(x,y,xx)</pre>	I'm not aware of a function to do this
	a-knot" conditions (the first		in R
	two piecewise cubics coincide,		
	as do the last two), to points		
	(x_i, y_i) whose coordinates are		
	in vectors \mathbf{x} and \mathbf{y} ; evaluate		
	at points whose x coordinates		
	are in vector $\mathbf{x}\mathbf{x}$, storing cor-		
	responding y 's in $\mathbf{y}\mathbf{y}$		

4 Conditionals, control structure, loops

No.	Description	Matlab	R
193	"for" loops over values in a vector v (the vector v is of- ten constructed via a:b)	for i=v command1 command2 end	<pre>K If only one command inside the loop: for (i in v) command or for (i in v) command If multiple commands inside the loop: for (i in v) { command1 command2 }</pre>

No	Description	Matlab	R
194	"if" statements with no else		If only one command inside the clause:
	clause	if cond command1 command2 end	<pre>if (cond) command or if (cond) command If multiple commands: if (cond) { command1 command2 }</pre>
195	"if/else" statement	<pre>if cond command1 command2 else command3 command4 end Note: MATLAB also has an "elseif" statement, e.g.: if cond1 commands1 elseif cond2 commands2 elseif cond3 commands3 else commands4 end</pre>	<pre>If one command in clauses: if (cond) command1 else command2 or if (cond) cmd1 else cmd2 If multiple commands: if (cond) { command1 command2 } else { command3 command4 } Warning: the "else" must be on the same line as command1 or the "}" (when typed interactively at the com- mand prompt), otherwise R thinks the "if" statement was finished and gives an error. R does not have an "elseif" statement (though see item 147 for something re- lated), but you can do this: if (cond1) { commands1 } else if (cond2) { commands2 } else if (cond3) { commands3 } else { commands4 }</pre>

Logical comparisons which can be used on scalars in "if" statements, or which operate element-byelement on vectors/matrices:

MATLAB	R	Description
x < a	x < a	True if x is less than a
x > a	x > a	True if x is greater than a
x <= a	x <= a	True if x is less than or equal to a
x >= a	x >= a	True if x is greater than or equal to a
$\mathbf{x} == \mathbf{a}$	$\mathbf{x} == \mathbf{a}$	True if x is equal to a
x ~= a	x != a	True if x is not equal to a

Scalar logical operators:

Description	Matlab	R
a AND b	a && b	a && b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

The && and || operators are short-circuiting, i.e. && stops as soon as any of its terms are FALSE, and || stops as soon as any of its terms are TRUE.

Matrix logical operators (they operate element-by-element):

Description	Matlab	R
a AND b	a & b	a & b
a OR b	a b	a b
a XOR b	xor(a,b)	xor(a,b)
NOT a	~a	!a

No.	Description	Matlab	R
196	To test whether a scalar value	if ((x > 4) && (x <= 7))	if ((x > 4) && (x <= 7))
	\mathbf{x} is between 4 and 7 (inclu-		
	sive on the upper end)		
197	Count how many values in	sum((x > 4) & (x <= 7))	sum((x > 4) & (x <= 7))
	the vector \mathbf{x} are between 4		
	and 7 (inclusive on the upper		
	end)		
198	Test whether all values in	all(v)	all(v)
	a logical/boolean vector are		
	TRUE		
199	Test whether any values in	any(v)	any(v)
	a logical/boolean vector are		
	TRUE		

No.	Description	Matlab	R
200	"while" statements to do iter- ation (useful when you don't know ahead of time how many iterations you'll need). E.g. to add uniform ran- dom numbers between 0 and 1 (and their squares) until their sum is greater than 20:	<pre>mysum = 0; mysumsqr = 0; while (mysum < 20) r = rand; mysum = mysum + r; mysumsqr = mysumsqr + r^2; end</pre>	<pre>mysum = 0 mysumsqr = 0 while (mysum < 20) { r = runif(1) mysum = mysum + r mysumsqr = mysumsqr + r^2 } (As with "if" statements and "for" loops, the curly brackets are not nec- essary if there's only one statement in- side the "while" loop)</pre>
201	More flow control: these com- mands exit or move on to the next iteration of the inner- most while or for loop, re- spectively.	break and continue	break and next
202	"Switch" statements for inte- gers	<pre>switch (x) case 10 disp('ten') case {12,13} disp('dozen (bakers?)') otherwise disp('unrecognized') end</pre>	<pre>R doesn't have a switch statement ca- pable of doing this. It has a function which is fairly limited for integers, but can which do string matching. See ?switch for more. But a basic ex- ample of what it can do for integers is below, showing that you can use it to return different expressions based on whether a value is 1, 2, mystr = switch(x, 'one', 'two',</pre>

5 Functions, ODEs

L

No.	Description	Matlab	R
203	Implement a function add(x,y)	<pre>Put the following in add.m: function retval=add(x,y) retval = x+y; Then you can do e.g. add(2,3)</pre>	<pre>Enter the following, or put it in a file and source that file: add = function(x,y) { return(x+y) } Then you can do e.g. add(2,3). Note, the curly brackets aren't needed if your function only has one line. Also, the return keyword is optional in the above example, as the value of the last expression in a function gets returned, so just x+y would work too.</pre>
204	Implement a function $f(x,y,z)$ which returns mul- tiple values, and store those return values in variables u and v	<pre>Write function as follows: function [a,b] = f(x,y,z) a = x*y+z; b=2*sin(x-z); Then call the function by doing: [u,v] = f(2,8,12)</pre>	<pre>Write function as follows: f = function(x,y,z) { a = x*y+z; b=2*sin(x-z) return(list(a,b)) } Then call the function by do- ing: tmp=f(2,8,12); u=tmp[[1]]; v=tmp[[2]]. The above is most gen- eral, and will work even when u and v are different types of data. If they are both scalars, the function could simply return them packed in a vec- tor, i.e. return(c(a,b)). If they are vectors of the same size, the func- tion could return them packed to- gether into the columns of a matrix, i.e. return(cbind(a,b)).</pre>

No.	Description	Matlab	R
205	Numerically solve ODE	First implement function	First implement function
	dx/dt = 5x from $t = 3$ to	function return $f(t,x)$	f = function(t, x, parms)
	t = 12 with initial condition	retval = $5 \times x$:	return(list(5*x))
	x(3) = i	,	}
		Then do ode45(@f,[3,12],7)	
		to plot solution, or	Then do $y=1soda(7, seq(3, 12, 12))$
		[t,x]=ode45(@f,[3,12],7) to get	(0.1), f,NA) to obtain solution
		and vector v containing time values	values at times $3, 3.1, 3.2, \ldots, 11.9, 12$. The first column of y namely y[1]
		ing function values If you want	contains the time values: the second
		function values at specific times.	column $v[.2]$ contains the corre-
		e.g. 3, 3.1, 3.2,, 11.9, 12, you can	sponding function values. Note:
		do [t,x]=ode45(@f,3:0.1:12,7).	isoda is part of the deSolve package
		Note: in older versions of MATLAB,	(see item 348 for how to install/load
		use 'f' instead of Qf.	packages).
206	Numerically solve system of	First implement function	First implement function
	ODEs $dw/dt = 5w$, $dz/dt =$	function retval=mvfunc(t,x)	<pre>myfunc = function(t,x,parms) {</pre>
	5w + iz from $i = 5$ to $i = 12with initial conditions w(3) = 1$	w = x(1); z = x(2);	w = x[1]; z = x[2];
	$7 z(3) = 8 \ 2$	<pre>retval = zeros(2,1);</pre>	return(list(c(5*w, 3*w+7*z)))
	., . (0) 0.2	retval(1) = 5*w;	}
		retval(2) = 3*w + 7*z;	Then do $v=1$ soda (c(7,8,2))
		Then do	seq(3.12. 0.1). mvfunc.NA)
		ode45(@myfunc,[3,12],[7;	to obtain solution values at times
		8.2]) to plot solution, or	$3, 3.1, 3.2, \dots, 11.9, 12.$ The first
		[t,x]=ode45(@myfunc,[3,12],[7;	column of \mathbf{y} , namely $\mathbf{y}[,1]$ contains
		8.2) to get back vector t contain-	the time values; the second column
		ing time values and matrix \mathbf{x} , whose first column containing correspond	$\mathbf{y}[\mathbf{z}]$ contains the corresponding values of $w(t)$; and the third column
		ing $w(t)$ values and second column	contains $z(t)$ Note: Isoda is part of
		contains $z(t)$ values. If you want	the deSolve package (see item 348
		function values at specific times, e.g.	for how to install/load packages).
		$3, 3.1, 3.2, \dots, 11.9, 12$, you can do	
		[t,x]=ode45(@myfunc,3:0.1:12,[7	
		8.2]). Note: in older versions of	
207	Pass paramotors such as $\pi =$	MATLAB, use '1' instead of @f.	First implement function
207	1.3 and $K = 50$ to an ODE	r nst implement function	
	function from the command	<pre>function retval=func2(t,x,r,K)</pre>	<pre>func2=function(t,x,parms) {</pre>
	line, solving $dx/dt = rx(1 - t)$	retval = r*x*(1-x/K)	r=parms[1]; K=parms[2]
	x/K from $t = 0$ to $t = 20$	Then do $ode45(@func2.[0 20].$	return(list(r*x*(1-x/K)))
	with initial condition $x(0) =$	2.5, [], 1.3, 50). The empty	۲ ۲
	2.5.	matrix is necessary between the ini-	Then do
		tial condition and the beginning of	v = 1 soda(2.5 sec(0.20.0.1))
		your extra parameters.	func2.c(1.3.50))
			Note: Isoda is part of the deSolve
			package (see item 348 for how to in-
			stan/load packages).

6 Probability and random values

No.	Description	Matlab	R
208	Generate a continuous uni-	rand	runif(1)
	form random value between 0		
	and 1		
209	Generate vector of n uniform	<pre>rand(n,1) or rand(1,n)</pre>	runif(n)
	random vals between 0 and 1		
210	Generate $m \times n$ matrix of uni-	rand(m,n)	<pre>matrix(runif(m*n),m,n) or just</pre>
	form random values between		<pre>matrix(runif(m*n),m)</pre>
011	0 and 1		
211	Generate $m \times n$ matrix of con-	a+rand(m,n)*(b-a) or if you	<pre>matrix(runif(m*n,a,b),m)</pre>
	tinuous uniform random val-	have the Statistics toolbox then	
919	ues between a and b	uniirnd(a, D, m, n)	f = $con(b)$ + 1 con
212	Generate a random integer	rand1(k) or 1100r(k*rand)+1	1100r(k*runii(1)) + 1 Or
919	Detween 1 and κ	nondi(le m n)	<pre>sample(K,1) floor(htmotrin(munif(mtn) m)))11</pre>
215	Generate $m \times n$ matrix of dis-	$f_{1} = f_{1} = f_{1$	or matrix(comple(k m*n))+1
	gers between 1 and k	have the Statistics toolbox then	replace=TRUE) m)
	gers between 1 and n	unidrnd(k.m.n)	
214	Generate $m \times n$ matrix where	(rand(m.n) <p)*1 multiplying<="" note:="" td=""><td>matrix(sample(c(0.1). m*n.</td></p)*1>	matrix(sample(c(0.1). m*n.
	each entry is 1 with probabil-	by 1 turns the logical (true/false) re-	replace=TRUE, prob=c(1-p, p)),
	ity p , otherwise is 0	sult back into numeric values. You	m) or (matrix(runif(m,n),m) <p)*1< td=""></p)*1<>
		could also do double(rand(m,n) <p)< td=""><td>(Note: multiplying by 1 turns the</td></p)<>	(Note: multiplying by 1 turns the
		-	logical (true/false) result back into
			numeric values; using as.numeric()
			to do it would lose the shape of the
			matrix.)
215	Generate $m \times n$ matrix where	b + (a-b)*(rand(m,n) <p)< td=""><td><pre>matrix(sample(c(b,a), m*n,</pre></td></p)<>	<pre>matrix(sample(c(b,a), m*n,</pre>
	each entry is a with probabil-		replace=TRUE, prob=c(1-p,
	ity p , otherwise is b		p)), m) or $b + (a-b)*(matrix($
010			runif(m,n),m) <p)< td=""></p)<>
216	Generate a random integer	floor((b-a+1)*rand)+a or if you	sample(a:b, 1) or
	between a and b inclusive	nave the Statistics toolbox then	floor((b-a+1)*runif(1))+a
917	Elip a goin which gomes up	unidrhd(b-a+1)+a-1	
217	heads with probability n and		
	perform some action if it does	if (rand < p)	if (runif(1) < p) {
	come up heads	some commands	some commands
	como up nouco	end	}
910	Concrete e ver dere remainte	non dnorm (n)	
218	tion of the integers 1.2	ranaberm(u)	sambre(m)
219	Generate a random selection	[s.idx]=sort(rand(n.1)):	ri=sample(n.k)
	of k unique integers between	ri=idx(1:k) or another way is	
	1 and n (i.e. sampling with-	ri=randperm(n); ri=ri(1:k). Or	
	out replacement)	if you have the Statistics Toolbox,	
	÷ ,	then randsample(n,k)	
220	Choose k values (with re-	L=length(v);	w=sample(v,k,replace=TRUE)
	placement) from the vector \mathbf{v} ,	<pre>w=v(floor(L*rand(k,1))+1) Or,</pre>	
	storing result in \mathbf{w}	if you have the Statistics Toolbox,	
		w=randsample(v,k,true)	

No.	Description	Matlab	R
221	Choose k values (without re-	L=length(v); ri=randperm(L);	w=sample(v,k,replace=FALSE)
	placement) from the vector \mathbf{v} ,	ri=ri(1:k); w=v(ri) Or, if	
	storing result in \mathbf{w}	you have the Statistics Toolbox,	
		w=randsample(v,k)	
222	Generate a value from 1 to n	<pre>sum(rand > cumsum(pv))+1 If en-</pre>	<pre>sample(n, 1, prob=pv) If the en-</pre>
	with corresponding probabil-	tries of pv don't sum to one,	tries of pv don't sum to one, sample
	ities in vector \mathbf{pv}	rescale them first: sum(rand >	automatically rescales them to do so.
		<pre>cumsum(pv)/sum(pv))+1</pre>	
223	Set the random-number gen-	rng(12) See also RandStream for	set.seed(12)
	erator back to a known state	how to create and use multiple	
	(useful to do at the beginning	streams of random numbers. And	
	of a stochastic simulation	note: in versions of MATLAB prior	
	when debugging, so you'll get	to 7.7, instead use rand('state',	
	the same sequence of random	12).	
	numbers each time)		

Note that the "*rnd," "*pdf," and "*cdf" functions described below are all part of the MATLAB Statistics Toolbox, and not part of the core MATLAB distribution.

No.	Description	MATLAB	R
224	Generate a random value	binornd(n,p) or	rbinom(1,n,p)
	from the binomial (n, p) dis-	<pre>sum(rand(n,1)<p) pre="" will="" work<=""></p)></pre>	
	tribution	even without the Statistics Toolbox.	
225	Generate a random value	poissrnd(lambda)	rpois(1,lambda)
	from the Poisson distribution		
	with parameter λ		
226	Generate a random value	exprnd(mu) or -mu*log(rand) will	rexp(1, 1/mu)
	from the exponential distri-	work even without the Statistics	
	bution with mean μ	Toolbox.	
227	Generate a random value	unidrnd(k) or floor(rand*k)+1	<pre>sample(k,1)</pre>
	from the discrete uniform dis-	will work even without the Statistics	
	tribution on integers $1 \dots k$	Toolbox.	
228	Generate n iid random values	unidrnd(k,n,1) or	<pre>sample(k,n,replace=TRUE)</pre>
	from the discrete uniform dis-	<pre>floor(rand(n,1)*k)+1 will work</pre>	
	tribution on integers $1 \dots k$	even without the Statistics Toolbox.	
229	Generate a random value	unifrnd(a,b) or (b-a)*rand + a	<pre>runif(1,a,b)</pre>
	from the continuous uniform	will work even without the Statistics	
	distribution on the interval	Toolbox.	
	(a,b)		
230	Generate a random value	normrnd(mu,sigma) or	rnorm(1,mu,sigma)
	from the normal distribution	mu + sigma*randn will work	
	with mean μ and standard	even without the Statistics Toolbox.	
	deviation σ		
231	Generate a random vector	mnrnd(n,p)	<pre>rmultinom(1,n,p)</pre>
	from the multinomial distri-		
	bution, with \mathbf{n} trials and		
	probability vector \mathbf{p}		
232	Generate \mathbf{j} random vectors	mnrnd(n,p,j)	rmultinom(j,n,p)
	from the multinomial distri-	The vectors are returned as rows of	The vectors are returned as columns
	bution, with \mathbf{n} trials and	a matrix	of a matrix
	probability vector \mathbf{p}		
	Notes:		

- D. Hiebeler, MATLAB / R Reference
 - The MATLAB "*rnd" functions above can all take additional **r**,**c** arguments to build an $r \times c$ matrix of iid random values. E.g. poissrnd(3.5,4,7) for a 4×7 matrix of iid values from the Poisson distribution with mean $\lambda = 3.5$. The unidrnd(k,n,1) command above is an example of this, to generate a $k \times 1$ column vector.
 - The first parameter of the R "r*" functions above specifies how many values are desired. E.g. to generate 28 iid random values from a Poisson distribution with mean 3.5, use rpois(28,3.5). To get a 4 × 7 matrix of such values, use matrix(rpois(28,3.5),4).

No.	Description	Matlab	R
233	Probability that a ran-	<pre>binopdf(x,n,p) or</pre>	dbinom(x,n,p)
	dom variable from the	$nchoosek(n,x)*p^x*(1-p)^(n-x)$	
	Binomial(n, p) distribution	will work even without the Statistics	
	has value \mathbf{x} (i.e. the density,	Toolbox, as long as \mathbf{n} and \mathbf{x} are	
	or pdf).	non-negative integers and $0 \leq \mathbf{p}$	
		$\leq 1.$	
234	Probability that a random	poisspdf(x,lambda) or	dpois(x,lambda)
	variable from the $Poisson(\lambda)$	exp(-lambda)*lambda^x /	
	distribution has value \mathbf{x} .	factorial(x) will work even	
		without the Statistics Toolbox, as	
		long as \mathbf{x} is a non-negative integer	
		and $lambda \ge 0$.	
235	Probability density function	exppdf(x,mu) or	dexp(x,1/mu)
	at ${\bf x}$ for a random variable	(x>=0)*exp(-x/mu)/mu will work	
	from the exponential distri-	even without the Statistics Toolbox,	
	bution with mean μ .	as long as mu is positive.	
236	Probability density function	<pre>normpdf(x,mu,sigma) or</pre>	dnorm(x,mu,sigma)
	at ${\bf x}$ for a random variable	exp(-(x-mu)^2/(2*sigma^2))/	
	from the Normal distribution	(sqrt(2*pi)*sigma) will work even	
	with mean μ and standard	without the Statistics Toolbox.	
	deviation σ .		
237	Probability density function	unifpdf(x,a,b) or	dunif(x,a,b)
	at ${\bf x}$ for a random variable	((x>=a)&&(x<=b))/(b-a) will	
	from the continuous uniform	work even without the Statistics	
	distribution on interval (a, b) .	Toolbox.	
238	Probability that a random	<pre>unidpdf(x,n) or ((x==floor(x))</pre>	((x==round(x)) && (x >= 1) &&
	variable from the discrete	&& (x>=1)&&(x<=n))/n will work	(x <= n))/n
	uniform distribution on inte-	even without the Statistics Toolbox,	
	gers $1 \dots n$ has value x .	as long as \mathbf{n} is a positive integer.	
239	Probability that a random	<pre>mnpdf(x,p)</pre>	dmultinom(x,prob=p)
	vector from the multinomial	Note: vector p must sum to one.	
	distribution with probability	Also, \mathbf{x} and \mathbf{p} can be vectors of	
	vector \vec{p} has the value \vec{x}	length k, or if one or both are $m \times k$	
		matrices then the computations are	
		performed for each row.	

Note: one or more of the parameters in the above "*pdf" (MATLAB) or "d*" (R) functions can be vectors, but they must be the same size. Scalars are promoted to arrays of the appropriate size.

No.	Description	Matlab	R
240	Probability that a ran-	binocdf(x,n,p). Without the	pbinom(x,n,p)
	dom variable from the	Statistics Toolbox, as long	
	Binomial(n, p) distribution is	as \mathbf{n} is a non-negative in-	
	less than or equal to \mathbf{x} (i.e.	teger, this will work: $r =$	
	the cumulative distribution	0:floor(x); sum(factorial(n)./	
	function, or cdf).	<pre>(factorial(r).*factorial(n-r))</pre>	
		.*p.^r.*(1-p).^(n-r)). (Un-	
		fortunately, MATLAB's nchoosek	
		function won't take a vector argu-	
		ment for \mathbf{k} .)	
241	Probability that a random	poisscdf(x,lambda). With-	ppois(x,lambda)
	variable from the $Poisson(\lambda)$	out the Statistics Toolbox, as	
	distribution is less than or	long as lambda ≥ 0 , this	
	equal to \mathbf{x} .	will work: r = 0:floor(x);	
		<pre>sum(exp(-lambda)*lambda.^r</pre>	
		./factorial(r))	
242	Cumulative distribution	expcdf(x,mu) or	pexp(x,1/mu)
	function at \mathbf{x} for a random	(x>=0)*(1-exp(-x/mu)) will	
	variable from the exponential	work even without the Statistics	
	distribution with mean μ .	Toolbox, as long as mu is positive.	
243	Cumulative distribution	normcdf(x,mu,sigma) or 1/2 -	pnorm(x,mu,sigma)
	function at \mathbf{x} for a random	erf(-(x-mu)/(sigma*sqrt(2)))/2	
	variable from the Normal	will work even without the Statis-	
	distribution with mean μ and	tics Toolbox, as long as sigma is	
	standard deviation σ .	positive.	
244	Cumulative distribution	unifcdf(x,a,b) or	<pre>punif(x,a,b)</pre>
	function at \mathbf{x} for a random	(x>a)*(min(x,b)-a)/(b-a) will	
	variable from the continuous	work even without the Statistics	
	uniform distribution on	Toolbox, as long as $\mathbf{b} > \mathbf{a}$.	
	interval (a, b) .		
245	Probability that a random	unidcdf(x,n) or	(x>=1)*min(floor(x),n)/n
	variable from the discrete	(x>=1)*min(floor(x),n)/n will	
	uniform distribution on in-	work even without the Statistics	
	tegers $1 \dots n$ is less than or	Toolbox, as long as \mathbf{n} is a positive	
	equal to \mathbf{x} .	integer.	

7 Graphics

7.1 Various types of plotting

No.	Description	Matlab	R			
No. 246	Description Create a new figure window	MATLAB figure	R dev.new() Notes: internally, on Windows this calls windows(), on MacOS it calls quartz(), and on Linux it calls X11(). X11() is also available on MacOS; you can tell R to use it by default by doing options(device='X11'). In R sometime after 2.7.0, X11 graphics started doing antialising by default, which makes plots look smoother but takes longer to draw. If you are using X11 graphics in R and notice that figure plotting is extremely slow (especially if making many plots), do this before calling dev.new(): X11.options(type='X1ib') or X11.options(antialias='none'). Or just use e.g. X11(type='X1ib') to make new figure windows. They are uglier (lines are more jagged), but			
247	Select figure number n	<pre>figure(n) (will create the figure if it doesn't exist)</pre>	render much more quickly. dev.set(n) (returns the actual de- vice selected; will be different from n if there is no figure device with num- her n)			
248	Determine which figure win- dow is currently active	gcf	dev.cur()			
249	List open figure windows	get(0,'children') (The 0 handle refers to the root graphics object.)	<pre>dev.list()</pre>			
250	Close figure window(s)	close to close the current figure win- dow, close(n) to close a specified figure, and close all to close all fig- ures	<pre>dev.off() to close the currently ac- tive figure device, dev.off(n) to close a specified one, and graphics.off() to close all figure devices.</pre>			
251	Plot points using open circles	plot(x,v,'o')	plot(x,v)			
252	Plot points using solid lines	plot(x,y)	<pre>plot(x,y,type='1') (Note: that's a lower-case 'L', not the number 1)</pre>			
253	Plotting: color, point markers, linestyle	<pre>plot(x,y,str) where str is a string specifying color, point marker, and/or linestyle (see table below) (e.g. 'gs' for green squares with dashed line)</pre>	<pre>plot(x,y,type=str1, pch=arg2,col=str3, lty=arg4) See tables below for possible values of</pre>			
254	Plotting with logarithmic axes	semilogx, semilogy, and loglog functions take arguments like plot, and plot with logarithmic scales for x, y, and both axes, respectively	the 4 parameters plot(, log='x'), $plot(, log='y')$, and $plot(, log='xy')$ plot with logarithmic scales for x, y , and both axes, respectively			

No.	Description	Matlab	R
255	Make bar graph where the x	<pre>bar(x,y) Or just bar(y) if you only</pre>	<pre>plot(x,y,type='h',lwd=8,lend=1)</pre>
	coordinates of the bars are in	want to specify heights. Note: if A	You may wish to adjust the line
	\mathbf{x} , and their heights are in \mathbf{y}	is a matrix, bar(A) interprets each	width (the lwd parameter).
		column as a separate set of observa-	
		tions, and each row as a different ob-	
		servation within a set. So a 20×2	
		matrix is plotted as 2 sets of 20 ob-	
		servations, while a 2×20 matrix is	
		plotted as 20 sets of 2 observations.	
256	Make histogram of values in	hist(x)	hist(x)
	x		
257	Given vector \mathbf{x} containing	<pre>v=unique(x); c=hist(x,v);</pre>	<pre>plot(table(x),lwd=8,lend=1) or</pre>
	discrete values, make a bar	bar(v,c)	<pre>barplot(table(x)) Note that in</pre>
	graph where the x coordi-		the latter approach, the bars have the
	nates of bars are the values,		proper labels, but do not actually use
	and heights are the counts of		the x values as their x coordinates.
	how many times the values		
	appear in \mathbf{x}		
258	Given vector \mathbf{x} containing	[c,m] = hist(x,k); bar(m,c) or	hist(x,seq(min(x), max(x),
	continuous values, lump the	for slightly different plot style use	length.out=k+1))
	data into k bins and make a	hist(x,k)	
	histogram / bar graph of the		
	binned data		
259	Make a plot containing error-	errorbar(x,y,s)	errbar(x,y,y+s,y-s) Note: errbar
	bars of height \mathbf{s} above and be-		is part of the Hmisc package (see
	low (x, y) points		item 348 for how to install/load pack-
- 200			ages).
260	Make a plot containing error-	errorbar(x,y,b,a)	errbar(x,y,y+a,y-b) Note: errbar
	bars of height a above and b		is part of the Hmisc package (see
	below (x, y) points		item 348 for how to install/load pack-
			ages).
261	Other types of 2-D plots	<pre>stem(x,y) and stairs(x,y)</pre>	pie(v)
		tor other types of 2-D plots.	
		polar(theta,r) to use polar	
		coordinates for plotting.	

No.	Description	Matlab	R		
262	Make a 3-D plot of some data	plot3(x,y,z) This works much like	cloud(z~x*y) You can also use		
	points with given x, y, z co-	plot , as far as plotting symbols, line-	arguments pch and col as with		
	ordinates in the vectors \mathbf{x} , \mathbf{y} ,	types, and colors.	plot. To make a 3-D plot with		
	and \mathbf{z} .		lines, do cloud(z~x*y,type='l',		
			panel.cloud=panel.3dwire). See		
			the rgl package to interactively rotate		
			3-D plots (and see item 348 for how to		
			load packages).		
263	Surface plot of data in matrix				
	A				
		SUII(A)	persp(A)		
		You can then click on the small	You can include shading in the im-		
		curved arrow in the figure window	age via e.g. persp(A.shade=0.5).		
		(or choose "Rotate 3D" from the	There are two viewing angles you		
		"Tools" menu), and then click and	can also specify, among other pa-		
		drag the mouse in the figure to ro-	rameters, e.g. persp(A, shade=0.5.		
		tate it in three dimensions.	theta=50, phi=35).		
264	Surface plot of $f(x, y) =$				
	$sin(x+y)\sqrt{y}$ for 100 values	x = 1 in grade (0, 10, 100).	x = coc(0, 10, 10n = 100)		
	of x between 0 and 10, and	x = 1 inspace(0, 10, 100),	x = seq(0, 10, 1en-100)		
	90 values of y between 2 and	y = 1111space(2, 0, 90),	y = Seq(2, 0, 101-90)		
	8	[x, i] = meshgrid(x, y), 7 = gin(Y+Y) + gart(Y),	1 - 1 unccion(x,y)		
		$\Sigma = \operatorname{SIII}(X+1) \cdot \operatorname{SqI}(U(1)),$	r = outor(x + y) + sqrt(y)		
		sull(A,1,2)	$\Sigma = \text{Outer}(x, y, 1)$		
		Shading Hat	persp(x,y,z)		
265	Other ways of plotting the	mesh(X,Y,Z). surfc(X,Y,Z).	contour(x,y,z) Or do		
	data from the previous com-	surfl(X,Y,Z), $contour(X,Y,Z)$,	s=expand.grid(x=x,y=y), and		
	mand	pcolor(X,Y,Z).	then wireframe(z [*] x*y,s) or		
		waterfall(X,Y,Z). Also see the	wireframe(z~x*y,s,shade=TRUE)		
		slice command.	(Note: wireframe is part of the		
			lattice package; see item 348 for how		
			to load packages). If you have vectors		
			\mathbf{x} , \mathbf{y} , and \mathbf{z} all the same length, you		
			can also do symbols(x,y,z).		
266	Set axis ranges in a figure	axis([x1 x2 y1 y2])	You have to do this when		
	window		you make the plot, e.g.		
			pLot(x,y,xlim=c(x1,x2),		
0.07			ylim=c(y1,y2))		
207	Add title to plot	title('somestring')	dds a main title		
			title(sub='somestring') adds		
			a subtitle You can also include		
			main— and sub— arguments in a		
			plot command.		
268	Add axis labels to plot	xlabel('somestring') and	title(xlab='somestring'.		
		vlabel('somestring')	vlab='anotherstr'). You can		
		, , , , , , , , , , , , , , , , , , , ,	also include xlab = and vlab =		
			arguments in a plot command.		
	l				

No.	Description	Matlab	R
269	Include Greek letters or sym-	You can use basic TeX com-	<pre>plot(x,y,xlab=</pre>
	bois in plot axis labels	<pre>mands, e.g. plot(x,y); xlabel('\phi^2 + \mu_{i,j}') on plot(x'form dity \thick')</pre>	or plot(x,y,xlab=expression(
		See also help tex and parts of	See also help(plotmath) and p
		doc text_props for more about	98 of the R Graphics book by Paul
		building labels using general LaTeX commands	Murrell for more.
270	Change font size to 16 in plot	For the legends and numerical axis	For on-screen graphics, do
	ladels	16), and for text labels on axes	command. For PostScript or PDF
		do e.g. xlabel('my x var',	plots, add a pointsize=16 argument,
		'FontSize', 16)	e.g. pdf('myfile.pdf', width=8,
			items 286 and 287)
271	Add grid lines to plot	grid on (and grid off to turn off)	grid() Note that if you'll be
			printing the plot, the default style
			ted lines, which are almost invis-
			ible on some printers. You may
			want to do e.g. grid(lty='dashed',
			col='black') to use black dashed
272	Add a text label to a plot	<pre>text(x,y,'hello')</pre>	text(x,y,'hello')
273	Add set of text labels to a	<pre>s={'hi', 'there'};</pre>	<pre>s=c('hi', 'there');</pre>
	plot. $\mathbf{x}\mathbf{v}$ and $\mathbf{y}\mathbf{v}$ are vectors.	text(xv,yv,s)	text(xv,yv,s)
274	Add an arrow to current plot,	annotation('arrow', [xt xh],	arrows(xt, yt, xh, yh)
	with tail at (xt, yt) and head at (xh, yh)	[yt yh]) Note: coordinates should be normalized figure coordinates not	
		coordinates within your displayed	
		axes. Find and download from The	
		Mathworks the file dsxy2figxy.m	
		which converts for you, then do this:	
		<pre>[IX,IY]=dsxy211gxy([xt xn], [vt vh]): annotation('arrow'</pre>	
		fx, fy)	
275	Add a double-headed arrow	annotation('doublearrow', [x0	arrows(x0, y0, x1, y1, code=3)
	to current plot, with coordi-	x1], [y0 y1]) See note in previ-	
	nates $(x0, y0)$ and $(x1, y1)$	ous item about normalized figure	
276	Add figure legend to top-left	legend('first', 'second',	legend('topleft'.
	corner of plot	'Location', 'NorthWest')	legend=c('first', 'second'),
			<pre>col=c('red', 'blue'),</pre>
			pch=c('*','o'))

MATLAB note: sometimes you build a graph piece-by-piece, and then want to manually add a legend which doesn't correspond with the order you put things in the plot. You can manually construct a legend by plotting "invisible" things, then building the legend using them. E.g. to make a legend with black stars and solid lines, and red circles and dashed lines: h1=plot(0,0,'k*-'); set(h1,'Visible', 'off'); h2=plot(0,0,'k*-'); set(h2,'Visible', 'off'); legend([h1 h2], 'blah, 'whoa'). Just be sure to choose coordinates for your "invisible" points within the current figure's axis ranges.

No.	Description	Matlab	R
277	Adding more things to a fig-	hold on means everything plotted	<pre>points() and lines() work</pre>
	ure	from now on in that figure window is	like plot , but add to what's already
		added to what's already there. hold	in the figure rather than clearing the
		off turns it off. clf clears the figure	figure first. points and lines are
		and turns off hold.	basically identical, just with different
			default plotting styles. Note: axes
			are not recalculated/redrawn when
			adding more things to a figure.
278	Plot multiple data sets at	plot(x,y) where x and y are 2-D	matplot(x,y) where x and y are 2-D
	once	matrices. Each column of \mathbf{x} is plot-	matrices. Each column of \mathbf{x} is plotted
		ted against the corresponding col-	against the corresponding column of
		\mathbf{y} in \mathbf{y} in \mathbf{x} has only one column,	y. If x has only one column, it will be
270	Plot $\sin(2\pi)$ for π between 7	$f_{\text{rel}} = f_{\text{rel}} = f_{$	1000000000000000000000000000000000000
219	and 18	$1 \text{ prot}(\text{ sin}(2 \times x), [7 \text{ roj}))$	makes the plot by sampling the
	and 10		value of the function at 200 values
			between 7 and 18 (if you don't
			specify the number of points, 101
			is the default). You could do this
			manually yourself via commands
			like tmpx=seq(7,18,len=200);
			<pre>plot(tmpx, sin(2*tmpx)).</pre>
280	Plot color image of integer	<pre>image(A) to use array values as</pre>	image(A) (it rotates the matrix 90 de-
	values in matrix \mathbf{A}	raw indices into colormap, or	grees counterclockwise: it draws row
		<pre>imagesc(A) to automatically scale</pre>	1 of A as the left column of the im-
		values first (these both draw row	age, and column 1 of A as the bottom
		1 of the matrix at the top of the	row of the image, so the row number
		image); or pcolor(A) (draws row	is the x coord and column number is
		1 of the matrix at the bottom of	the y coord). It also rescales colors. If
		the image). After using pcolor,	you are using a colormap with k en-
		try the commands shading flat or	tries, but the value k does not appear
		shading interp.	In A , use image(A,211m=C(1,K))
			$a_{\text{mage}}(\Lambda z) = c(0 k-1))$ if you
			want values 0 through $k-1$ to be plot-
			ted using the k colors
281	Add colorbar legend to image	colorbar, after using image or	Use filled.contour(A) rather
	plot	pcolor.	than image(A), although it "blurs"
	I		the data via interpolation, or
			use levelplot(A) from the lat-
			tice package (see item 348 for
			how to load packages). To use
			a colormap with the latter, do
			e.g. levelplot(A,col.regions=
			terrain.colors(100)).
282	Set colormap in image	colormap(hot). Instead of hot, you	<pre>image(A,col=terrain.colors(100)).</pre>
		can also use gray, flag, jet (the	The parameter 100 specifies the
		default), cool, bone, copper, pink,	length of the colormap. Other
		hsv, prism. By default, the length	colormaps are heat.colors(),
		of the new colormap is the same as	topo.colors(), and cm.colors().
		the currently-installed one; use e.g.	
		colormap(not(256)) to specify the	
1		number of entries.	

No.	Description	Matlab	R
283	Build your own colormap us-	Use an $n \times 3$ matrix; each row	Use a vector of hexadecimal strings,
	ing Red/Green/Blue triplets	gives R,G,B intensities between 0	each beginning with '#' and giving
		and 1. Can use as argument with	R,G,B intensities between 00 and FF.
		colormap. E.g. for 2 colors: mycmap	E.g. c('#80CC33','#3333B3'); can
		= [0.5 0.8 0.2 ; 0.2 0.2 0.7]	use as argument to col = parameter
			to image. You can build such a
			vector of strings from vectors of Red,
			Green, and Blue intensities (each
			between 0 and 1) as follows (for a
			2-color example): $r=c(0.5, 0.2);$
			g=c(0.8,0.2); b=c(0.2,0.7);
			mycolors=rgb(r,g,b).

MATLAB plotting specifications, for use with plot, fplot, semilogx, semilogy, loglog, etc:

Symbol	Color	Symbol	Marker	Symbol	Linestyle
b	blue	•	point (.)	-	solid line
g	green	0	circle (\circ)	:	dotted line
r	red	x	$cross(\times)$		dash-dot line
С	cyan	+	plus sign $(+)$		dashed line
m	magenta	*	asterisk (*)		
У	yellow	S	square (\Box)		
k	black	d	diamond (\Diamond)		
W	white	v	triangle (down) (∇)		
		^	triangle (up) (\triangle)		
		<	triangle (left) (\triangleleft)		
		>	triangle (right) (\triangleright)		
		р	pentragram star		
		h	hexagram star		

R plotting specifications for **col** (color), **pch** (plotting character), and **type** arguments, for use with **plot**, **matplot**, **points**, and **lines**:

col	Description	pch Description		type	Description
'blue' Blue		'a'	a (similarly for other	p	points
			characters, but see '.'		
			below for an exception)		
'green'	Green	0	open square	1	lines
'red'	Red	1	open circle	b	both
'cyan'	Cyan	2	triangle point-up	с	lines part only of "b"
'magenta'	Magenta	3	+ (plus)	0	lines, points overplotted
'yellow'	Yellow	4	\times (cross)	h	histogram-like lines
'black'	Black	5	diamond	S	steps
'#RRGGBB'	hexadecimal specifica-	6	triangle point-down	S	another kind of steps
	tion of Red, Green,				
	Blue				
(Other names)	See colors() for list of	·.'	rectangle of size 0.01	n	no plotting (can be use-
	available color names.		inch, 1 pixel, or 1 point		ful for setting up axis
			(1/72 inch) depending		ranges, etc.)
			on device		
			(See table on next page		
			for more)		

R	plotting	specifications	for	lty ((line-type)	argument,	for	use	with	plot,	matplot,	points,	and	lines:
---	----------	----------------	-----	-------	-------------	-----------	-----	-----	------	-------	----------	---------	-----	--------

lty	Description
0	blank
1	solid
2	dashed
3	dotted
4	dotdash
5	longdash
6	twodash

R plotting characters, i.e. values for **pch** argument (from the book *R Graphics*, by Paul Murrell, Chapman & Hall / CRC, 2006)

No.	Description	Matlab	R
284	Divide up a figure window	<pre>subplot(m,n,k) divides the current</pre>	There are several ways to do this, e.g.
	into smaller sub-figures	figure window into an $m \times n$ ar-	using layout or split.screen, al-
		ray of subplots, and draws in sub-	though they aren't quite as friendly
		plot number k as numbered in "read-	as MATLAB 's. E.g. if you let $A =$
		ing order," i.e. left-to-right, top-to-	
		bottom. E.g. subplot(2,3,4) se-	$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \end{bmatrix}$, then layout(A) will
		lects the first sub-figure in the second	
		row of a 2×3 array of sub-figures.	divide the ngure into 6 sub-ngures:
		You can do more complex things,	you can imagine the figure divide into
		e.g. subplot(5,5,[1 2 6 /]) se-	a 5×5 matrix of smaller blocks; sub-
		lects the first two subplots in the first	and gub figure 2.6 will
		row, and first two subplots in the	2 × 2 portion, and sub-ligures 2–6 will take up smaller portions, according to
		second row, i.e. gives you a bigger	the positions of those numbers in the
		subplot within a 5 × 5 array of sub-	matrix A Consecutive plotting com-
		by e_{α} subplot (5.5.3) vou'll see	mands will draw into successive sub-
		what's meant by that.)	figures; there doesn't seem to be a way
			to explicitly specify which sub-figure
			to draw into next.
			To use split.screen, you can
			do e.g. split.screen(c(2,1)) to
			split into a 2×1 matrix of sub-
			figures (numbered 1 and 2). Then
			<pre>split.screen(c(1,3),2) splits sub-</pre>
			figure 2 into a 1×3 matrix of smaller
			sub-figures (numbered 3, 4, and 5).
			screen(4) will then select sub-figure
			number 4, and subsequent plotting
			A third way to accomplish this is
			via the commands par(mfrou=) or
			par(mfcol=) to split the figure win-
			dow, and par(mfg=) to select which
			sub-figure to draw into.
			Note that the above methods are all
			incompatible with each other.
285	Force graphics windows to	drawnow (MATLAB normally only	R automatically updates graphics
	update	updates figure windows when a	windows even before functions/scripts
		script/function finishes and returns	finish executing, so it's not neces-
		control to the MATLAB prompt, or	sary to explicitly request it. But note
		under a couple of other circum-	that some graphics functions (partic-
		stances. This forces it to update	ularly those in the lattice package)
		figure windows to reflect any recent	don't display their results when called
		plotting commands.)	trom scripts or functions; e.g. rather
			than $\texttt{levelplot}(\ldots)$ you need to do
			tions will automatically display their
			plots when called interactively from
			the command prompt
			the command prompt.

No.	Description	Matlab	R
286	To print/save to a PDF file named fname.pdf	print -dpdf fname saves the con- tents of currently active figure win- dow	First do pdf('fname.pdf'). Then, do various plotting commands to make your image, as if you were plotting in a window. Fi- nally, do dev.off() to close/save the PDF file. To print the con- tents of the active figure win- dow, do dev.copy(device=pdf, file='fname.pdf'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist= 'inhibit').) You can also simply use dev.copy2pdf(file='fname.pdf').
287	To print/save to a PostScript file fname.ps or fname.eps	print -dps fname for black & white PostScript; print -dpsc fname for color PostScript; print -deps fname for black & white Encapsulated PostScript; print -depsc fname for color Encapsu- lated PostScript. The first two save to fname.ps, while the latter two save to fname.eps.	<pre>postscript('fname.eps'), followed by your plotting commands, fol- lowed by dev.off() to close/save the file. Note: you may want to use postscript('fname.eps', horizontal=FALSE) to save your fig- ure in portrait mode rather than the default landscape mode. To print the contents of the active figure window, do dev.copy(device=postscript, file='fname.eps'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist= 'inhibit').) You can also include the horizontal=FALSE argument with dev.copy(). The command dev.copy2eps(file='fname.eps') also saves in portrait mode.</pre>
288	To print/save to a JPEG file fname.jpg with jpeg qual- ity = 90 (higher quality looks better but makes the file larger)	print -djpeg90 fname	<pre>jpeg('fname.jpg',quality=90), followed by your plotting commands, followed by dev.off() to close/save the file.</pre>

7.2 Printing/saving graphics

No.	Description	Matlab	R
289	To display images of cellu-	Repeatedly use either pcolor or	If you simply call image repeatedly,
	lar automata or other lattice	image to display the data. Don't	there is a great deal of flicker-
	simulations while running in	forget to call drawnow as well, oth-	ing/flashing. To avoid this, after
	real time	erwise the figure window will not be	drawing the image for the first time
		updated with each image.	using e.g. image(A), from then
			on only use image(A,add=TRUE),
			which avoids redrawing the entire
			image (and the associated flicker).
			However, this will soon consume a
			great deal of memory, as all drawn
			images are saved in the image buffer.
			There are two solutions to that
			problem: (1) every k time steps,
			leave on the add=IRUE argument
			to nush the image buildr (and get
			$\frac{1}{2}$ $\frac{1}$
			vs memory-usage tradeoff: or
			(2) after drawing the first image
			do dev. control (displaylist=
			'inhibit') to prohibit retaining the
			data. However, the latter solution
			means that after the simulation is
			done, the figure window will not be
			redrawn if it is resized, or temporarily
			obscured by another window. (A
			call to dev.control(displaylist=
			'enable') and then one final
			image(A) at the end of the sim-
			ulation will re-enable re-drawing
			after resizing or obscuring, without
			consuming extra memory.)

7.3 Animating cellular automata / lattice simulations

8 Working with files

10. Description INALIAN 290 Create a folder (also known mkdir dirname dir.create('dirname')	
290 Create a folder (also known mkdir dirname dir.create('dirname')	
as a "directory")	
291 Set/change working directory cd dirname setwd('dirname')	
292 Get working directory pwd getwd()	
293 See list of files in current dir dir()	
working directory	
294 Run commands in file 'foo.m' foo But see item 344 for how source('foo.R')	
or 'foo.R' respectively to tell MATLAB where to look for the	
file foo.m .	
295 Read data from text file A=load('data txt') or A=as matrix(read table(
" $data txt" into matrix 4$ $A=importdata('data txt')$ Note 'data txt')) This will ign	ore
that both routines will ignore come comments (anything on a l	ino
that both fournes will ignore com- comments (anything on a f	ine :
ments (anything on a line following following a # character). To	ig-
a "%" character) nore comments indicated by "	%,
do A=as.matrix(read.tab]	.e(
'data.txt', comment.char='%'))
296 Read data from text file A=as.matrix(read.table(
"data.txt" into matrix A, tmp=importdata('data_txt', 'data.txt', skip=s))	
skipping the first s lines of the	
file data	
a=tmp.data	
297 Write data from matrix A save data.txt A -ascii write(t(A), file='data.txt',	
into text file "data.txt" ncolumn=dim(A)[2])	
298 Save all variables/data in the save foo.mat (MATLAB recognizes save.image(file='foo.rda') (Y	ou
workspace to a file foo (with files with ".mat" suffix as binary save may use whatever filename suffix y	<i>ou</i>
appropriate suffix) files). Just save with no arguments like.) Just save.image() with no	ar-
saves to matlab.mat guments saves to .RData	
299 Reload all variables/data load foo.mat. Just load with no load('foo.rda')	
from a saved file foo (with arguments tries to load from mat -	
appropriate suffix) lab.mat.	

9 Miscellaneous

9.1 Variables

No.	Description	Matlab	R
300	Assigning to variables	x = 5	x < -5 or $x = 5$ Note: for compati-
			bility with S-plus, many people prefer the first form
301	From within a function, as-	assignin('base', 'y', 7)	y <<- 7
	sign a value to variable \mathbf{y}		
	in the base environment (i.e.		
	the command prompt envi- ronment)		
302	From within a function, ac-	evalin('base', 'y')	<pre>get('y', envir=globalenv())</pre>
	cess the value of variable \mathbf{y}		Though note that inside a function,
	in the base environment (i.e.		if there isn't a local variable \mathbf{y} , then
	the command prompt envi-		just the expression y will look for one
	ronment)		in the base environment, but if there
			instead.
303	Short list of defined variables	who	ls()
304	Long list of defined variables	whos	ls.str()
305	See detailed info about the	whos ab	str(ab)
	variable ab		
306	See detailed into about all	whos *ab*	ls.str(pattern='ab')
	name		
307	Open graphical data editor.	openvar(A), or double-click on the	fix(A)
	to edit the value of variable	variable in the Workspace pane (if	
	\mathbf{A} (useful for editing values in	it's being displayed) of your MAT-	
	a matrix, though it works for	LABdesktop	
- 200	non-matrix variables as well)	-	
308	Clear one variable	clear x	rm(x)
309	Clear two variables	clear x y	rm(x,y) rm(list=ls())
311	See if variable \mathbf{x} exists (the	exist('x')	exists('x')
	commands given can also		
	take more arguments to be		
	more specific)		
312	See what type of object \mathbf{x} is	class(x)	class(x), typeof(x), and mode(x)
			give different aspects of the "type" of
919	(Variable names)	Variable names must begin with a	X Variable names may contain lattens
313	(variable names)	letter but after that they may con-	digits the period and the underscore
		tain any combination of letters, dig-	character. They cannot begin with a
		its, and the underscore character.	digit or underscore, or with a period
		Names are case-sensitive.	followed by a digit. Names are case-
			sensitive.
314	Result of last command	ans contains the result of the last	.Last.value contains the result of
		command which did not assign its	the last command, whether or not its
		value to a variable. E.g. after 2+5;	value was assigned to a variable. E.g.
		x-3, then and will contain (.	contain 3.
315	See how many bytes of mem-	<pre>tmp = whos('x'); tmp.bytes</pre>	object.size(x)
	ory are used to store a given		
	object \mathbf{x}		

9.2 Strings and Misc.

	No.	Description	Matlab	R
ľ	316	Line continuation	If you want to break up a MATLAB	In R, you can spread commands out
			command over more than one line,	over multiple lines, and nothing ex-
			end all but the last line with three	tra is necessary. R will continue read-
			periods: "". E.g.:	ing input until the command is com-
			$x = 3 + \dots$	plete. However, this only works when
			4	the syntax makes it clear that the first
			or	line was not complete E g :
			$\mathbf{x} = 3$	x = 3 +
			+ 4	4
			· •	works but
				$\mathbf{x} = 3$
				+ 4
				does not treat the second line as a con-
				tinuation of the first
	317	Controlling formatting of	format short g and	options(digits=6) tolls R you'd like
	511	output	format long g are handy: see	to use 6 digits of procision in values it
		output	holp format	displays (it is only a suggestion not
			norb totmat	strictly followed)
	218	Exit the program	auit or oxit	a() or anit()
	310	Comments	Y this is a comment	t this is a comment
	320	Display a string	disp('hi there') or to	<pre>m this is a comment print('hi there') Note: to</pre>
	020	Display a string	omit trailing newline use	avoid having double-quotes
			forintf('hi there')	around the displayed string do
			ipindi (ni dhere)	print('hi there' quote=FAISE)
				or print(noquote('hi there'))
				Or use cat('hi there') But note
				that use of cat in a script won't
				put newlines at the end of each
				string To achieve that either do
				string. To achieve that, either do $cat(2hi thoro)n^2$ or $cat(2hi$
				thoro' fill-TRUE)
	321	Display a string containing	disp('It''s pice') or	print('It\'s nice')
	521	single quotes	to omit trailing newline	print("It's nice") Also see
		single quotes	forintf('It''s nico')	cat in item above
	399	Cive prompt and road numer	x = input(?Enter data?)	print('Enter data:'): v=gcan()
	322	ical input from user	x - Input(Enter data.)	However note that if you are even
		icai input ironi usei		auting commands from a file (via the
				cuting commands from a file (via the
				in R's CIII) soon is likely to need its
				in K S GOI), scan is likely to lead its
				find the the following times of the
				Also aso ast 2 items ab
	202	<u>C:</u> <u>1</u> <u>1</u> <u>1</u>		Also see Cat 2 items above.
	323	Give prompt and read char-	x = input('Enter string:','s')	x = readline('Enter string:')
	294	Conceptonate strings		posto(/two hol/ /wog/ gop=//)
	324 225	Concatenate strings	L = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	paste('two mar', 'ves', sep='')
	ə 2ə	ouncatenate strings stored in	v-l'uwo', 'nalves'};	v-c('two', 'naives');
		a vector	this drops trailing spaces on	pasce(v, corrapse=)
			string To avoid that instead do	
			strest([uf·l])	
	326	Extract substring of a string	survey ([v], f])	tort1-?hi thoro?.
	520	Extract substring of a string	$t_{ext} = m t_{ext}$	$\frac{1}{1} + \frac{1}{1} + \frac{1}$
J			JULAUL JULAU (2.0)	UCAUL DUDDUL (UCAUL, 2, U/

No.	Description	Matlab	R
327	Determine whether elements	x = {'a', 'aa', 'bc', 'c'}; y	x = c('a', 'aa', 'bc', 'c'); y
	of a vector are in a set, and	= {'da', 'a', 'bc', 'a', 'bc',	= c('da', 'a', 'bc', 'a', 'bc',
	give positions of correspond-	<pre>'aa'}; [tf, loc]=ismember(x,y)</pre>	'aa'); loc=match(x,y) Then loc
	ing elements in the set.	Then loc contains the locations of	contains the locations of <i>first</i> oc-
	-	<i>last</i> occurrences of elements of \mathbf{x}	currences of elements of \mathbf{x} in the set
		in the set \mathbf{y} , and 0 for unmatched	y , and NA for unmatched elements.
		elements.	
328	Find indices of regular ex-	v=regexp(s,p)	v=gregexpr(p,s)[[1]] (The
	pression pattern ${\bf p}$ in string ${\bf s}$		returned vector also has a "match.length" attribute giv- ing lengths of the matches; this attribute can be removed via attributes(v)=NULL.)
329	Perform some commands		
	only if the regular expression	if (regexp(s.p)	if (grepl(p.s)) {
	\mathbf{p} is contained in the string \mathbf{s}	commands	commands
		end	}
330	Convert number to string	num2str(x)	as.character(x)
331	Use sprintf to create a		
	formatted string. Use $\gamma_0 \mathbf{d}$ for	x=2; y=3.5;	x=2; y=3.5
	integers ("d" stands for "dec-	s=sprintf('x is %d, y=%g',	s=sprintf('x is %d, y is %g',
	final, i.e. base 10), 701 lor	x, y)	x, y)
	for acientific notation floating		
	point $\mathcal{R}_{\mathbf{g}}$ to sutomatically		
	choose % or % f based on		
	the value Vou can spec-		
	ify field-widths/precisions		
	e g %5d for integers with		
	padding to 5 spaces or %.7f		
	for floating-point with 7		
	digits of precision There are		
	many other options too: see		
	the docs		
332	Machine epsilon ϵ_{mach} i e	eps (See help eps for various other	Machine\$double.eps
002	difference between 1 and the	things eps can give.)	.nachinetadabie.epb
	next largest double-precision		
	floating-point number		
333	Pause for x seconds	pause(x)	Sys.sleep(x)
334	Wait for user to press any key	pause	Don't know of a way to do this in R.
	1	-	but scan(quiet=TRUE) will wait until
			the user presses the Enter key
335	Produce a beep (or possibly	beep	alarm()
	a visual signal, depending on	<u> </u>	
	preferences set)		
336	Measure CPU time used to	t1=cputime;commands ;	<pre>t1=proc.time();commands</pre>
	do some commands	cputime-t1	; (proc.time()-t1)[1]
337	Measure elapsed ("wall-	tic;commands ; toc or	t1=proc.time();commands
	clock") time used to do some	t1=clock;commands :	; (proc.time()-t1)[3]
	commands	etime(clock.t1)	· · · · · · · · · · · · · · · · · · ·
338	Print an error message and	error('Problem!')	<pre>stop('Problem!')</pre>
	interrupt execution		1

No.	Description	Matlab	R
339	Print a warning message	<pre>warning('Smaller problem!')</pre>	<pre>warning('Smaller problem!')</pre>
340	Putting multiple statements on one line	Separate statements by commas or semicolons. A semicolon at the end of a statement suppresses display of the results (also useful even with just a single statement on a line), while a comma does not.	Separate statements by semicolons.
341	Evaluate contents of a string \mathbf{s} as command(s).	eval(s)	<pre>eval(parse(text=s))</pre>
342	Get a command prompt for debugging, while executing a script or function. While at that prompt, you can type ex- pressions to see the values of variables, etc.	Insert the command keyboard in your file. Note that your prompt will change to K>>. When you are done debugging and want to continue ex- ecuting the file, type return.	Insert the command browser() in your file. Note that your prompt will change to Browse[1]>. When you are done debugging and want to continue executing the file, either type c or just press return (i.e. enter a blank line). Note, if you type n, you enter the step debugger.
343	Show where a command is	which sqrt shows you where the file defining the sqrt function is (but note that many basic functions are "built in," so the MATLAB func- tion file is really just a stub con- taining documentation). This is use- ful if a command is doing something strange, e.g. sqrt isn't working. If you've accidentally defined a variable called sqrt, then which sqrt will tell you, so you can clear sqrt to erase it so that you can go back to using the function sqrt.	R does not execute commands directly from files, so there is no equivalent command. See item 294 for reading command files in R.
344	Query/set the search path.	<pre>path displays the current search path (the list of places MATLAB searches for commands you enter). To add a directory ~/foo to the beginning of the search path, do addpath ~/foo -begin or to add it to the end of the path, do addpath ~/foo -end (Note: you should generally add the full path of a directory, i.e. in Linux or Mac OS-X something like ~/foo as above or of the form /usr/local/lib/foo, while under Windows it would be something like C:/foo)</pre>	R does not use a search path to look for files. See item 294 for reading com- mand files in R.

No.	Description	Matlab	R
345	Startup sequence	If a file startup.m exists in the startup directory for MATLAB, its contents are executed. (See the MATLAB docs for how to change the startup directory.)	If a file .Rprofile exists in the current directory or the user's home directory (in that order), its contents are sourced; saved data from the file .RData (if it exists) are then loaded. If a function .First() has been defined, it is then called (so the obvious place to define this function is in your .Rprofile file).
346	Shutdown sequence	Upon typing quit or exit , MATLAB will run the script finish.m if present somewhere in the search path.	Upon typing q() or quit(), R will call the function .Last() if it has been de- fined (one obvious place to define it would be in the .Rprofile file)
347	Execute a command (such as date) in the operating system	!date	<pre>system('date')</pre>
348	Install and load a package.	MATLAB does not have packages. It has toolboxes, which you can pur- chase and install. "Contributed" code (written by end users) can sim- ply be downloaded and put in a di- rectory which you then add to MAT- LAB's path (see item 344 for how to add things to MATLAB's path).	To install e.g. the deSolve pack- age, you can use the command install.packages('deSolve'). You then need to load the package in order to use it, via the command library('deSolve'). When running R again later you'll need to load the package again to use it, but you should not need to re-install it. Note that the lattice package is typically included with binary distributions of R, so it only needs to be loaded, not installed.

10 Spatial Modeling

No.	Description	Matlab	R
349	Take an $L \times L$ matrix A of	A = (A (rand(L) < p))*1;	$A = (A \mid (matrix(runif(L^2),L))$
	0s and 1s, and "seed" frac-		< p))*1
	tion p of the 0s (turn them		
	into 1s), not changing entries		
	which are already 1.		
350	Take an $L \times L$ matrix A of 0s	A = (A & (rand(L) < 1-p))*1;	$A = (A \& (matrix(runif(L^2),L))$
	and 1s, and "kill" fraction p		< 1-p))*1
	of the 1s (turn them into 0s),		
	not changing the rest of the		
	entries		
351	Do "wraparound" on a coor-	<pre>mod(newx-1,L)+1 Note: for porta-</pre>	((newx-1) %% L) + 1 Note: for
	dinate newx that you've al-	bility with other languages such as	portability with other languages such
	ready calculated. You can	C which handle MOD of negative	as C which handle MOD of nega-
	replace \mathbf{newx} with $\mathbf{x} + \mathbf{dx}$ if	values differently, you may want to	tive values differently, you may want
	you want to do wraparound	get in the habit of instead doing	to get in the habit of instead doing
	on an offset x coordinate.	<pre>mod(newx-1+L,L)+1</pre>	((newx-1+L)%%L) + 1
352	Randomly initialize a portion	dx=ix2-ix1+1; dy=iy2-iy1+1;	dx=ix2-ix1+1; dy=iy2-iy1+1;
	of an array: set fraction p of	A(iy1:iy2,ix1:ix2) =	A[iy1:iy2,ix1:ix2] =
	sites in rows iy1 through iy2	(rand(dy,dx) < p0)*1;	<pre>(matrix(runif(dy*dx),dy) <</pre>
	and columns ix1 through ix2		p0)*1
	equal to 1 (and set the rest of		
	the sites in that block equal		
	to zero). Note: this assume		
	iy1 < iy2 and $ix1 < ix2$.		

Index of MATLAB commands and concepts

', 87 ,, 340 .*, 86 ..., 316 ./, 94 .^, 98 /, 93 :, 12–14 ;, 340 =, 300 [, 6-8 %, 319 &, 196, 197 [^], 56, 96, 97 λ , 88, 95 !, 347 **{** 51 abs, 57, 78 acos, 62 acosh. 64 addpath, 344 all, 198 angle, 79 annotation, 274, 275 ans, 314 any, 199 arrows in plots, 274, 275 asin, 62 asinh, 64 assignin, 301 atan, 62 atanh, 64 average, see mean axis, 266 bar, 255, 257, 258 beep, 335 binocdf, 240binopdf, 233 binornd, 224 bitand, 76 bitcmp, 76 bitor, 76 bitshift, 76 bitwise logical operations, 76 bitxor, 76 boolean tests scalar, 196 vector, 197-199

break, 201 bsxfun. 28 cd, 291 ceil, 68 cell, 50 cell arrays, 50 extracting elements of, 51 cellular automata animation, 289 chol, 104 circshift, 35 class, 312 clear, 308-310 clf, 277 clock, 337 close, 250colon, see : colorbar, 281 colormap building your own, 283 colormap, 282, 283 column vector, 7 comments, 319 complex numbers, 77-82 cond, 108-110 conj, 80 continue, 201 contour, 265 conv, 175corr, 127-132 cos, 61 $\cosh, 63$ cov, 125, 126 cputime, 336 cross, 84 csape, 188, 190, 191 cubic splines, 189, 190 natural, 188 not-a-knot, 192 periodic, 191 cumprod, 144 cumsum, 140-143 cumulative distribution functions binomial, 240 continuous uniform on interval (a, b), 244 discrete uniform from 1..n, 245 exponential, 242 normal, 243 Poisson, 241

dataset, 124

INDEX OF MATLAB COMMANDS AND CONCEPTS

debugging, 342 det, 90diag, 22, 23 diff, 146 differential equations, see ode45 dir. 293 disp, 320, 321 doc. 4 dot, 83 drawnow, 285, 289 echelon form, see matrix eig, 100 element-by-element matrix operations, see matrix else, 195 elseif, 195 end, 42eps, 332 erf, 71 erfc, 72 erfcinv, 74 erfinv, 73 error, 338errorbar, 259, 260 etime, 337 eval, 341 evalin, 302 exist, 311 exit, 318, 346 exp, 58 expcdf, 242 expm, 139 exppdf, 235 exprnd, 226 eye, 21 figure, 246, 247 file restoring workspace from, 299 running commands in, 294 saving workspace to, 298 text reading data from, 295, 296 saving data to, 297 find, 169-171 finish.m, 346 fix, 69 fliplr, 36 flipud, 37 floor, 67 fminbnd, 178, 179 fminsearch, 180, 181

font size in plots, 270 for, 193 format, 317 fplot, 279 fprintf, 320, 321 function multi-variable minimization, 180 minimization over first parameter only, 179 minimization over only some parameters, 181 single-variable minimization, 178 user-written, 203 returning multiple values, 204 fzero, 177 gca, 270 gcf, 248 get, 249 Greek letters in plot labels, 269 grid, 271 help, 1-3helpbrowser, 4 helpdesk, 4 hilb. 48 hist, 173, 174, 256, 257 hold, 277 identity, see matrix if, 194-196 imag, 82 image, 280, 289 imagesc, 280 importdata, 295, 296 ind2sub, 38 indexing matrix, 10 with a single index, 11 vector, 9 input, 322, 323 inv, 91 inverse, see matrix ismember, 327 keyboard, 342legend, 276 length, 159, 161 linspace, 15 load, 295, 299 log, 59

INDEX OF MATLAB COMMANDS AND CONCEPTS

log10, 60 log2, 60 loglog, 254logspace, 16 lookfor, 5 lu, 101 matrix, 8 basis for image/range/column space, 112 basis for null space, 111 boolean operations on, 170, 171 changing shape of, 45 Cholesky factorization, 104 circular shift, 35 condition number, 108–110 containing all indentical entries, 20 containing all zeros, 19 converting row, column to single index, 39 converting single-index to row, column, 38 cumulative sums of all elements of, 143 cumulative sums of columns. 141 cumulative sums of rows, 142 determinant, 90 diagonal, 22 echelon form, 89 eigenvalues and eigenvectors of, 100 equation solving, 88 exponential of, 139 extracting a column of, 30 extracting a rectangular piece of, 33 extracting a row of, 31 extracting specified rows and columns of, 34 "gluing" together, 24, 25 identity, 21 inverse, 91

lower-triangular portion of, 46

minimum value of each column of, 150

modifying elements given lists of rows and

minimum value of each row of, 151

minimum of values of, 149

element-by-element, 86

of all elements, 136

of columns of, 137

QR factorization, 105

of rows of, 138

LU factorization, 101

columns, 40

multiplication, 85

N-dimensional, 49

norm, 107

product

powers of, 97

re-shaping its elements into a vector, 32 reverse elements in columns, 37 reverse elements in rows, 36 Schur decomposition, 103 singular value decomposition, 102 size of, 156-158, 160, 161 sum of all elements, 133 of columns of, 134 of rows of, 135 trace, 92 transpose, 87 upper-triangular portion of, 47 max, see min mean, 113-115 median, 123 mesh, 265 meshgrid, 27, 127, 264 min, 148-151, 153-155 mind, 152mkdir, 290 mnpdf, 239 mnrnd, 231, 232 mod, 65, 351 mode, 122 mode of vector of values, 122 modulo arithmetic, 65, 351 multiple statements on one line, 340 nchoosek, 75 norm, 106, 107 normcdf, 243 normpdf, 236 normrnd, 230 null, 111 num2str, 330 numel, 160 ode45, 205-207 ones, 18, 20 openvar, 307 optimization, 178-181 orth, 112 path, 344 pause, 333, 334 pcolor, 265, 280, 289 perform some commands with probability p, 217 permutation of integers 1..n, 218

rank, 99

plot, 251-253, 278
 Greek letters in axis labels, 269
plot3, 262
poisscdf, 241

INDEX OF MATLAB COMMANDS AND CONCEPTS

poisspdf, 234 poissrnd, 225 polar, 261 polyfit, 184-186 polynomial least-squares fitted, 185–187 multiplication, 175 roots of, 176 ppval, 188, 190, 191 print, 286-288 probability density functions binomial, 233 continuous uniform on interval (a, b), 237 discrete uniform from 1..n, 238 exponential, 235 multinomial, 239 normal, 236 Poisson, 234 prod, 136-138 pwd, 292 qr, 105 guad, 182 quit, 318, 346 $\tt rand,\ 208-216,\ 222,\ 223$ randi, 212, 213 random values Bernoulli, 214 binomial, 224 continuous uniform distribution on interval (a, b), 211, 229continuous uniform distribution on interval (0,1), 208-210discrete uniform distribution from a..b, 216 discrete uniform distribution from 1..k, 213, 227, 228 discrete uniform distribution, 212 exponential, 226 general discrete distribution, 222 k unique values sampled from integers 1..n, 219multinomial, 231, 232 normal, 230 Poisson, 225 setting the seed, 223 randperm, 218, 219 randsample, 219-221 RandStream, 223 rank, 99 rcond, 108 real, 81 regexp, 328, 329

repmat, 26 reshape, 45, 49 rng, 223 roots of general single-variable function, 177 polynomial, 176 roots, 176 round, 66 row vector, 6 **rref**, 89 sampling values from a vector, 220, 221 save, 297, 298 schur, 103 semilogx, 254 semilogy, 254 set, 270 shading, 280 sign, 70 sin, 61 sinh, 63 size, 156-158 slice, 265 sort, 162, 163, 219 sortrows, 164-167 spline, 192 splines, see cubic splines sprintf, 331 sqrt, 55 stairs, 261 standard deviation, see std startup.m, 345 std, 116-118 stem, 261 stop, 338 strcat, 325 string concatenation, 324 converting number to, 330 pattern matching, 328, 329 substrings, 326 struct, 53 sub2ind, 39, 40 subplot, 284 sum, 133-135, 197 summary, 124 surf, 263, 264 surfc, 265 surfl, 265 svd, 102 switch, 202

tan, 61

tanh, 63 while, 200 text, 272, 273 who, 303 tic, 337 whos, 304-306, 315 title, 267xlabel, 268-270 toc, 337 trace, 92 ylabel, 268, 269 transpose, see matrix trapz, 183 zeros, 17, 19 tril, 46 triu, 47 unidcdf, 245unidpdf, 238unidrnd, 227, 228 unifcdf, 244 unifpdf, 237 unifrnd, 229 unique, 172, 173, 257 var, 119-121 variables assigning, 300 assigning in base environment from function, 301 evaluating from base environment within function, 302 names, 313 variance, see var vector boolean operations on, 168, 169 containing all indentical entries, 18 containing all zeros, 17 counts of binned values in, 174 counts of discrete values in, 173 cross product, 84 cumulative sum of elements of, 140 differences between consecutive elements of, 146dot product, 83 minimum of values of, 148 norm, 106 position of first occurance of minimum value in, 155 product of all elements, 136 reversing order of elements in, 29 size of, 159 sum of all elements, 133 summary of values in, 124 truncating, 41 unique values in, 172 warning, 339 waterfall, 265 which, 343

50

Index of R commands and concepts

*, 96 /, 94 :, 12, 13;, 340 <-, 300 <<-, 301 =, 300 ?, 1, 2 [[, 51 #, 319 %%, 65, 351 %x%, 26 &, 196, 197 [^], 56, 98 abs, 57, 78 acos, 62 acosh, 64 alarm, 335 all, 198 any, 199 apply, 36, 37, 118, 120, 121, 137, 150, 151 Arg, 79 array, 49 arrayInd, 38 arrows, 274, 275 as.character, 330 as.formula, 186 as.numeric, 173 asin, 62 asinh, 64 atan, 62 atanh, 64 average, see mean barplot, 257 bitwAnd, 76 bitwise logical operations, 76 bitwNot, 76 bitwOr, 76 bitwShiftL, 76 bitwShiftR, 76 bitwXor, 76 boolean tests scalar, 196 vector, 197-199 break, 201 browser, 342 c, 6, 7 cat, 320

cbind, 24, 40 ceiling, 68 cellular automata animation, 289 **chol**, 104 choose, 75 class, 312 cloud, 262 coef, 184-187 colMeans, 114 colon, see : colormap building your own, 283 for image, 282 colSums, 134 column vector, 7 comments, 319 complex numbers, 77-82 Conj, 80 contour, 265 convolve, 175 cor, 128-132cos, 61 cosh, 63 cov, 125-127 cubic splines, 189, 190, 192 natural, 188 periodic, 191 cummax, 145cummin, 145cumprod, 144 cumsum, 140-143 cumulative distribution functions binomial, 240 continuous uniform on interval (a, b), 244 discrete uniform from 1..n, 245 exponential, 242 normal, 243 Poisson, 241 curve, 279 data.frame, 53 dbinom, 233 debugging, 342 det, 90 dev.control, 286, 287, 289 dev.copy, 286, 287 dev.copy2eps, 287 dev.copy2pdf, 286 dev.cur(), 248 dev.list, 249

INDEX OF R COMMANDS AND CONCEPTS

dev.new, 246 dev.off, 250, 286-288 dev.set, 247 dexp, 235 diag, 21-23diff, 146 differential equations, see lsoda dim, 45, 156-158, 161 dir, 293 dir.create, 290 dmultinom, 239 dnorm, 236 dpois, 234 dunif, 237 echelon form, see matrix eig, 100 element-by-element matrix operations, see ma- trix else, 195 errbar, 259, 260 eval, 341 exists, 311 exp, 58 expand, 101 expand.grid, 265 expm, 139 file restoring workspace from, 299 running commands in, 294 saving workspace to, 298 text reading data from, 295, 296 saving data to, 297 filled.contour, 281 .First, 345 fix, 307 floor, 67 font size in plots, 270 for, 193 function multi-variable minimization, 180 minimization over first parameter only, 179 minimization over only some parameters, 181 single-variable minimization, 178 user-written, 203 returning multiple values, 204 get, 302

getwd, 292

globalenv, 302 graphics not being displayed from scripts/functions, 285Greek letters in plot labels, 269 gregexpr, 328 grep1, 329 grid, 271 help, 1, 2 help.search, 5 help.start, 4 Hilbert, 48 hist, 174, 256, 258 identity, see matrix if, 194-196 ifelse, 147 Im, 82 image, 280, 289 indexing matrix, 10 with a single index, 11 vector, 9 install.packages, 348 integrate, 182 inverse, see matrix jpeg, 288 kappa, 109 kronecker, 26 .Last, 346 .Last.value, 314 lattice package, 265, 281, 285, 348 layout, 284 legend, 276length, 41, 42, 159, 160 levelplot, 281, 285 library, 3, 348 lines, 277 lists, 50 extracting elements of, 51 lm, 184-187 lm.fit, 186 load, 299 log, 59 log10, 60 log2, 60 lower.tri, 47 ls. 303

ls.str, 304, 306

lsoda, 205-207

.Machine\$double.eps, 332 match, 327 matplot, 278 matrix, 8 basis for image/range/column space, 112 basis for null space, 111 boolean operations on, 170, 171 changing shape of, 45 Cholesky factorization, 104 circular shift, 35 condition number, 108-110 containing all indentical entries, 20 containing all zeros, 19 converting row, column to single index, 39 converting single-index to row, column, 38 cumulative sums of all elements of, 143 cumulative sums of columns, 141 cumulative sums of rows, 142 determinant, 90 diagonal, 22 echelon form, 89 eigenvalues and eigenvectors of, 100 equation solving, 88 exponential of, 139 extracting a column of, 30 extracting a rectangular piece of, 33 extracting a row of, 31 extracting specified rows and columns of, 34 "gluing" together, 24, 25 identity, 21 inverse, 91 lower-triangular portion of, 46 LU factorization, 101 minimum of values of, 149 minimum value of each column of, 150 minimum value of each row of, 151 modifying elements given lists of rows and columns, 40 multiplication, 85 element-by-element, 86 N-dimensional, 49 norm, 107 powers of, 97 product of all elements, 136 of columns of, 137 of rows of, 138 QR factorization, 105 rank, 99 re-shaping its elements into a vector, 32

reverse elements in columns, 37 reverse elements in rows, 36 Schur decomposition, 103 singular value decomposition, 102 size of, 156-158, 160, 161 sum of all elements, 133 of columns of, 134 of rows of, 135 trace, 92 transpose, 87 upper-triangular portion of, 47 matrix, 8, 19, 20 max. see min mean, 113 median, 123 min, 148-151, 154 Mod. 78 mode, 312 mode of vector of values, 122 modulo arithmetic, 65, 351 multiple statements on one line, 340 names, 52, 173 ncol, 157 next, 201 noquote, 320 norm, 106, 107 nrow, 156 null, 111 object.size, 315 optim, 180, 181 optimization, 178-181 optimize, 178, 179 options digits=, 317 order, 164-167 orth, 112 outer, 28, 186, 264 packages installing, 348 loading, 348 par, 270 par mfcol=, 284 mfrow=, 284 parse, 341 paste, 186, 324, 325 pbinom, 240 pdf, 270, 286 perform some commands with probability p, 217 permutation of integers 1..n, 218

INDEX OF R COMMANDS AND CONCEPTS

persp, 263, 264 pexp, 242 pie, 261 plot, 255, 257 plot, 251-254 Greek letters in axis labels, 269 main=, 267 sub=, 267 xlab=, 268, 269 xlim=, 266 ylab=, 268, 269 ylim=, 266 pmin, 152, 153 pnorm, 71, 72, 243 points, 277 polynomial least-squares fitted, 185–187 multiplication, 175 roots of, 176 polyreg, 186 polyroot, 176 postscript, 287 ppois, 241 print, 285, 320, 321 probability density functions binomial, 233 continuous uniform on interval (a, b), 237 discrete uniform from 1..n, 238 exponential, 235 multinomial, 239 normal, 236 Poisson, 234 proc.time, 336, 337 prod, 136-138 punif, 244 q, 318, 346 qnorm, 73, 74 gr. 99, 105 quartz, 246 quit, 318, 346 random values Bernoulli, 214 binomial, 224 continuous uniform distribution on interval (a, b), 211, 229continuous uniform distribution on interval (0,1), 208, 210continuous uniform distribution on inteval (0,1), 209discrete uniform distribution from a..b, 216 discrete uniform distribution from 1..k, 213, 227, 228

discrete uniform distribution, 212 exponential, 226 general discrete distribution, 222 k unique values sampled from integers 1..n, 219multinomial, 231, 232 normal, 230 Poisson, 225 setting the seed, 223 rbind, 25 rbinom, 224 rcond, 108, 110 .RData, 345 Re. 81 read.table, 295, 296 readline, 323 rep, 17, 18 rev. 29 rexp, 226 rgb, 283 rm, 308-310 rmultinom, 231, 232 rnorm, 230 roots of general single-variable function, 177 polynomial, 176 round, 66 row vector, 6 rowMeans, 115 rpois, 225 .Rprofile, 345 runif, 208-216, 229 sample, 212-216, 218-222, 227, 228 sampling values from a vector, 220, 221 save.image, 298 scan, 322, 334 Schur. 103 sd, 116-118 seq, 14-16 set.seed, 223 setwd, 291 sign, 70 sin, 61 sinh, 63 solve, 88, 91, 93, 95 sort, 162, 163 source, 294spline, 188, 189, 191 splines, see cubic splines split.screen, 284 sprintf, 331 sqrt, 55

INDEX OF R COMMANDS AND CONCEPTS

standard deviation, see sd str, 305 string concatenation, 324 converting number to, 330 pattern matching, 328, 329 substrings, 326 substr, 326 sum, 133, 135, 197 summary, 124 svd, 102 switch, 202 symbols, 265 Sys.sleep, 333 system, 347 t, 87 table, 122, 173, 257 $\tan, 61$ tanh, 63 text, 272, 273 title, 267, 268 transpose, see matrix trunc, 69 typeof, 312 unique, 172 uniroot, 177 upper.tri, 46 var, 119-121, 126 variables assigning, 300 assigning in base environment from function, 301 evaluating from base environment within function, 302 names. 313 variance, see var vector boolean operations on, 168, 169 containing all indentical entries, 18 containing all zeros, 17 counts of binned values in, 174 counts of discrete values in, 173 cross product, 84 cumulative sum of elements of, 140 differences between consecutive elements of, 146dot product, 83 minimum of values of, 148 norm, 106 position of first occurance of minimum value in, 155

product of all elements, 136 reversing order of elements in, 29 size of, 159 sum of all elements, 133 summary of values in, 124 truncating, 41 unique values in, 172 vector, 50warning, 339 which, 169-171 which.max, see which.min which.min, 155 while, 200 windows, 246 wireframe, 265 write, 297 x11, 246