
D. Hiebeler, Matlab / R Reference 1

MATLAB R© / R Reference
June 24, 2014

David Hiebeler
Dept. of Mathematics and Statistics

University of Maine
Orono, ME 04469-5752

http://www.math.umaine.edu/~hiebeler

I wrote the first version of this reference during Spring 2007, as I learned R while teaching my Modeling
& Simulation course at the University of Maine. The course covers population and epidemiological
modeling, including deterministic and stochastic models in discrete and continuous time, along with
spatial models. Earlier versions of the course had used Matlab. In Spring 2007, some biology graduate
students in the class asked if they could use R; I said “yes.” My colleague Bill Halteman was a great help
as I frantically learned R to stay ahead of the class. As I went along, I started building this reference for
my own use. In the end, I was pleasantly surprised that most things I do in Matlab have fairly direct
equivalents in R. I was also inspired to write this after seeing the “R for Octave Users” reference written
by Robin Hankin, and have continued to add to the document.

This reference is organized into general categories. There is also a Matlab index and an R index at
the end, which should make it easy to look up a command you know in one of the languages and learn
how to do it in the other (or if you’re trying to read code in whichever language is unfamiliar to you,
allow you to translate back to the one you are more familiar with). The index entries refer to the item
numbers in the first column of the reference document, rather than page numbers.

Any corrections, suggested improvements, or even just notification that the reference has been useful
are appreciated. I hope all the time I spent on this will prove useful for others in addition to myself and
my students. Note that sometimes I don’t necessarily do things in what you may consider the “best” way
in a particular language. I often tried to do things in a similar way in both languages, and where possible
I’ve avoided the use of Matlab toolboxes or R packages which are not part of the core distributions.
But if you believe you have a “better” way (either simpler, or more computationally efficient) to do
something, feel free to let me know.

For those transitioning fromMatlab to R, you should check out the pracma package for R (“Practical
Numerical Math Routines”) — it has more than 200 functions which emulate Matlab functions, which
you may find very handy.

Acknowledgements: Thanks to Juan David Ospina Arango, Berry Boessenkool, Robert Bryce,
Thomas Clerc, Alan Cobo-Lewis, Richard Cotton, Stephen Eglen, Andreas Handel, Niels Richard Hansen,
Luke Hartigan, Roger Jeurissen, David Khabie-Zeitoune, Seungyeon Kim, Michael Kiparsky, Isaac Michaud,
Andy Moody, Ben Morin, Lee Pang, Manas A. Pathak, Rachel Rier, Rune Schjellerup Philosof, Rachel
Rier, William Simpson, David Winsemius, Corey Yanofsky, and Jian Ye for corrections and contributions.

Permission is granted to make and distribute verbatim copies of this manual provided this permission
notice is preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, un-
der the above conditions for modified versions, except that this permission notice may be stated in a
translation approved by the Free Software Foundation.

Copyright c©2014 David Hiebeler

D. Hiebeler, Matlab / R Reference 2

Contents

1 Help 3

2 Entering/building/indexing matrices 3
2.1 Cell arrays and lists . 6
2.2 Structs and data frames . 7

3 Computations 8
3.1 Basic computations . 8
3.2 Complex numbers . 9
3.3 Matrix/vector computations . 9
3.4 Root-finding . 16
3.5 Function optimization/minimization . 16
3.6 Numerical integration / quadrature . 17
3.7 Curve fitting . 18

4 Conditionals, control structure, loops 19

5 Functions, ODEs 23

6 Probability and random values 25

7 Graphics 29
7.1 Various types of plotting . 29
7.2 Printing/saving graphics . 37
7.3 Animating cellular automata / lattice simulations . 38

8 Working with files 39

9 Miscellaneous 40
9.1 Variables . 40
9.2 Strings and Misc. 41

10 Spatial Modeling 45

Index of MATLAB commands and concepts 46

Index of R commands and concepts 51

D. Hiebeler, Matlab / R Reference 3

1 Help

No. Description Matlab R

1 Show help for a function (e.g.
sqrt)

help sqrt, or helpwin sqrt to see
it in a separate window

help(sqrt) or ?sqrt

2 Show help for a built-in key-
word (e.g. for)

help for help(’for’) or ?’for’

3 General list of many help top-
ics

help library() to see available libraries,
or library(help=’base’) for very
long list of stuff in base package which
you can see help for

4 Explore main documentation
in browser

doc or helpbrowser (previously it
was helpdesk, which is now being
phased out)

help.start()

5 Search documentation for
keyword or partial keyword
(e.g. functions which refer to
“binomial”)

lookfor binomial help.search(’binomial’)

2 Entering/building/indexing matrices

No. Description Matlab R

6 Enter a row vector ~v =
[

1 2 3 4
]

v=[1 2 3 4] v=c(1,2,3,4) or alternatively
v=scan() then enter “1 2 3 4” and
press Enter twice (the blank line
terminates input)

7 Enter a column vector

1
2
3
4

[1; 2; 3; 4] c(1,2,3,4)

(R does not distinguish between row
and column vectors.)

8 Enter a matrix

[

1 2 3
4 5 6

]

[1 2 3 ; 4 5 6] To enter values by row:
matrix(c(1,2,3,4,5,6), nrow=2,

byrow=TRUE) To enter values by
column: matrix(c(1,4,2,5,3,6),

nrow=2)

9 Access an element of vector v v(3) v[3]

10 Access an element of matrix
A

A(2,3) A[2,3]

11 Access an element of matrix
A using a single index: in-
dices count down the first col-
umn, then down the second
column, etc.

A(5) A[5]

12 Build the vector [2 3 4 5 6 7] 2:7 2:7

13 Build the vector [7 6 5 4 3 2] 7:-1:2 7:2

14 Build the vector [2 5 8 11 14] 2:3:14 seq(2,14,3)

D. Hiebeler, Matlab / R Reference 4

No. Description Matlab R

15 Build a vector containing
n equally-spaced values be-
tween a and b inclusive

linspace(a,b,n) seq(a,b,length.out=n) or just
seq(a,b,len=n)

16 Build a vector containing
n logarithmically equally-
spaced values between 10a

and 10b inclusive

logspace(a,b,n) 10^seq(a,b,len=n)

17 Build a vector of length k
containing all zeros

zeros(k,1) (for a column vector) or
zeros(1,k) (for a row vector)

rep(0,k)

18 Build a vector of length k
containing the value j in all
positions

j*ones(k,1) (for a column vector)
or j*ones(1,k) (for a row vector)

rep(j,k)

19 Build anm×nmatrix of zeros zeros(m,n) matrix(0,nrow=m,ncol=n) or just
matrix(0,m,n)

20 Build an m × n matrix con-
taining j in all positions

j*ones(m,n) matrix(j,nrow=m,ncol=n) or just
matrix(j,m,n)

21 n× n identity matrix In eye(n) diag(n)

22 Build diagonal matrix A us-
ing elements of vector v as di-
agonal entries

diag(v) diag(v,nrow=length(v)) (Note: if
you are sure the length of vector v is 2
or more, you can simply say diag(v).)

23 Extract diagonal elements of
matrix A

v=diag(A) v=diag(A)

24 “Glue” two matrices a1 and
a2 (with the same number of
rows) side-by-side

[a1 a2] cbind(a1,a2)

25 “Stack” two matrices a1 and
a2 (with the same number of
columns) on top of each other

[a1; a2] rbind(a1,a2)

26 Given r×cmatrix A, build an
rm×cn matrix by sticking m
copies of A horizontally and
n copies vertically

repmat(A,m,n) kronecker(matrix(1,m,n),A) or
matrix(1,m,n) %x% A

27 Given vectors x and y of
lengths m and n respectively,
build n×mmatrices X whose
rows are copies of x and Y
whose columns are copies of
y

[X,Y]=meshgrid(x,y) Use the meshgrid function from
the pracma package as follows:
tmp=meshgrid(x,y); X=tmp$X;

Y=tmp$Y Or do the following:

m=length(x); n=length(y);

X=matrix(rep(x,each=n),nrow=n);

Y=matrix(rep(y,m),nrow=n)

28 Given vectors x and y of
lengths m and n respectively,
build n×m matrices A where
element aij = e−xi sin(3yj)

bsxfun(@(x,y)

exp(-x).*sin(3*y), x, y)’

Note that x must be a row vector
and y must be a column vector;
use x(:)’ and y(:) to ensure this if
necessary

outer(exp(-x), sin(3*y))

29 Reverse the order of elements
in vector v

v(end:-1:1) rev(v)

D. Hiebeler, Matlab / R Reference 5

No. Description Matlab R

30 Column 2 of matrix A A(:,2) A[,2] Note: that gives the result as a
vector. To make the result am×1 ma-
trix instead, do A[,2,drop=FALSE]

31 Row 7 of matrix A A(7,:) A[7,] Note: that gives the result as a
vector. To make the result a 1×n ma-
trix instead, do A[7,,drop=FALSE]

32 All elements of A as a vector,
column-by-column

A(:) (gives a column vector) c(A)

33 Rows 2–4, columns 6–10 of A
(this is a 3× 5 matrix)

A(2:4,6:10) A[2:4,6:10]

34 A 3 × 2 matrix consisting of
rows 7, 7, and 6 and columns
2 and 1 of A (in that order)

A([7 7 6], [2 1]) A[c(7,7,6),c(2,1)]

35 Circularly shift the rows of
matrix A down by s1 ele-
ments, and right by s2 ele-
ments

circshift(A, [s1 s2]) circshift(A, c(s1,s2)) where
circshift is in the pracma pack-
age. Or modulo arithmetic on
indices will work: m=dim(A)[1];

n=dim(A)[2]; A[(1:m-s1-1)%%m+1,

(1:n-s2-1)%%n+1]

36 Flip the order of elements in
each row of matrix A

fliplr(A) fliplr(A) using fliplr from
the pracma package, or
t(apply(A,1,rev)) or
A[,ncol(A):1]

37 Flip the order of elements in
each column of matrix A

flipud(A) flipud(A) using flipud from the
pracma package, or apply(A,2,rev)
or A[nrow(A):1,]

38 Given a single index ind into
an m× n matrix A, compute
the row r and column c of
that position (also works if
ind is a vector)

[r,c] = ind2sub(size(A), ind)

arrayInd(ind, c(m,n)) or

r = ((ind-1) %% m) + 1

c = floor((ind-1) / m) + 1

or r=row(A)[ind]; c=col(A)[ind]

39 Given the row r and column
c of an element of an m × n
matrix A, compute the single
index ind which can be used
to access that element of A
(also works if r and c are vec-
tors)

ind = sub2ind(size(A), r, c) ind = (c-1)*m + r

40 Given equal-sized vectors r
and c (each of length k), set
elements in rows (given by r)
and columns (given by c) of
matrix A equal to 12. That
is, k elements of A will be
modified.

inds = sub2ind(size(A),r,c);

A(inds) = 12;

inds = cbind(r,c)

A[inds] = 12

41 Truncate vector v, keeping
only the first 10 elements

v = v(1:10) v = v[1:10], or length(v) = 10

also works

D. Hiebeler, Matlab / R Reference 6

No. Description Matlab R

42 Extract elements of vector v
from position a to the end

v(a:end) v[a:length(v)]

43 All but the kth element of
vector v

v([1:(k-1) (k+1):end]) or
v([k]) = [] (but this will modify
the original vector v)

v[-k]

44 All but the jth and kth ele-
ments of vector v

v(~ismember(1:length(v),[j k]))

or v([j k]) = [] (but this will
modify the original vector v)

v[c(-j,-k)]

45 Reshape matrix A, making it
an m × n matrix with ele-
ments taken columnwise from
the original A (which must
have mn elements)

A = reshape(A,m,n) dim(A) = c(m,n)

46 Extract the lower-triangular
portion of matrix A

L = tril(A) L = A; L[upper.tri(L)]=0

47 Extract the upper-triangular
portion of matrix A

U = triu(A) U = A; U[lower.tri(U)]=0

48 Enter n×n Hilbert matrix H
where Hij = 1/(i+ j − 1)

hilb(n) Hilbert(n), but this is part of the
Matrix package which you’ll need to
install (see item 348 for how to in-
stall/load packages).

49 Enter an n-dimensional array,
e.g. a 3×4×2 array with the
values 1 through 24

reshape(1:24, 3, 4, 2) or
reshape(1:24, [3 4 2])

array(1:24, c(3,4,2)) (Note that
a matrix is 2-D, i.e. rows and
columns, while an array is more gen-
erally N -D)

2.1 Cell arrays and lists

No. Description Matlab R

50 Build a vector v of length n,
capable of containing differ-
ent data types in different el-
ements (called a cell array in
Matlab, and a list in R)

v = cell(1,n) In general,
cell(m,n) makes an m × n cell
array. Then you can do e.g.:

v{1} = 12

v{2} = ’hi there’

v{3} = rand(3)

v = vector(’list’,n) Then you
can do e.g.:

v[[1]] = 12

v[[2]] = ’hi there’

v[[3]] = matrix(runif(9),3)

51 Extract the ith element of a
cell/list vector v

w = v{i}

If you use regular indexing, i.e. w

= v(i), then w will be a 1 × 1 cell
matrix containing the contents of the
ith element of v.

w = v[[i]]

If you use regular indexing, i.e. w =

v[i], then w will be a list of length 1
containing the contents of the ith ele-
ment of v.

52 Set the name of the ith ele-
ment in a list.

(Matlab does not have names asso-
ciated with elements of cell arrays.)

names(v)[3] = ’myrandmatrix’

Use names(v) to see all names, and
names(v)=NULL to clear all names.

D. Hiebeler, Matlab / R Reference 7

2.2 Structs and data frames

No. Description Matlab R

53 Create a matrix-like object
with different named columns
(a struct in Matlab, or a
data frame in R)

avals=2*ones(1,6);

yvals=6:-1:1; v=[1 5 3 2 3 7];

d=struct(’a’,avals,

’yy’, yyvals, ’fac’, v);

v=c(1,5,3,2,3,7); d=data.frame(

cbind(a=2, yy=6:1), v)

Note that I (surprisingly) don’t use R for statistics, and therefore have very little experience with data
frames (and also very little with Matlab structs). I will try to add more to this section later on.

D. Hiebeler, Matlab / R Reference 8

3 Computations

3.1 Basic computations

No. Description Matlab R

54 a+ b, a− b, ab, a/b a+b, a-b, a*b, a/b a+b, a-b, a*b, a/b
55

√
a sqrt(a) sqrt(a)

56 ab a^b a^b

57 |a| (note: for complex ar-
guments, this computes the
modulus)

abs(a) abs(a)

58 ea exp(a) exp(a)

59 ln(a) log(a) log(a)

60 log2(a), log10(a) log2(a), log10(a) log2(a), log10(a)
61 sin(a), cos(a), tan(a) sin(a), cos(a), tan(a) sin(a), cos(a), tan(a)

62 sin−1(a), cos−1(a), tan−1(a) asin(a), acos(a), atan(a) asin(a), acos(a), atan(a)
63 sinh(a), cosh(a), tanh(a) sinh(a), cosh(a), tanh(a) sinh(a), cosh(a), tanh(a)

64 sinh−1(a), cosh−1(a),
tanh−1(a)

asinh(a), acosh(a), atanh(a) asinh(a), acosh(a), atanh(a)

65 n MOD k (modulo arith-
metic)

mod(n,k) n %% k

66 Round to nearest integer round(x) round(x) (Note: R uses IEC 60559
standard, rounding 5 to the even digit
— so e.g. round(0.5) gives 0, not 1.)

67 Round down to next lowest
integer

floor(x) floor(x)

68 Round up to next largest in-
teger

ceil(x) ceiling(x)

69 Round toward zero fix(x) trunc(x)

70 Sign of x (+1, 0, or -1) sign(x) (Note: for complex values,
this computes x/abs(x).)

sign(x) (Does not work with com-
plex values)

71 Error function erf(x) =

(2/
√
π)

∫ x

0
e−t2dt

erf(x) 2*pnorm(x*sqrt(2))-1

72 Complementary er-
ror function cerf(x) =

(2/
√
π)

∫

∞

x
e−t2dt = 1-erf(x)

erfc(x) 2*pnorm(x*sqrt(2),lower=FALSE)

73 Inverse error function erfinv(x) qnorm((1+x)/2)/sqrt(2)

74 Inverse complementary error
function

erfcinv(x) qnorm(x/2,lower=FALSE)/sqrt(2)

75 Binomial coefficient
(

n
k

)

= n!/(n!(n− k)!)

nchoosek(n,k) choose(n,k)

76 Bitwise logical operations
(NOT, AND, OR, XOR,
bit-shifting)

bitcmp, bitand, bitor, bitxor,
bitshift

bitwNot, bitwAnd, bitwOr, bitwXor,
bitwShiftL, bitwShiftR

Note: the various functions above (logarithm, exponential, trig, abs, and rounding functions) all work
with vectors and matrices, applying the function to each element, as well as with scalars.

D. Hiebeler, Matlab / R Reference 9

3.2 Complex numbers

No. Description Matlab R

77 Enter a complex number 1+2i 1+2i

78 Modulus (magnitude) abs(z) abs(z) or Mod(z)
79 Argument (angle) angle(z) Arg(z)

80 Complex conjugate conj(z) Conj(z)

81 Real part of z real(z) Re(z)

82 Imaginary part of z imag(z) Im(z)

3.3 Matrix/vector computations

No. Description Matlab R

83 Vector dot product ~x · ~y =
~xT~y

dot(x,y) sum(x*y)

84 Vector cross product ~x× ~y cross(x,y) Not in base R, but you can use
cross(x,y) after loading the
pracma package (see item 348
for how to install/load packages)

85 Matrix multiplication AB A * B A %*% B

86 Element-by-element multipli-
cation of A and B

A .* B A * B

87 Transpose of a matrix, AT A’ (This is actually the complex con-
jugate (i.e. Hermitian) transpose;
use A.’ for the non-conjugate trans-
pose if you like; they are equivalent
for real matrices.)

t(A) for transpose, or Conj(t(A)) for
conjugate (Hermitian) transpose

88 Solve A~x = ~b A\b Warning: if there is no solution,
Matlab gives you a least-squares
“best fit.” If there are many solu-
tions, Matlab just gives you one of
them.

solve(A,b)Warning: this only works
with square invertible matrices.

89 Reduced echelon form of A rref(A) R does not have a function to do this
90 Determinant of A det(A) det(A)

91 Inverse of A inv(A) solve(A)

92 Trace of A trace(A) sum(diag(A))

93 AB−1 A/B A %*% solve(B)

94 Element-by-element division
of A and B

A ./ B A / B

95 A−1B A\B solve(A,B)

96 Square the matrix A A^2 A %*% A

97 Raise matrix A to the kth

power
A^k (No easy way to do this in R

other than repeated multiplication
A %*% A %*% A...)

98 Raise each element of A to
the kth power

A.^k A^k

99 Rank of matrix A rank(A) qr(A)$rank

100 Set w to be a vector of eigen-
values of A, and V a matrix
containing the corresponding
eigenvectors

[V,D]=eig(A) and then w=diag(D)

since Matlab returns the eigenval-
ues on the diagonal of D

tmp=eigen(A); w=tmp$values;

V=tmp$vectors

D. Hiebeler, Matlab / R Reference 10

No. Description Matlab R

101 Permuted LU factorization of
a matrix

[L,U,P]=lu(A) then the matrices
satisfy PA = LU . Note that this
works even with non-square matrices

tmp=expand(lu(Matrix(A)));

L=tmp$L; U=tmp$U; P=tmp$P then
the matrices satisfy A = PLU , i.e.
P−1A = LU . Note that the lu and
expand functions are part of the Ma-
trix package (see item 348 for how to
install/load packages). Also note that
this doesn’t seem to work correctly
with non-square matrices. L, U, and
P will be of class Matrix rather than
class matrix; to make them the latter,
instead do L=as.matrix(tmp$L),
U=as.matrix(tmp$U), and
P=as.matrix(tmp$P) above.

102 Singular-value decomposi-
tion: given m × n matrix
A with k = min(m,n), find
m × k matrix P with or-
thonormal columns, diagonal
k × k matrix S, and n × k
matrix Q with orthonormal
columns so that PSQT = A

[P,S,Q]=svd(A,’econ’) tmp=svd(A); P=tmp$u; Q=tmp$v;

S=diag(tmp$d)

103 Schur decomposi-
tion of square matrix,
A = QTQ∗ = QTQ−1 where
Q is unitary (i.e. Q∗Q = I)
and T is upper triangular;
Q∗ = QT is the Hermitian
(conjugate) transpose

[Q,T]=schur(A) tmp=Schur(Matrix(A)); T=tmp@T;

Q=tmp@Q Note that Schur is part of
the Matrix package (see item 348 for
how to install/load packages). T and
Q will be of class Matrix rather than
class matrix; to make them the latter,
instead do T=as.matrix(tmp@T) and
Q=as.matrix(tmp@Q) above.

104 Cholesky factorization of a
square, symmetric, positive
definite matrix A = R∗R,
where R is upper-triangular

R = chol(A) R = chol(A)

105 QR factorization of matrix A,
where Q is orthogonal (sat-
isfying QQT = I) and R is
upper-triangular

[Q,R]=qr(A) satisfying QR = A, or
[Q,R,E]=qr(A) to do permuted QR
factorization satisfying AE = QR

z=qr(A); Q=qr.Q(z); R=qr.R(z);

E=diag(n)[,z$pivot] (where n is
the number of columns in A) gives
permuted QR factorization satisfying
AE = QR

106 Vector norms norm(v,1) for 1-norm ‖~v‖1,
norm(v,2) for Euclidean norm
‖~v‖2, norm(v,inf) for infinity-norm
‖~v‖∞, and norm(v,p) for p-norm

‖~v‖p = (
∑ |vi|p)1/p

R does not have a norm func-
tion for vectors; only one for
matrices. But the following will
work: norm(matrix(v),’1’) for
1-norm ‖~v‖1, norm(matrix(v),’i’)

for infinity-norm ‖~v‖∞, and
sum(abs(v)^p)^(1/p) for p-norm

‖~v‖p = (
∑ |vi|p)1/p

D. Hiebeler, Matlab / R Reference 11

No. Description Matlab R

107 Matrix norms norm(A,1) for 1-norm ‖A‖1,
norm(A) for 2-norm ‖A‖2,
norm(A,inf) for infinity-norm
‖A‖∞, and norm(A,’fro’) for

Frobenius norm
(
∑

i(A
TA)ii

)1/2

norm(A,’1’) for 1-norm ‖A‖1,
max(svd(A,0,0)$d) for 2-norm
‖A‖2, norm(A,’i’) for infinity-
norm ‖A‖∞, and norm(A,’f’) for

Frobenius norm
(
∑

i(A
TA)ii

)1/2

108 Condition number cond(A) =
‖A‖1‖A−1‖1 of A, using 1-
norm

cond(A,1) (Note: Matlab also has
a function rcond(A) which computes
reciprocal condition estimator using
the 1-norm)

1/rcond(A,’1’)

109 Condition number cond(A) =
‖A‖2‖A−1‖2 of A, using 2-
norm

cond(A,2) kappa(A, exact=TRUE) (leave out
the “exact=TRUE” for an esti-
mate)

110 Condition number cond(A) =
‖A‖∞‖A−1‖∞ of A, using
infinity-norm

cond(A,inf) 1/rcond(A,’I’)

111 Orthnormal basis for null
space of matrix A

null(A) null(A) with this function provided
by the pracma package

112 Orthnormal basis for im-
age/range/column space of
matrix A

orth(A) orth(A) with this function provided
by the pracma package

113 Mean of all elements in vector
or matrix

mean(v) for vectors, mean(A(:)) for
matrices

mean(v) or mean(A)

114 Means of columns of a matrix mean(A) colMeans(A)

115 Means of rows of a matrix mean(A,2) rowMeans(A)

116 Standard deviation of all ele-
ments in vector or matrix

std(v) for vectors, std(A(:)) for
matrices. This normalizes by n − 1.
Use std(v,1) to normalize by n.

sd(v) for vectors, sd(A) for matrices.
This normalizes by n− 1.

117 Standard deviations of
columns of a matrix

std(A). This normalizes by n − 1.
Use std(A,1) to normalize by n

apply(A,2,sd). This normalizes by
n − 1. Note: in previous versions of
R, sd(A) computed this.

118 Standard deviations of rows
of a matrix

std(A,0,2) to normalize by n − 1,
std(A,1,2) to normalize by n

apply(A,1,sd). This normalizes by
n− 1.

119 Variance of all elements in
vector or matrix

var(v) for vectors, var(A(:)) for
matrices. This normalizes by n − 1.
Use var(v,1) to normalize by n.

var(v) for vectors, var(c(A)) for
matrices. This normalizes by n− 1.

120 Variance of columns of a ma-
trix

var(A). This normalizes by n − 1.
Use var(A,1) to normalize by n

apply(A,2,var). This normalizes by
n− 1.

121 Variance of rows of a matrix var(A,0,2) to normalize by n − 1,
var(A,1,2) to normalize by n

apply(A,1,var). This normalizes by
n− 1.

122 Mode of values in vector v mode(v) (chooses smallest value in
case of a tie), or [m,f,c]=mode(v);
c{1} (gives list of all tied values)

No simple function built in,
but some approaches are:
as.numeric(names(sort(-table(v)

)))[1] (chooses smallest
value in case of a tie), or
as.numeric(names(table(v))[

table(v)==max(sort(table(v)))])

(gives vector of all tied val-
ues), or tmp = unique(v);

tmp[which.max(tabulate(match(v,

tmp)))] (in case of a tie, chooses
whichever tied value occurs first in v)

D. Hiebeler, Matlab / R Reference 12

No. Description Matlab R

123 Median of values in vector v median(v) median(v)

124 Basic summary statistics of
values in vector v

summary(dataset(v)) Note: only
works if v is a column vector; use
summary(dataset(v(:))) to make
it work regardless of whether v is a
row or column vector.

summary(v)

125 Covariance for two vectors of
observations

cov(v,w) computes the 2 × 2 co-
variance matrix; the off-diagonal ele-
ments give the desired covariance

cov(v,w)

126 Covariance matrix, giving co-
variances between columns of
matrix A

cov(A) var(A) or cov(A)

127 Given matrices A and B,
build covariance matrix C
where cij is the covariance be-
tween column i of A and col-
umn j of B

I don’t know of a direct way to
do this in Matlab. But one way is
[Y,X]=meshgrid(std(B),std(A));

X.*Y.*corr(A,B)

cov(A,B)

128 Pearson’s linear correlation
coefficient between elements
of vectors v and w

corr(v,w) Note: v and w
must be column vectors. Or
corr(v(:),w(:)) will work for
both row and column vectors.

cor(v,w)

129 Kendall’s tau correlation
statistic for vectors v and w

corr(v,w,’type’,’kendall’) cor(v,w,method=’kendall’)

130 Spearman’s rho correlation
statistic for vectors v and w

corr(v,w,’type’,’spearman’) cor(v,w,method=’spearman’)

131 Pairwise Pearson’s corre-
lation coefficient between
columns of matrix A

corr(A) The ’type’ argument may
also be used as in the previous two
items

cor(A) The method argument may
also be used as in the previous two
items

132 Matrix C of pairwise Pear-
son’s correlation coefficients
between each pair of columns
of matrices A and B, i.e. cij
is correlation between column
i of A and column j of B

corr(A,B) The ’type’ argument
may also be used as just above

cor(A,B) The method argument
may also be used as just above

133 Sum of all elements in vector
or matrix

sum(v) for vectors, sum(A(:)) for
matrices

sum(v) or sum(A)

134 Sums of columns of matrix sum(A) colSums(A)

135 Sums of rows of matrix sum(A,2) rowSums(A)

136 Product of all elements in
vector or matrix

prod(v) for vectors, prod(A(:)) for
matrices

prod(v) or prod(A)

137 Products of columns of ma-
trix

prod(A) apply(A,2,prod)

138 Products of rows of matrix prod(A,2) apply(A,1,prod)

139 Matrix exponential eA =
∑

∞

k=0
Ak/k!

expm(A) expm(Matrix(A)), but this is part of
theMatrix package which you’ll need
to install (see item 348 for how to in-
stall/load packages).

140 Cumulative sum of values in
vector

cumsum(v) cumsum(v)

141 Cumulative sums of columns
of matrix

cumsum(A) apply(A,2,cumsum)

D. Hiebeler, Matlab / R Reference 13

No. Description Matlab R

142 Cumulative sums of rows of
matrix

cumsum(A,2) t(apply(A,1,cumsum))

143 Cumulative sum of all ele-
ments of matrix (column-by-
column)

cumsum(A(:)) cumsum(A)

144 Cumulative product of ele-
ments in vector v

cumprod(v) (Can also be used in the
various ways cumsum can)

cumprod(v) (Can also be used in the
various ways cumsum can)

145 Cumulative minimum or
maximum of elements in
vector v

w=zeros(size(v)); w(1)=v(1);

for i=2:length(v)

w(i)=min(w(i-1),v(i));

end

This actually runs very efficiently be-
causeMatlab optimizes/accelerates
simple for loops

cummin(v) or cummax(v)

146 Differences between consecu-
tive elements of vector v. Re-
sult is a vector w 1 element
shorter than v, where ele-
ment i of w is element i + 1
of v minus element i of v

diff(v) diff(v)

147 Make a vector y the same size
as vector x, which equals 4
everywhere that x is greater
than 5, and equals 3 every-
where else (done via a vector-
ized computation).

z = [3 4]; y = z((x > 5)+1)

Or this will also work:
y=3*ones(size(x)); y(x>5)=4

y = ifelse(x > 5, 4, 3)

148 Minimum of values in vector
v

min(v) min(v)

149 Minimum of all values in ma-
trix A

min(A(:)) min(A)

150 Minimum value of each col-
umn of matrix A

min(A) (returns a row vector) apply(A,2,min) (returns a vector)

151 Minimum value of each row of
matrix A

min(A, [], 2) (returns a column
vector)

apply(A,1,min) (returns a vector)

152 Given matrices A and B,
compute a matrix where each
element is the minimum of
the corresponding elements of
A and B

min(A,B) pmin(A,B)

153 Given matrix A and scalar
c, compute a matrix where
each element is the minimum
of c and the corresponding el-
ement of A

min(A,c) pmin(A,c)

154 Find minimum among all val-
ues in matrices A and B

min([A(:) ; B(:)]) min(A,B)

155 Find index of the first time
min(v) appears in v, and
store that index in ind

[y,ind] = min(v) ind = which.min(v)

D. Hiebeler, Matlab / R Reference 14

Notes:

• Matlab and R both have a max function (and R has pmax and which.max as well) which behaves
in the same ways as min but to compute maxima rather than minima.

• Functions like exp, sin, sqrt etc. will operate on arrays in both Matlab and R, doing the
computations for each element of the matrix.

No. Description Matlab R

156 Number of rows in A size(A,1) nrow(A) or dim(A)[1]
157 Number of columns in A size(A,2) ncol(A) or dim(A)[2]
158 Dimensions of A, listed in a

vector
size(A) dim(A)

159 Number of elements in vector
v

length(v) length(v)

160 Total number of elements in
matrix A

numel(A) length(A)

161 Max. dimension of A length(A) max(dim(A))

162 Sort values in vector v sort(v) sort(v)

163 Sort values in v, putting
sorted values in s, and indices
in idx, in the sense that s[k]
= x[idx[k]]

[s,idx]=sort(v) tmp=sort(v,index.return=TRUE);

s=tmp$x; idx=tmp$ix

164 Sort the order of the rows of
matrix m

sortrows(m)

This sorts according to the first col-
umn, then uses column 2 to break
ties, then column 3 for remaining
ties, etc. Complex numbers are
sorted by abs(x), and ties are then
broken by angle(x).

m[order(m[,1]),]

This only sorts according to the first
column. To use column 2 to break
ties, and then column 3 to break fur-
ther ties, do
m[order(m[,1], m[,2], m[,3]),]

Complex numbers are sorted first by
real part, then by imaginary part.

165 Sort order of rows of matrix
m, specifying to use columns
x, y, z as the sorting “keys”

sortrows(m, [x y z]) m[order(m[,x], m[,y], m[,z]),]

D. Hiebeler, Matlab / R Reference 15

No. Description Matlab R

166 Same as previous item, but
sort in decreasing order for
columns x and y

sortrows(m, [-x -y z]) m[order(-m[,x], -m[,y],

m[,z]),]

167 Sort order of rows of matrix
m, and keep indices used for
sorting

[y,i] = sortrows(m) i=order(m[1,]); y=m[i,]

168 To count how many values in
the vector v are between 4
and 7 (inclusive on the upper
end)

sum((v > 4) & (v <= 7)) sum((v > 4) & (v <= 7))

169 Given vector v, return list of
indices of elements of v which
are greater than 5

find(v > 5) which(v > 5)

170 Given matrix A, return list
of indices of elements of A
which are greater than 5, us-
ing single-indexing

find(A > 5) which(A > 5)

171 Given matrix A, generate
vectors r and c giving rows
and columns of elements of A
which are greater than 5

[r,c] = find(A > 5) w = which(A > 5, arr.ind=TRUE);

r=w[,1]; c=w[,2]

172 Given vector x, build a vector
containing the unique values
in x (i.e. with duplicates re-
moved).

unique(x) gives the values sorted
numerically; unique(x, ’stable’)

gives them in the order they appear
in x

unique(x) gives the values in
the order they appear in x;
sort(unique(x)) builds a sorted set
of unique values

173 Given vector x (of presum-
ably discrete values), build a
vector v listing unique val-
ues in x, and corresponding
vector c indicating how many
times those values appear in
x

v = unique(x); c = hist(x,v); w=table(x); c=as.numeric(w);

v=as.numeric(names(w))

174 Given vector x (of presum-
ably continuous values), di-
vide the range of values into k
equally-sized bins, and build
a vector m containing the
midpoints of the bins and a
corresponding vector c con-
taining the counts of values in
the bins

[c,m] = hist(x,k) w=hist(x,seq(min(x),max(x),

length.out=k+1), plot=FALSE);

m=w$mids; c=w$counts

175 Convolution / polynomial
multiplication (given vectors
x and y containing polyno-
mial coefficients, their convo-
lution is a vector containing
coefficients of the product of
the two polynomials)

conv(x,y) convolve(x,rev(y),type=’open’)

Note: the accuracy of this is not
as good as Matlab; e.g. doing
v=c(1,-1); for (i in 2:20)

v=convolve(v,c(-i,1),

type=’open’) to generate the
20th-degree Wilkinson polynomial
W (x) =

∏20

i=1
(x−i) gives a coefficient

of ≈ −780.19 for x19, rather than the
correct value -210.

D. Hiebeler, Matlab / R Reference 16

3.4 Root-finding

No. Description Matlab R

176 Find roots of polynomial
whose coefficients are stored
in vector v (coefficients in v
are highest-order first)

roots(v) polyroot(rev(v)) (This function
really wants the vector to have the
constant coefficient first in v; rev re-
verses their order to achieve this.)

177 Find zero (root) of a function
f(x) of one variable

Define function f(x), then do
fzero(f,x0) to search for a root
near x0, or fzero(f,[a b]) to find
a root between a and b, assuming
the sign of f(x) differs at x = a
and x = b. Default forward error
tolerance (i.e. error in x) is machine
epsilon ǫmach.

Define function f(x), then do
uniroot(f, c(a,b)) to find a root
between a and b, assuming the sign
of f(x) differs at x = a and x = b.
Default forward error tolerance (i.e.
error in x) is fourth root of machine
epsilon, (ǫmach)

0.25. To specify e.g.
a tolerance of 2−52, do uniroot(f,

c(a,b), tol=2^-52).

3.5 Function optimization/minimization

No. Description Matlab R

178 Find value m which mini-
mizes a function f(x) of one
variable within the interval
from a to b

Define function f(x), then do

m = fminbnd(@f, a, b)

Define function f(x), then do

m = optimize(f,c(a,b))$minimum

179 Find value m which mini-
mizes a function f(x, p1, p2)
with given extra parameters
(but minimization is only oc-
curing over the first argu-
ment), in the interval from a
to b.

Define function f(x,p1,p2), then use
an “anonymous function”:

% first define values for p1

% and p2, and then do:

m=fminbnd(@(x) f(x,p1,p2),a,b)

Define function f(x,p1,p2), then:

first define values for p1

and p2, and then do:

m = optimize(f, c(a,b), p1=p1,

p2=p2)$minimum

180 Find values of x, y, z which
minimize function f(x, y, z),
using a starting guess of x =
1, y = 2.2, and z = 3.4.

First write function f(v) which ac-
cepts a vector argument v containing
values of x, y, and z, and returns the
scalar value f(x, y, z), then do:

fminsearch(@f,[1 2.2 3.4])

First write function f(v) which ac-
cepts a vector argument v containing
values of x, y, and z, and returns the
scalar value f(x, y, z), then do:

optim(c(1,2.2,3.4),f)$par

181 Find values of x, y, z
which minimize function
f(x, y, z, p1, p2), using a
starting guess of x = 1,
y = 2.2, and z = 3.4, where
the function takes some extra
parameters (useful e.g. for
doing things like nonlinear
least-squares optimization
where you pass in some data
vectors as extra parameters).

First write function f(v,p1,p2)
which accepts a vector argument
v containing values of x, y, and
z, along with the extra parame-
ters, and returns the scalar value
f(x, y, z, p1, p2), then do:

fminsearch(@f,[1 2.2 3.4], ...

[], p1, p2)

Or use an anonymous function:

fminsearch(@(x) f(x,p1,p2), ...

[1 2.2 3.4])

First write function f(v,p1,p2) which
accepts a vector argument v contain-
ing values of x, y, and z, along with
the extra parameters, and returns the
scalar value f(x, y, z, p1, p2), then do:

optim(c(1,2.2,3.4), f, p1=p1,

p2=p2)$par

D. Hiebeler, Matlab / R Reference 17

3.6 Numerical integration / quadrature

No. Description Matlab R

182 Numerically integrate func-
tion f(x) over interval from
a to b

quad(f,a,b) uses adaptive Simp-
son’s quadrature, with a default
absolute tolerance of 10−6. To
specify absolute tolerance, use
quad(f,a,b,tol)

integrate(f,a,b) uses adaptive
quadrature with default absolute
and relative error tolerances being
the fourth root of machine epsilon,
(ǫmach)

0.25 ≈ 1.22 × 10−4. Tol-
erances can be specified by using
integrate(f,a,b, rel.tol=tol1,

abs.tol=tol2). Note that the func-
tion f must be written to work even
when given a vector of x values as its
argument.

183 Simple trapezoidal numerical
integration using (x, y) values
in vectors x and y

trapz(x,y) sum(diff(x)*(y[-length(y)]+

y[-1])/2)

D. Hiebeler, Matlab / R Reference 18

3.7 Curve fitting

No. Description Matlab R

184 Fit the line y = c1x + c0 to
data in vectors x and y.

p = polyfit(x,y,1)

The return vector p has the coeffi-
cients in descending order, i.e. p(1)
is c1, and p(2) is c0.

p = coef(lm(y ~ x))

The return vector p has the coeffi-
cients in ascending order, i.e. p[1] is
c0, and p[2] is c1.

185 Fit the quadratic polynomial
y = c2x

2+ c1x+ c0 to data in
vectors x and y.

p = polyfit(x,y,2)

The return vector p has the coeffi-
cients in descending order, i.e. p(1)
is c2, p(2) is c1, and p(3) is c0.

p = coef(lm(y ~ x + I(x^2)))

The return vector p has the coeffi-
cients in ascending order, i.e. p[1] is
c0, p[2] is c1, and p[3] is c2.

186 Fit nth degree polynomial
y = cnx

n + cn−1x
n−1 + . . .+

c1x + c0 to data in vectors x
and y.

p = polyfit(x,y,n)

The return vector p has the coeffi-
cients in descending order, p(1) is
cn, p(2) is cn−1, etc.

No simple built-in way. But this will
work: coef(lm(as.formula(paste(

’y~’,paste(’I(x^’,1:n,’)’,

sep=’’,collapse=’+’)))))

This more concise “lower-
level” method will also work:
coef(lm.fit(outer(x,0:n,’^’),y))

Note that both of the above return
the coefficients in ascending order.
Also see the polyreg function in the
mda package (see item 348 for how
to install/load packages).

187 Fit the quadratic polynomial
with zero intercept, y =
c2x

2 + c1x to data in vectors
x and y.

(I don’t know a simple way do this
in Matlab, other than to write a
function which computes the sum
of squared residuals and use fmin-
search on that function. There is
likely an easy way to do it in the
Statistics Toolbox.)

p=coef(lm(y ~ -1 + x + I(x^2)))

The return vector p has the coeffi-
cients in ascending order, i.e. p[1] is
c1, and p[2] is c2.

188 Fit natural cubic spline
(S′′(x) = 0 at both end-
points) to points (xi, yi)
whose coordinates are in
vectors x and y; evaluate at
points whose x coordinates
are in vector xx, storing
corresponding y’s in yy

pp=csape(x,y,’variational’);

yy=ppval(pp,xx) but note that
csape is in Matlab’s Spline
Toolbox

tmp=spline(x,y,method=’natural’,

xout=xx); yy=tmp$y

189 Fit cubic spline using
Forsythe, Malcolm and
Moler method (third deriva-
tives at endpoints match
third derivatives of exact cu-
bics through the four points
at each end) to points (xi, yi)
whose coordinates are in
vectors x and y; evaluate at
points whose x coordinates
are in vector xx, storing
corresponding y’s in yy

I’m not aware of a function to do this
in Matlab

tmp=spline(x,y,xout=xx);

yy=tmp$y

D. Hiebeler, Matlab / R Reference 19

No. Description Matlab R

190 Fit cubic spline such that
first derivatives at endpoints
match first derivatives of ex-
act cubics through the four
points at each end) to points
(xi, yi) whose coordinates are
in vectors x and y; evaluate
at points whose x coordinates
are in vector xx, storing cor-
responding y’s in yy

pp=csape(x,y); yy=ppval(pp,xx)

but csape is in Matlab’s Spline
Toolbox

I’m not aware of a function to do this
in R

191 Fit cubic spline with periodic
boundaries, i.e. so that first
and second derivatives match
at the left and right ends
(the first and last y values
of the provided data should
also agree), to points (xi, yi)
whose coordinates are in vec-
tors x and y; evaluate at
points whose x coordinates
are in vector xx, storing cor-
responding y’s in yy

pp=csape(x,y,’periodic’);

yy=ppval(pp,xx) but csape is in
Matlab’s Spline Toolbox

tmp=spline(x,y,method=

’periodic’, xout=xx); yy=tmp$y

192 Fit cubic spline with “not-
a-knot” conditions (the first
two piecewise cubics coincide,
as do the last two), to points
(xi, yi) whose coordinates are
in vectors x and y; evaluate
at points whose x coordinates
are in vector xx, storing cor-
responding y’s in yy

yy=spline(x,y,xx) I’m not aware of a function to do this
in R

4 Conditionals, control structure, loops

No. Description Matlab R

193 “for” loops over values in a
vector v (the vector v is of-
ten constructed via a:b)

for i=v

command1

command2

end

If only one command inside the loop:

for (i in v)

command

or

for (i in v) command

If multiple commands inside the loop:

for (i in v) {

command1

command2

}

D. Hiebeler, Matlab / R Reference 20

No. Description Matlab R

194 “if” statements with no else
clause if cond

command1

command2

end

If only one command inside the clause:

if (cond)

command

or

if (cond) command

If multiple commands:

if (cond) {

command1

command2

}

195 “if/else” statement

if cond

command1

command2

else

command3

command4

end

Note: Matlab also has an “elseif”
statement, e.g.:

if cond1

commands1

elseif cond2

commands2

elseif cond3

commands3

else

commands4

end

If one command in clauses:

if (cond)

command1 else

command2

or

if (cond) cmd1 else cmd2

If multiple commands:

if (cond) {

command1

command2

} else {

command3

command4

}

Warning: the “else” must be on the
same line as command1 or the “}”
(when typed interactively at the com-
mand prompt), otherwise R thinks the
“if” statement was finished and gives
an error.
R does not have an “elseif” statement
(though see item 147 for something re-
lated), but you can do this:

if (cond1) {

commands1

} else if (cond2) {

commands2

} else if (cond3) {

commands3

} else {

commands4

}

D. Hiebeler, Matlab / R Reference 21

Logical comparisons which can be used on scalars in “if” statements, or which operate element-by-
element on vectors/matrices:

Matlab R Description
x < a x < a True if x is less than a
x > a x > a True if x is greater than a
x <= a x <= a True if x is less than or equal to a
x >= a x >= a True if x is greater than or equal to a
x == a x == a True if x is equal to a
x ~= a x != a True if x is not equal to a

Scalar logical operators:

Description Matlab R

a AND b a && b a && b

a OR b a || b a || b

a XOR b xor(a,b) xor(a,b)

NOT a ~a !a

The && and || operators are short-circuiting, i.e. && stops as soon as any of its terms are FALSE, and
|| stops as soon as any of its terms are TRUE.

Matrix logical operators (they operate element-by-element):

Description Matlab R

a AND b a & b a & b

a OR b a | b a | b

a XOR b xor(a,b) xor(a,b)

NOT a ~a !a

No. Description Matlab R

196 To test whether a scalar value
x is between 4 and 7 (inclu-
sive on the upper end)

if ((x > 4) && (x <= 7)) if ((x > 4) && (x <= 7))

197 Count how many values in
the vector x are between 4
and 7 (inclusive on the upper
end)

sum((x > 4) & (x <= 7)) sum((x > 4) & (x <= 7))

198 Test whether all values in
a logical/boolean vector are
TRUE

all(v) all(v)

199 Test whether any values in
a logical/boolean vector are
TRUE

any(v) any(v)

D. Hiebeler, Matlab / R Reference 22

No. Description Matlab R

200 “while” statements to do iter-
ation (useful when you don’t
know ahead of time how
many iterations you’ll need).
E.g. to add uniform ran-
dom numbers between 0 and
1 (and their squares) until
their sum is greater than 20:

mysum = 0;

mysumsqr = 0;

while (mysum < 20)

r = rand;

mysum = mysum + r;

mysumsqr = mysumsqr + r^2;

end

mysum = 0

mysumsqr = 0

while (mysum < 20) {

r = runif(1)

mysum = mysum + r

mysumsqr = mysumsqr + r^2

}

(As with “if” statements and “for”
loops, the curly brackets are not nec-
essary if there’s only one statement in-
side the “while” loop.)

201 More flow control: these com-
mands exit or move on to the
next iteration of the inner-
most while or for loop, re-
spectively.

break and continue break and next

202 “Switch” statements for inte-
gers

switch (x)

case 10

disp(’ten’)

case {12,13}

disp(’dozen (bakers?)’)

otherwise

disp(’unrecognized’)

end

R doesn’t have a switch statement ca-
pable of doing this. It has a function
which is fairly limited for integers, but
can which do string matching. See
?switch for more. But a basic ex-
ample of what it can do for integers is
below, showing that you can use it to
return different expressions based on
whether a value is 1, 2,

mystr = switch(x, ’one’, ’two’,

’three’); print(mystr)

Note that switch returns NULL if x is
larger than 3 in the above case. Also,
continuous values of x will be trun-
cated to integers.

D. Hiebeler, Matlab / R Reference 23

5 Functions, ODEs

No. Description Matlab R

203 Implement a function
add(x,y)

Put the following in add.m:

function retval=add(x,y)

retval = x+y;

Then you can do e.g. add(2,3)

Enter the following, or put it in a file
and source that file:

add = function(x,y) {

return(x+y)

}

Then you can do e.g. add(2,3).
Note, the curly brackets aren’t needed
if your function only has one line.
Also, the return keyword is optional
in the above example, as the value of
the last expression in a function gets
returned, so just x+y would work
too.

204 Implement a function
f(x,y,z) which returns mul-
tiple values, and store those
return values in variables u
and v

Write function as follows:

function [a,b] = f(x,y,z)

a = x*y+z; b=2*sin(x-z);

Then call the function by doing:
[u,v] = f(2,8,12)

Write function as follows:

f = function(x,y,z) {

a = x*y+z; b=2*sin(x-z)

return(list(a,b))

}

Then call the function by do-
ing: tmp=f(2,8,12); u=tmp[[1]];

v=tmp[[2]]. The above is most gen-
eral, and will work even when u and
v are different types of data. If they
are both scalars, the function could
simply return them packed in a vec-
tor, i.e. return(c(a,b)). If they
are vectors of the same size, the func-
tion could return them packed to-
gether into the columns of a matrix,
i.e. return(cbind(a,b)).

D. Hiebeler, Matlab / R Reference 24

No. Description Matlab R

205 Numerically solve ODE
dx/dt = 5x from t = 3 to
t = 12 with initial condition
x(3) = 7

First implement function

function retval=f(t,x)

retval = 5*x;

Then do ode45(@f,[3,12],7)

to plot solution, or
[t,x]=ode45(@f,[3,12],7) to get
back vector t containing time values
and vector x containing correspond-
ing function values. If you want
function values at specific times,
e.g. 3, 3.1, 3.2, . . . , 11.9, 12, you can
do [t,x]=ode45(@f,3:0.1:12,7).
Note: in older versions of Matlab,
use ’f’ instead of @f.

First implement function

f = function(t,x,parms) {

return(list(5*x))

}

Then do y=lsoda(7, seq(3,12,

0.1), f,NA) to obtain solution
values at times 3, 3.1, 3.2, . . . , 11.9, 12.
The first column of y, namely y[,1]
contains the time values; the second
column y[,2] contains the corre-
sponding function values. Note:
lsoda is part of the deSolve package
(see item 348 for how to install/load
packages).

206 Numerically solve system of
ODEs dw/dt = 5w, dz/dt =
3w + 7z from t = 3 to t = 12
with initial conditions w(3) =
7, z(3) = 8.2

First implement function

function retval=myfunc(t,x)

w = x(1); z = x(2);

retval = zeros(2,1);

retval(1) = 5*w;

retval(2) = 3*w + 7*z;

Then do
ode45(@myfunc,[3,12],[7;

8.2]) to plot solution, or
[t,x]=ode45(@myfunc,[3,12],[7;

8.2]) to get back vector t contain-
ing time values and matrix x, whose
first column containing correspond-
ing w(t) values and second column
contains z(t) values. If you want
function values at specific times, e.g.
3, 3.1, 3.2, . . . , 11.9, 12, you can do
[t,x]=ode45(@myfunc,3:0.1:12,[7;

8.2]). Note: in older versions of
Matlab, use ’f’ instead of @f.

First implement function

myfunc = function(t,x,parms) {

w = x[1]; z = x[2];

return(list(c(5*w, 3*w+7*z)))

}

Then do y=lsoda(c(7,8.2),

seq(3,12, 0.1), myfunc,NA)

to obtain solution values at times
3, 3.1, 3.2, . . . , 11.9, 12. The first
column of y, namely y[,1] contains
the time values; the second column
y[,2] contains the corresponding
values of w(t); and the third column
contains z(t). Note: lsoda is part of
the deSolve package (see item 348
for how to install/load packages).

207 Pass parameters such as r =
1.3 and K = 50 to an ODE
function from the command
line, solving dx/dt = rx(1 −
x/K) from t = 0 to t = 20
with initial condition x(0) =
2.5.

First implement function

function retval=func2(t,x,r,K)

retval = r*x*(1-x/K)

Then do ode45(@func2,[0 20],

2.5, [], 1.3, 50). The empty
matrix is necessary between the ini-
tial condition and the beginning of
your extra parameters.

First implement function

func2=function(t,x,parms) {

r=parms[1]; K=parms[2]

return(list(r*x*(1-x/K)))

}

Then do

y=lsoda(2.5,seq(0,20,0.1),

func2,c(1.3,50))

Note: lsoda is part of the deSolve
package (see item 348 for how to in-
stall/load packages).

D. Hiebeler, Matlab / R Reference 25

6 Probability and random values

No. Description Matlab R

208 Generate a continuous uni-
form random value between 0
and 1

rand runif(1)

209 Generate vector of n uniform
random vals between 0 and 1

rand(n,1) or rand(1,n) runif(n)

210 Generatem×nmatrix of uni-
form random values between
0 and 1

rand(m,n) matrix(runif(m*n),m,n) or just
matrix(runif(m*n),m)

211 Generatem×nmatrix of con-
tinuous uniform random val-
ues between a and b

a+rand(m,n)*(b-a) or if you
have the Statistics toolbox then
unifrnd(a,b,m,n)

matrix(runif(m*n,a,b),m)

212 Generate a random integer
between 1 and k

randi(k) or floor(k*rand)+1 floor(k*runif(1)) + 1 or
sample(k,1)

213 Generate m×n matrix of dis-
crete uniform random inte-
gers between 1 and k

randi(k, m, n) or
floor(k*rand(m,n))+1 or if you
have the Statistics toolbox then
unidrnd(k,m,n)

floor(k*matrix(runif(m*n),m))+1

or matrix(sample(k, m*n,

replace=TRUE), m)

214 Generate m×n matrix where
each entry is 1 with probabil-
ity p, otherwise is 0

(rand(m,n)<p)*1 Note: multiplying
by 1 turns the logical (true/false) re-
sult back into numeric values. You
could also do double(rand(m,n)<p)

matrix(sample(c(0,1), m*n,

replace=TRUE, prob=c(1-p, p)),

m) or (matrix(runif(m,n),m)<p)*1

(Note: multiplying by 1 turns the
logical (true/false) result back into
numeric values; using as.numeric()
to do it would lose the shape of the
matrix.)

215 Generate m×n matrix where
each entry is a with probabil-
ity p, otherwise is b

b + (a-b)*(rand(m,n)<p) matrix(sample(c(b,a), m*n,

replace=TRUE, prob=c(1-p,

p)), m) or b + (a-b)*(matrix(

runif(m,n),m)<p)

216 Generate a random integer
between a and b inclusive

floor((b-a+1)*rand)+a or if you
have the Statistics toolbox then
unidrnd(b-a+1)+a-1

sample(a:b, 1) or
floor((b-a+1)*runif(1))+a

217 Flip a coin which comes up
heads with probability p, and
perform some action if it does
come up heads

if (rand < p)

...some commands...

end

if (runif(1) < p) {

...some commands...

}

218 Generate a random permuta-
tion of the integers 1, 2, . . . , n

randperm(n) sample(n)

219 Generate a random selection
of k unique integers between
1 and n (i.e. sampling with-
out replacement)

[s,idx]=sort(rand(n,1));

ri=idx(1:k) or another way is
ri=randperm(n); ri=ri(1:k). Or
if you have the Statistics Toolbox,
then randsample(n,k)

ri=sample(n,k)

220 Choose k values (with re-
placement) from the vector v,
storing result in w

L=length(v);

w=v(floor(L*rand(k,1))+1) Or,
if you have the Statistics Toolbox,
w=randsample(v,k,true)

w=sample(v,k,replace=TRUE)

D. Hiebeler, Matlab / R Reference 26

No. Description Matlab R

221 Choose k values (without re-
placement) from the vector v,
storing result in w

L=length(v); ri=randperm(L);

ri=ri(1:k); w=v(ri) Or, if
you have the Statistics Toolbox,
w=randsample(v,k)

w=sample(v,k,replace=FALSE)

222 Generate a value from 1 to n
with corresponding probabil-
ities in vector pv

sum(rand > cumsum(pv))+1 If en-
tries of pv don’t sum to one,
rescale them first: sum(rand >

cumsum(pv)/sum(pv))+1

sample(n, 1, prob=pv) If the en-
tries of pv don’t sum to one, sample
automatically rescales them to do so.

223 Set the random-number gen-
erator back to a known state
(useful to do at the beginning
of a stochastic simulation
when debugging, so you’ll get
the same sequence of random
numbers each time)

rng(12) See also RandStream for
how to create and use multiple
streams of random numbers. And
note: in versions of Matlab prior
to 7.7, instead use rand(’state’,

12).

set.seed(12)

Note that the “*rnd,” “*pdf,” and “*cdf” functions described below are all part of the Matlab

Statistics Toolbox, and not part of the core Matlab distribution.
No. Description Matlab R

224 Generate a random value
from the binomial(n, p) dis-
tribution

binornd(n,p) or
sum(rand(n,1)<p) will work
even without the Statistics Toolbox.

rbinom(1,n,p)

225 Generate a random value
from the Poisson distribution
with parameter λ

poissrnd(lambda) rpois(1,lambda)

226 Generate a random value
from the exponential distri-
bution with mean µ

exprnd(mu) or -mu*log(rand) will
work even without the Statistics
Toolbox.

rexp(1, 1/mu)

227 Generate a random value
from the discrete uniform dis-
tribution on integers 1 . . . k

unidrnd(k) or floor(rand*k)+1

will work even without the Statistics
Toolbox.

sample(k,1)

228 Generate n iid random values
from the discrete uniform dis-
tribution on integers 1 . . . k

unidrnd(k,n,1) or
floor(rand(n,1)*k)+1 will work
even without the Statistics Toolbox.

sample(k,n,replace=TRUE)

229 Generate a random value
from the continuous uniform
distribution on the interval
(a, b)

unifrnd(a,b) or (b-a)*rand + a

will work even without the Statistics
Toolbox.

runif(1,a,b)

230 Generate a random value
from the normal distribution
with mean µ and standard
deviation σ

normrnd(mu,sigma) or
mu + sigma*randn will work
even without the Statistics Toolbox.

rnorm(1,mu,sigma)

231 Generate a random vector
from the multinomial distri-
bution, with n trials and
probability vector p

mnrnd(n,p) rmultinom(1,n,p)

232 Generate j random vectors
from the multinomial distri-
bution, with n trials and
probability vector p

mnrnd(n,p,j)

The vectors are returned as rows of
a matrix

rmultinom(j,n,p)

The vectors are returned as columns
of a matrix

Notes:

D. Hiebeler, Matlab / R Reference 27

• The Matlab “*rnd” functions above can all take additional r,c arguments to build an r× c matrix
of iid random values. E.g. poissrnd(3.5,4,7) for a 4 × 7 matrix of iid values from the Poisson
distribution with mean λ = 3.5. The unidrnd(k,n,1) command above is an example of this, to
generate a k × 1 column vector.

• The first parameter of the R “r*” functions above specifies how many values are desired. E.g. to
generate 28 iid random values from a Poisson distribution with mean 3.5, use rpois(28,3.5). To
get a 4× 7 matrix of such values, use matrix(rpois(28,3.5),4).

No. Description Matlab R

233 Probability that a ran-
dom variable from the
Binomial(n, p) distribution
has value x (i.e. the density,
or pdf).

binopdf(x,n,p) or
nchoosek(n,x)*p^x*(1-p)^(n-x)

will work even without the Statistics
Toolbox, as long as n and x are
non-negative integers and 0 ≤ p
≤ 1.

dbinom(x,n,p)

234 Probability that a random
variable from the Poisson(λ)
distribution has value x.

poisspdf(x,lambda) or
exp(-lambda)*lambda^x /

factorial(x) will work even
without the Statistics Toolbox, as
long as x is a non-negative integer
and lambda ≥ 0.

dpois(x,lambda)

235 Probability density function
at x for a random variable
from the exponential distri-
bution with mean µ.

exppdf(x,mu) or
(x>=0)*exp(-x/mu)/mu will work
even without the Statistics Toolbox,
as long as mu is positive.

dexp(x,1/mu)

236 Probability density function
at x for a random variable
from the Normal distribution
with mean µ and standard
deviation σ.

normpdf(x,mu,sigma) or
exp(-(x-mu)^2/(2*sigma^2))/

(sqrt(2*pi)*sigma) will work even
without the Statistics Toolbox.

dnorm(x,mu,sigma)

237 Probability density function
at x for a random variable
from the continuous uniform
distribution on interval (a, b).

unifpdf(x,a,b) or
((x>=a)&&(x<=b))/(b-a) will
work even without the Statistics
Toolbox.

dunif(x,a,b)

238 Probability that a random
variable from the discrete
uniform distribution on inte-
gers 1 . . . n has value x.

unidpdf(x,n) or ((x==floor(x))

&& (x>=1)&&(x<=n))/n will work
even without the Statistics Toolbox,
as long as n is a positive integer.

((x==round(x)) && (x >= 1) &&

(x <= n))/n

239 Probability that a random
vector from the multinomial
distribution with probability
vector ~p has the value ~x

mnpdf(x,p)

Note: vector p must sum to one.
Also, x and p can be vectors of
length k, or if one or both are m× k
matrices then the computations are
performed for each row.

dmultinom(x,prob=p)

Note: one or more of the parameters in the above “*pdf” (Matlab) or “d*” (R) functions can be
vectors, but they must be the same size. Scalars are promoted to arrays of the appropriate size.

D. Hiebeler, Matlab / R Reference 28

The corresponding CDF functions are below:
No. Description Matlab R

240 Probability that a ran-
dom variable from the
Binomial(n, p) distribution is
less than or equal to x (i.e.
the cumulative distribution
function, or cdf).

binocdf(x,n,p). Without the
Statistics Toolbox, as long
as n is a non-negative in-
teger, this will work: r =

0:floor(x); sum(factorial(n)./

(factorial(r).*factorial(n-r))

.*p.^r.*(1-p).^(n-r)). (Un-
fortunately, Matlab’s nchoosek
function won’t take a vector argu-
ment for k.)

pbinom(x,n,p)

241 Probability that a random
variable from the Poisson(λ)
distribution is less than or
equal to x.

poisscdf(x,lambda). With-
out the Statistics Toolbox, as
long as lambda ≥ 0, this
will work: r = 0:floor(x);

sum(exp(-lambda)*lambda.^r

./factorial(r))

ppois(x,lambda)

242 Cumulative distribution
function at x for a random
variable from the exponential
distribution with mean µ.

expcdf(x,mu) or
(x>=0)*(1-exp(-x/mu)) will
work even without the Statistics
Toolbox, as long as mu is positive.

pexp(x,1/mu)

243 Cumulative distribution
function at x for a random
variable from the Normal
distribution with mean µ and
standard deviation σ.

normcdf(x,mu,sigma) or 1/2 -

erf(-(x-mu)/(sigma*sqrt(2)))/2

will work even without the Statis-
tics Toolbox, as long as sigma is
positive.

pnorm(x,mu,sigma)

244 Cumulative distribution
function at x for a random
variable from the continuous
uniform distribution on
interval (a, b).

unifcdf(x,a,b) or
(x>a)*(min(x,b)-a)/(b-a) will
work even without the Statistics
Toolbox, as long as b > a.

punif(x,a,b)

245 Probability that a random
variable from the discrete
uniform distribution on in-
tegers 1 . . . n is less than or
equal to x.

unidcdf(x,n) or
(x>=1)*min(floor(x),n)/n will
work even without the Statistics
Toolbox, as long as n is a positive
integer.

(x>=1)*min(floor(x),n)/n

D. Hiebeler, Matlab / R Reference 29

7 Graphics

7.1 Various types of plotting

No. Description Matlab R

246 Create a new figure window figure dev.new() Notes: internally, on
Windows this calls windows(), on
MacOS it calls quartz(), and on
Linux it calls X11(). X11() is also
available on MacOS; you can tell
R to use it by default by doing
options(device=’X11’). In R

sometime after 2.7.0, X11 graphics
started doing antialising by default,
which makes plots look smoother
but takes longer to draw. If you are
using X11 graphics in R and notice
that figure plotting is extremely slow
(especially if making many plots),
do this before calling dev.new():
X11.options(type=’Xlib’) or
X11.options(antialias=’none’).
Or just use e.g. X11(type=’Xlib’)

to make new figure windows. They
are uglier (lines are more jagged), but
render much more quickly.

247 Select figure number n figure(n) (will create the figure if it
doesn’t exist)

dev.set(n) (returns the actual de-
vice selected; will be different from n
if there is no figure device with num-
ber n)

248 Determine which figure win-
dow is currently active

gcf dev.cur()

249 List open figure windows get(0,’children’) (The 0 handle
refers to the root graphics object.)

dev.list()

250 Close figure window(s) close to close the current figure win-
dow, close(n) to close a specified
figure, and close all to close all fig-
ures

dev.off() to close the currently ac-
tive figure device, dev.off(n) to close
a specified one, and graphics.off()

to close all figure devices.
251 Plot points using open circles plot(x,y,’o’) plot(x,y)

252 Plot points using solid lines plot(x,y) plot(x,y,type=’l’) (Note: that’s a
lower-case ’L’, not the number 1)

253 Plotting: color, point mark-
ers, linestyle

plot(x,y,str) where str is a
string specifying color, point marker,
and/or linestyle (see table below)
(e.g. ’gs--’ for green squares with
dashed line)

plot(x,y,type=str1,

pch=arg2,col=str3,

lty=arg4)

See tables below for possible values of
the 4 parameters

254 Plotting with logarithmic
axes

semilogx, semilogy, and loglog

functions take arguments like plot,
and plot with logarithmic scales for
x, y, and both axes, respectively

plot(..., log=’x’), plot(...,

log=’y’), and plot(...,

log=’xy’) plot with logarithmic
scales for x, y, and both axes,
respectively

D. Hiebeler, Matlab / R Reference 30

No. Description Matlab R

255 Make bar graph where the x
coordinates of the bars are in
x, and their heights are in y

bar(x,y) Or just bar(y) if you only
want to specify heights. Note: if A
is a matrix, bar(A) interprets each
column as a separate set of observa-
tions, and each row as a different ob-
servation within a set. So a 20 × 2
matrix is plotted as 2 sets of 20 ob-
servations, while a 2 × 20 matrix is
plotted as 20 sets of 2 observations.

plot(x,y,type=’h’,lwd=8,lend=1)

You may wish to adjust the line
width (the lwd parameter).

256 Make histogram of values in
x

hist(x) hist(x)

257 Given vector x containing
discrete values, make a bar
graph where the x coordi-
nates of bars are the values,
and heights are the counts of
how many times the values
appear in x

v=unique(x); c=hist(x,v);

bar(v,c)

plot(table(x),lwd=8,lend=1) or
barplot(table(x)) Note that in
the latter approach, the bars have the
proper labels, but do not actually use
the x values as their x coordinates.

258 Given vector x containing
continuous values, lump the
data into k bins and make a
histogram / bar graph of the
binned data

[c,m] = hist(x,k); bar(m,c) or
for slightly different plot style use
hist(x,k)

hist(x,seq(min(x), max(x),

length.out=k+1))

259 Make a plot containing error-
bars of height s above and be-
low (x, y) points

errorbar(x,y,s) errbar(x,y,y+s,y-s) Note: errbar
is part of the Hmisc package (see
item 348 for how to install/load pack-
ages).

260 Make a plot containing error-
bars of height a above and b
below (x, y) points

errorbar(x,y,b,a) errbar(x,y,y+a,y-b) Note: errbar
is part of the Hmisc package (see
item 348 for how to install/load pack-
ages).

261 Other types of 2-D plots stem(x,y) and stairs(x,y)

for other types of 2-D plots.
polar(theta,r) to use polar
coordinates for plotting.

pie(v)

D. Hiebeler, Matlab / R Reference 31

No. Description Matlab R

262 Make a 3-D plot of some data
points with given x, y, z co-
ordinates in the vectors x, y,
and z.

plot3(x,y,z) This works much like
plot, as far as plotting symbols, line-
types, and colors.

cloud(z~x*y) You can also use
arguments pch and col as with
plot. To make a 3-D plot with
lines, do cloud(z~x*y,type=’l’,

panel.cloud=panel.3dwire). See
the rgl package to interactively rotate
3-D plots (and see item 348 for how to
load packages).

263 Surface plot of data in matrix
A

surf(A)

You can then click on the small
curved arrow in the figure window
(or choose “Rotate 3D” from the
“Tools” menu), and then click and
drag the mouse in the figure to ro-
tate it in three dimensions.

persp(A)

You can include shading in the im-
age via e.g. persp(A,shade=0.5).
There are two viewing angles you
can also specify, among other pa-
rameters, e.g. persp(A, shade=0.5,

theta=50, phi=35).
264 Surface plot of f(x, y) =

sin(x + y)
√
y for 100 values

of x between 0 and 10, and
90 values of y between 2 and
8

x = linspace(0,10,100);

y = linspace(2,8,90);

[X,Y] = meshgrid(x,y);

Z = sin(X+Y).*sqrt(Y);

surf(X,Y,Z)

shading flat

x = seq(0,10,len=100)

y = seq(2,8,len=90)

f = function(x,y)

return(sin(x+y)*sqrt(y))

z = outer(x,y,f)

persp(x,y,z)

265 Other ways of plotting the
data from the previous com-
mand

mesh(X,Y,Z), surfc(X,Y,Z),
surfl(X,Y,Z), contour(X,Y,Z),
pcolor(X,Y,Z),
waterfall(X,Y,Z). Also see the
slice command.

contour(x,y,z) Or do
s=expand.grid(x=x,y=y), and
then wireframe(z~x*y,s) or
wireframe(z~x*y,s,shade=TRUE)

(Note: wireframe is part of the
lattice package; see item 348 for how
to load packages). If you have vectors
x, y, and z all the same length, you
can also do symbols(x,y,z).

266 Set axis ranges in a figure
window

axis([x1 x2 y1 y2]) You have to do this when
you make the plot, e.g.
plot(x,y,xlim=c(x1,x2),

ylim=c(y1,y2))

267 Add title to plot title(’somestring’) title(main=’somestring’)

adds a main title,
title(sub=’somestring’) adds
a subtitle. You can also include
main= and sub= arguments in a
plot command.

268 Add axis labels to plot xlabel(’somestring’) and
ylabel(’somestring’)

title(xlab=’somestring’,

ylab=’anotherstr’). You can
also include xlab= and ylab=
arguments in a plot command.

D. Hiebeler, Matlab / R Reference 32

No. Description Matlab R

269 Include Greek letters or sym-
bols in plot axis labels

You can use basic TeX com-
mands, e.g. plot(x,y);

xlabel(’\phi^2 + \mu_{i,j}’)

or xlabel(’fecundity \phi’)

See also help tex and parts of
doc text props for more about
building labels using general LaTeX
commands

plot(x,y,xlab=

expression(phi^2 + mu[’i,j’]))

or plot(x,y,xlab=expression(

paste(’fecundity ’, phi)))

See also help(plotmath) and p.
98 of the R Graphics book by Paul
Murrell for more.

270 Change font size to 16 in plot
labels

For the legends and numerical axis
labels, use set(gca, ’FontSize’,

16), and for text labels on axes
do e.g. xlabel(’my x var’,

’FontSize’, 16)

For on-screen graphics, do
par(ps=16) followed by e.g. a plot

command. For PostScript or PDF
plots, add a pointsize=16 argument,
e.g. pdf(’myfile.pdf’, width=8,

height=8, pointsize=16) (see
items 286 and 287)

271 Add grid lines to plot grid on (and grid off to turn off) grid() Note that if you’ll be
printing the plot, the default style
for grid-lines is to use gray dot-
ted lines, which are almost invis-
ible on some printers. You may
want to do e.g. grid(lty=’dashed’,
col=’black’) to use black dashed
lines which are easier to see.

272 Add a text label to a plot text(x,y,’hello’) text(x,y,’hello’)

273 Add set of text labels to a
plot. xv and yv are vectors.

s={’hi’, ’there’};

text(xv,yv,s)

s=c(’hi’, ’there’);

text(xv,yv,s)

274 Add an arrow to current plot,
with tail at (xt, yt) and head
at (xh, yh)

annotation(’arrow’, [xt xh],

[yt yh]) Note: coordinates should
be normalized figure coordinates, not
coordinates within your displayed
axes. Find and download from The
Mathworks the file dsxy2figxy.m
which converts for you, then do this:
[fx,fy]=dsxy2figxy([xt xh],

[yt yh]); annotation(’arrow’,

fx, fy)

arrows(xt, yt, xh, yh)

275 Add a double-headed arrow
to current plot, with coordi-
nates (x0, y0) and (x1, y1)

annotation(’doublearrow’, [x0

x1], [y0 y1]) See note in previ-
ous item about normalized figure
coordinates.

arrows(x0, y0, x1, y1, code=3)

276 Add figure legend to top-left
corner of plot

legend(’first’, ’second’,

’Location’, ’NorthWest’)

legend(’topleft’,

legend=c(’first’, ’second’),

col=c(’red’, ’blue’),

pch=c(’*’,’o’))

Matlab note: sometimes you build a graph piece-by-piece, and then want to manually add a legend
which doesn’t correspond with the order you put things in the plot. You can manually construct a legend
by plotting “invisible” things, then building the legend using them. E.g. to make a legend with black stars
and solid lines, and red circles and dashed lines: h1=plot(0,0,’k*-’); set(h1,’Visible’, ’off’);

h2=plot(0,0,’k*-’); set(h2,’Visible’, ’off’); legend([h1 h2], ’blah, ’whoa’). Just be sure
to choose coordinates for your “invisible” points within the current figure’s axis ranges.

D. Hiebeler, Matlab / R Reference 33

No. Description Matlab R

277 Adding more things to a fig-
ure

hold on means everything plotted
from now on in that figure window is
added to what’s already there. hold
off turns it off. clf clears the figure
and turns off hold.

points(...) and lines(...) work
like plot, but add to what’s already
in the figure rather than clearing the
figure first. points and lines are
basically identical, just with different
default plotting styles. Note: axes
are not recalculated/redrawn when
adding more things to a figure.

278 Plot multiple data sets at
once

plot(x,y) where x and y are 2-D
matrices. Each column of x is plot-
ted against the corresponding col-
umn of y. If x has only one column,
it will be re-used.

matplot(x,y) where x and y are 2-D
matrices. Each column of x is plotted
against the corresponding column of
y. If x has only one column, it will be
re-used.

279 Plot sin(2x) for x between 7
and 18

fplot(’sin(2*x)’, [7 18]) curve(sin(2*x), 7, 18, 200)

makes the plot, by sampling the
value of the function at 200 values
between 7 and 18 (if you don’t
specify the number of points, 101
is the default). You could do this
manually yourself via commands
like tmpx=seq(7,18,len=200);

plot(tmpx, sin(2*tmpx)).
280 Plot color image of integer

values in matrix A
image(A) to use array values as
raw indices into colormap, or
imagesc(A) to automatically scale
values first (these both draw row
1 of the matrix at the top of the
image); or pcolor(A) (draws row
1 of the matrix at the bottom of
the image). After using pcolor,
try the commands shading flat or
shading interp.

image(A) (it rotates the matrix 90 de-
grees counterclockwise: it draws row
1 of A as the left column of the im-
age, and column 1 of A as the bottom
row of the image, so the row number
is the x coord and column number is
the y coord). It also rescales colors. If
you are using a colormap with k en-
tries, but the value k does not appear
in A, use image(A,zlim=c(1,k))

to avoid rescaling of colors. Or
e.g. image(A,zlim=c(0,k-1)) if you
want values 0 through k−1 to be plot-
ted using the k colors.

281 Add colorbar legend to image
plot

colorbar, after using image or
pcolor.

Use filled.contour(A) rather
than image(A), although it “blurs”
the data via interpolation, or
use levelplot(A) from the lat-
tice package (see item 348 for
how to load packages). To use
a colormap with the latter, do
e.g. levelplot(A,col.regions=

terrain.colors(100)).
282 Set colormap in image colormap(hot). Instead of hot, you

can also use gray, flag, jet (the
default), cool, bone, copper, pink,
hsv, prism. By default, the length
of the new colormap is the same as
the currently-installed one; use e.g.
colormap(hot(256)) to specify the
number of entries.

image(A,col=terrain.colors(100)).
The parameter 100 specifies the
length of the colormap. Other
colormaps are heat.colors(),
topo.colors(), and cm.colors().

D. Hiebeler, Matlab / R Reference 34

No. Description Matlab R

283 Build your own colormap us-
ing Red/Green/Blue triplets

Use an n × 3 matrix; each row
gives R,G,B intensities between 0
and 1. Can use as argument with
colormap. E.g. for 2 colors: mycmap
= [0.5 0.8 0.2 ; 0.2 0.2 0.7]

Use a vector of hexadecimal strings,
each beginning with ’#’ and giving
R,G,B intensities between 00 and FF.
E.g. c(’#80CC33’,’#3333B3’); can
use as argument to col= parameter
to image. You can build such a
vector of strings from vectors of Red,
Green, and Blue intensities (each
between 0 and 1) as follows (for a
2-color example): r=c(0.5,0.2);

g=c(0.8,0.2); b=c(0.2,0.7);

mycolors=rgb(r,g,b).

Matlab plotting specifications, for use with plot, fplot, semilogx, semilogy, loglog, etc:
Symbol Color Symbol Marker Symbol Linestyle

b blue . point (.) - solid line
g green o circle (◦) : dotted line
r red x cross (×) -. dash-dot line
c cyan + plus sign (+) -- dashed line
m magenta * asterisk (∗)
y yellow s square (�)
k black d diamond (♦)
w white v triangle (down) (▽)

^ triangle (up) (△)
< triangle (left) (⊳)
> triangle (right) (⊲)
p pentragram star
h hexagram star

R plotting specifications for col (color), pch (plotting character), and type arguments, for use with plot,
matplot, points, and lines:

col Description pch Description type Description
’blue’ Blue ’a’ a (similarly for other

characters, but see ’.’
below for an exception)

p points

’green’ Green 0 open square l lines
’red’ Red 1 open circle b both
’cyan’ Cyan 2 triangle point-up c lines part only of “b”

’magenta’ Magenta 3 + (plus) o lines, points overplotted
’yellow’ Yellow 4 × (cross) h histogram-like lines
’black’ Black 5 diamond s steps
’#RRGGBB’ hexadecimal specifica-

tion of Red, Green,
Blue

6 triangle point-down S another kind of steps

(Other names) See colors() for list of
available color names.

’.’ rectangle of size 0.01
inch, 1 pixel, or 1 point
(1/72 inch) depending
on device

n no plotting (can be use-
ful for setting up axis
ranges, etc.)

(See table on next page
for more)

D. Hiebeler, Matlab / R Reference 35

R plotting specifications for lty (line-type) argument, for use with plot, matplot, points, and lines:
lty Description
0 blank
1 solid
2 dashed
3 dotted
4 dotdash
5 longdash
6 twodash

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 AA bb . ##

R plotting characters, i.e. values for pch argument (from the book R Graphics, by Paul Murrell,
Chapman & Hall / CRC, 2006)

D. Hiebeler, Matlab / R Reference 36

No. Description Matlab R

284 Divide up a figure window
into smaller sub-figures

subplot(m,n,k) divides the current
figure window into an m × n ar-
ray of subplots, and draws in sub-
plot number k as numbered in “read-
ing order,” i.e. left-to-right, top-to-
bottom. E.g. subplot(2,3,4) se-
lects the first sub-figure in the second
row of a 2 × 3 array of sub-figures.
You can do more complex things,
e.g. subplot(5,5,[1 2 6 7]) se-
lects the first two subplots in the first
row, and first two subplots in the
second row, i.e. gives you a bigger
subplot within a 5 × 5 array of sub-
plots. (If you that command followed
by e.g. subplot(5,5,3) you’ll see
what’s meant by that.)

There are several ways to do this, e.g.
using layout or split.screen, al-
though they aren’t quite as friendly
as Matlab ’s. E.g. if you let A =

1 1 2
1 1 3
4 5 6

, then layout(A) will

divide the figure into 6 sub-figures:
you can imagine the figure divide into
a 3× 3 matrix of smaller blocks; sub-
figure 1 will take up the upper-left
2×2 portion, and sub-figures 2–6 will
take up smaller portions, according to
the positions of those numbers in the
matrix A. Consecutive plotting com-
mands will draw into successive sub-
figures; there doesn’t seem to be a way
to explicitly specify which sub-figure
to draw into next.
To use split.screen, you can
do e.g. split.screen(c(2,1)) to
split into a 2 × 1 matrix of sub-
figures (numbered 1 and 2). Then
split.screen(c(1,3),2) splits sub-
figure 2 into a 1× 3 matrix of smaller
sub-figures (numbered 3, 4, and 5).
screen(4) will then select sub-figure
number 4, and subsequent plotting
commands will draw into it.
A third way to accomplish this is
via the commands par(mfrow=) or
par(mfcol=) to split the figure win-
dow, and par(mfg=) to select which
sub-figure to draw into.
Note that the above methods are all
incompatible with each other.

285 Force graphics windows to
update

drawnow (Matlab normally only
updates figure windows when a
script/function finishes and returns
control to the Matlab prompt, or
under a couple of other circum-
stances. This forces it to update
figure windows to reflect any recent
plotting commands.)

R automatically updates graphics
windows even before functions/scripts
finish executing, so it’s not neces-
sary to explictly request it. But note
that some graphics functions (partic-
ularly those in the lattice package)
don’t display their results when called
from scripts or functions; e.g. rather
than levelplot(...) you need to do
print(levelplot(...)). Such func-
tions will automatically display their
plots when called interactively from
the command prompt.

D. Hiebeler, Matlab / R Reference 37

7.2 Printing/saving graphics

No. Description Matlab R

286 To print/save to a PDF file
named fname.pdf

print -dpdf fname saves the con-
tents of currently active figure win-
dow

First do pdf(’fname.pdf’). Then,
do various plotting commands
to make your image, as if you
were plotting in a window. Fi-
nally, do dev.off() to close/save
the PDF file. To print the con-
tents of the active figure win-
dow, do dev.copy(device=pdf,

file=’fname.pdf’); dev.off().
(But this will not work if you’ve
turned off the display list via
dev.control(displaylist=

’inhibit’).) You can also simply use
dev.copy2pdf(file=’fname.pdf’).

287 To print/save to a PostScript
file fname.ps or fname.eps

print -dps fname for black &
white PostScript; print -dpsc

fname for color PostScript; print

-deps fname for black & white
Encapsulated PostScript; print

-depsc fname for color Encapsu-
lated PostScript. The first two save
to fname.ps, while the latter two
save to fname.eps.

postscript(’fname.eps’), followed
by your plotting commands, fol-
lowed by dev.off() to close/save
the file. Note: you may want to
use postscript(’fname.eps’,

horizontal=FALSE) to save your fig-
ure in portrait mode rather than the
default landscape mode. To print the
contents of the active figure window,
do dev.copy(device=postscript,

file=’fname.eps’); dev.off().
(But this will not work if you’ve
turned off the display list via
dev.control(displaylist=

’inhibit’).) You can also include
the horizontal=FALSE argument
with dev.copy(). The command
dev.copy2eps(file=’fname.eps’)

also saves in portrait mode.
288 To print/save to a JPEG file

fname.jpg with jpeg qual-
ity = 90 (higher quality looks
better but makes the file
larger)

print -djpeg90 fname jpeg(’fname.jpg’,quality=90),
followed by your plotting commands,
followed by dev.off() to close/save
the file.

D. Hiebeler, Matlab / R Reference 38

7.3 Animating cellular automata / lattice simulations

No. Description Matlab R

289 To display images of cellu-
lar automata or other lattice
simulations while running in
real time

Repeatedly use either pcolor or
image to display the data. Don’t
forget to call drawnow as well, oth-
erwise the figure window will not be
updated with each image.

If you simply call image repeatedly,
there is a great deal of flicker-
ing/flashing. To avoid this, after
drawing the image for the first time
using e.g. image(A), from then
on only use image(A,add=TRUE),
which avoids redrawing the entire
image (and the associated flicker).
However, this will soon consume a
great deal of memory, as all drawn
images are saved in the image buffer.
There are two solutions to that
problem: (1) every k time steps,
leave off the “add=TRUE” argument
to flush the image buffer (and get
occasional flickering), where you
choose k to balance the flickering
vs. memory-usage tradeoff; or
(2) after drawing the first image,
do dev.control(displaylist=

’inhibit’) to prohibit retaining the
data. However, the latter solution
means that after the simulation is
done, the figure window will not be
redrawn if it is resized, or temporarily
obscured by another window. (A
call to dev.control(displaylist=

’enable’) and then one final
image(A) at the end of the sim-
ulation will re-enable re-drawing
after resizing or obscuring, without
consuming extra memory.)

D. Hiebeler, Matlab / R Reference 39

8 Working with files

No. Description Matlab R

290 Create a folder (also known
as a “directory”)

mkdir dirname dir.create(’dirname’)

291 Set/change working directory cd dirname setwd(’dirname’)

292 Get working directory pwd getwd()

293 See list of files in current
working directory

dir dir()

294 Run commands in file ‘foo.m’
or ‘foo.R’ respectively

foo But see item 344 for how
to tell Matlab where to look for the
file foo.m.

source(’foo.R’)

295 Read data from text file
“data.txt” into matrix A

A=load(’data.txt’) or
A=importdata(’data.txt’) Note
that both routines will ignore com-
ments (anything on a line following
a “%” character)

A=as.matrix(read.table(

’data.txt’)) This will ignore
comments (anything on a line
following a “#” character). To ig-
nore comments indicated by “%”,
do A=as.matrix(read.table(

’data.txt’, comment.char=’%’))

296 Read data from text file
“data.txt” into matrix A,
skipping the first s lines of the
file

tmp=importdata(’data.txt’,

’ ’,s);

a=tmp.data

A=as.matrix(read.table(

’data.txt’, skip=s))

297 Write data from matrix A
into text file “data.txt”

save data.txt A -ascii write(t(A), file=’data.txt’,

ncolumn=dim(A)[2])

298 Save all variables/data in the
workspace to a file foo (with
appropriate suffix)

save foo.mat (Matlab recognizes
files with “.mat” suffix as binary save
files). Just save with no arguments
saves to matlab.mat

save.image(file=’foo.rda’) (You
may use whatever filename suffix you
like.) Just save.image() with no ar-
guments saves to .RData

299 Reload all variables/data
from a saved file foo (with
appropriate suffix)

load foo.mat. Just load with no
arguments tries to load from mat-
lab.mat.

load(’foo.rda’)

D. Hiebeler, Matlab / R Reference 40

9 Miscellaneous

9.1 Variables

No. Description Matlab R

300 Assigning to variables x = 5 x <- 5 or x = 5 Note: for compati-
bility with S-plus, many people prefer
the first form.

301 From within a function, as-
sign a value to variable y
in the base environment (i.e.
the command prompt envi-
ronment)

assignin(’base’, ’y’, 7) y <<- 7

302 From within a function, ac-
cess the value of variable y
in the base environment (i.e.
the command prompt envi-
ronment)

evalin(’base’, ’y’) get(’y’, envir=globalenv())

Though note that inside a function,
if there isn’t a local variable y, then
just the expression y will look for one
in the base environment, but if there
is a local y then that one will be used
instead.

303 Short list of defined variables who ls()

304 Long list of defined variables whos ls.str()

305 See detailed info about the
variable ab

whos ab str(ab)

306 See detailed info about all
variables with “ab” in their
name

whos *ab* ls.str(pattern=’ab’)

307 Open graphical data editor,
to edit the value of variable
A (useful for editing values in
a matrix, though it works for
non-matrix variables as well)

openvar(A), or double-click on the
variable in the Workspace pane (if
it’s being displayed) of your Mat-

labdesktop

fix(A)

308 Clear one variable clear x rm(x)

309 Clear two variables clear x y rm(x,y)

310 Clear all variables clear all rm(list=ls())

311 See if variable x exists (the
commands given can also
take more arguments to be
more specific)

exist(’x’) exists(’x’)

312 See what type of object x is class(x) class(x), typeof(x), and mode(x)

give different aspects of the “type” of
x

313 (Variable names) Variable names must begin with a
letter, but after that they may con-
tain any combination of letters, dig-
its, and the underscore character.
Names are case-sensitive.

Variable names may contain letters,
digits, the period, and the underscore
character. They cannot begin with a
digit or underscore, or with a period
followed by a digit. Names are case-
sensitive.

314 Result of last command ans contains the result of the last
command which did not assign its
value to a variable. E.g. after 2+5;
x=3, then ans will contain 7.

.Last.value contains the result of
the last command, whether or not its
value was assigned to a variable. E.g.
after 2+5; x=3, then .Last.value will
contain 3.

315 See how many bytes of mem-
ory are used to store a given
object x

tmp = whos(’x’); tmp.bytes object.size(x)

D. Hiebeler, Matlab / R Reference 41

9.2 Strings and Misc.

No. Description Matlab R

316 Line continuation If you want to break up a Matlab

command over more than one line,
end all but the last line with three
periods: “...”. E.g.:
x = 3 + ...

4

or
x = 3 ...

+ 4

In R, you can spread commands out
over multiple lines, and nothing ex-
tra is necessary. R will continue read-
ing input until the command is com-
plete. However, this only works when
the syntax makes it clear that the first
line was not complete. E.g.:
x = 3 +

4

works, but
x = 3

+ 4

does not treat the second line as a con-
tinuation of the first.

317 Controlling formatting of
output

format short g and
format long g are handy; see
help format

options(digits=6) tells R you’d like
to use 6 digits of precision in values it
displays (it is only a suggestion, not
strictly followed)

318 Exit the program quit or exit q() or quit()
319 Comments % this is a comment # this is a comment

320 Display a string disp(’hi there’) or to
omit trailing newline use
fprintf(’hi there’)

print(’hi there’) Note: to
avoid having double-quotes
around the displayed string, do
print(’hi there’, quote=FALSE)

or print(noquote(’hi there’)).
Or use cat(’hi there’). But note
that use of cat in a script won’t
put newlines at the end of each
string. To achieve that, either do
cat(’hi there\n’) or cat(’hi

there’,fill=TRUE)

321 Display a string containing
single quotes

disp(’It’’s nice’) or
to omit trailing newline
fprintf(’It’’s nice’)

print(’It\’s nice’) or
print("It’s nice") Also see
cat in item above.

322 Give prompt and read numer-
ical input from user

x = input(’Enter data:’) print(’Enter data:’); x=scan()

However, note that if you are exe-
cuting commands from a file (via the
source command or some mechanism
in R’s GUI), scan is likely to read its
input from the following lines of the
file, rather than from the keyboard.
Also see cat 2 items above.

323 Give prompt and read char-
acter (string) input from user

x = input(’Enter string:’,’s’) x = readline(’Enter string:’)

324 Concatenate strings [’two hal’ ’ves’] paste(’two hal’, ’ves’, sep=’’)

325 Concatenate strings stored in
a vector

v={’two ’, ’halves’};

strcat(v{:}) But note that
this drops trailing spaces on
strings. To avoid that, instead do
strcat([v{:}])

v=c(’two ’, ’halves’);

paste(v, collapse=’’)

326 Extract substring of a string text1=’hi there’;

text2=text(2:6)

text1=’hi there’;

text2=substr(text1,2,6)

D. Hiebeler, Matlab / R Reference 42

No. Description Matlab R

327 Determine whether elements
of a vector are in a set, and
give positions of correspond-
ing elements in the set.

x = {’a’, ’aa’, ’bc’, ’c’}; y

= {’da’, ’a’, ’bc’, ’a’, ’bc’,

’aa’}; [tf, loc]=ismember(x,y)

Then loc contains the locations of
last occurrences of elements of x
in the set y, and 0 for unmatched
elements.

x = c(’a’, ’aa’, ’bc’, ’c’); y

= c(’da’, ’a’, ’bc’, ’a’, ’bc’,

’aa’); loc=match(x,y) Then loc
contains the locations of first oc-
curences of elements of x in the set
y, and NA for unmatched elements.

328 Find indices of regular ex-
pression pattern p in string s

v=regexp(s,p) v=gregexpr(p,s)[[1]] (The
returned vector also has a
“match.length” attribute giv-
ing lengths of the matches; this
attribute can be removed via
attributes(v)=NULL.)

329 Perform some commands
only if the regular expression
p is contained in the string s

if (regexp(s,p)

...commands...

end

if (grepl(p,s)) {

...commands...

}

330 Convert number to string num2str(x) as.character(x)

331 Use sprintf to create a
formatted string. Use %d for
integers (“d” stands for “dec-
imal”, i.e. base 10), %f for
floating-point numbers, %e
for scientific-notation floating
point, %g to automatically
choose %e or %f based on
the value. You can spec-
ify field-widths/precisions,
e.g. %5d for integers with
padding to 5 spaces, or %.7f
for floating-point with 7
digits of precision. There are
many other options too; see
the docs.

x=2; y=3.5;

s=sprintf(’x is %d, y=%g’, ...

x, y)

x=2; y=3.5

s=sprintf(’x is %d, y is %g’,

x, y)

332 Machine epsilon ǫmach, i.e.
difference between 1 and the
next largest double-precision
floating-point number

eps (See help eps for various other
things eps can give.)

.Machine$double.eps

333 Pause for x seconds pause(x) Sys.sleep(x)

334 Wait for user to press any key pause Don’t know of a way to do this in R,
but scan(quiet=TRUE) will wait until
the user presses the Enter key

335 Produce a beep (or possibly
a visual signal, depending on
preferences set)

beep alarm()

336 Measure CPU time used to
do some commands

t1=cputime; ...commands... ;

cputime-t1

t1=proc.time(); ...commands...

; (proc.time()-t1)[1]

337 Measure elapsed (“wall-
clock”) time used to do some
commands

tic; ...commands... ; toc or
t1=clock; ...commands... ;

etime(clock,t1)

t1=proc.time(); ...commands...

; (proc.time()-t1)[3]

338 Print an error message and
interrupt execution

error(’Problem!’) stop(’Problem!’)

D. Hiebeler, Matlab / R Reference 43

No. Description Matlab R

339 Print a warning message warning(’Smaller problem!’) warning(’Smaller problem!’)

340 Putting multiple statements
on one line

Separate statements by commas or
semicolons. A semicolon at the end
of a statement suppresses display of
the results (also useful even with just
a single statement on a line), while a
comma does not.

Separate statements by semicolons.

341 Evaluate contents of a string
s as command(s).

eval(s) eval(parse(text=s))

342 Get a command prompt for
debugging, while executing a
script or function. While at
that prompt, you can type ex-
pressions to see the values of
variables, etc.

Insert the command keyboard in
your file. Note that your prompt will
change to K>>. When you are done
debugging and want to continue ex-
ecuting the file, type return.

Insert the command browser() in
your file. Note that your prompt will
change toBrowse[1]>. When you are
done debugging and want to continue
executing the file, either type c or just
press return (i.e. enter a blank line).
Note, if you type n, you enter the step
debugger.

343 Show where a command is which sqrt shows you where the file
defining the sqrt function is (but
note that many basic functions are
“built in,” so the Matlab func-
tion file is really just a stub con-
taining documentation). This is use-
ful if a command is doing something
strange, e.g. sqrt isn’t working. If
you’ve accidentally defined a variable
called sqrt, then which sqrt will
tell you, so you can clear sqrt to
erase it so that you can go back to
using the function sqrt.

R does not execute commands directly
from files, so there is no equivalent
command. See item 294 for reading
command files in R.

344 Query/set the search path. path displays the current search path
(the list of places Matlab searches
for commands you enter). To add a
directory ~/foo to the beginning of
the search path, do

addpath ~/foo -begin

or to add it to the end of the path,
do addpath ~/foo -end (Note: you
should generally add the full path
of a directory, i.e. in Linux or Mac
OS-X something like ~/foo as above
or of the form /usr/local/lib/foo,
while under Windows it would be
something like C:/foo)

R does not use a search path to look
for files. See item 294 for reading com-
mand files in R.

D. Hiebeler, Matlab / R Reference 44

No. Description Matlab R

345 Startup sequence If a file startup.m exists in the
startup directory for Matlab, its
contents are executed. (See the
Matlab docs for how to change the
startup directory.)

If a file .Rprofile exists in the cur-
rent directory or the user’s home di-
rectory (in that order), its contents
are sourced; saved data from the file
.RData (if it exists) are then loaded.
If a function .First() has been de-
fined, it is then called (so the obvious
place to define this function is in your
.Rprofile file).

346 Shutdown sequence Upon typing quit or exit, Matlab

will run the script finish.m if present
somewhere in the search path.

Upon typing q() or quit(), R will call
the function .Last() if it has been de-
fined (one obvious place to define it
would be in the .Rprofile file)

347 Execute a command (such as
date) in the operating sys-
tem

!date system(’date’)

348 Install and load a package. Matlab does not have packages. It
has toolboxes, which you can pur-
chase and install. “Contributed”
code (written by end users) can sim-
ply be downloaded and put in a di-
rectory which you then add to Mat-

lab’s path (see item 344 for how to
add things to Matlab’s path).

To install e.g. the deSolve pack-
age, you can use the command
install.packages(’deSolve’).
You then need to load the package
in order to use it, via the command
library(’deSolve’). When running
R again later you’ll need to load the
package again to use it, but you
should not need to re-install it. Note
that the lattice package is typically
included with binary distributions of
R, so it only needs to be loaded, not
installed.

D. Hiebeler, Matlab / R Reference 45

10 Spatial Modeling

No. Description Matlab R

349 Take an L×L matrix A of
0s and 1s, and “seed” frac-
tion p of the 0s (turn them
into 1s), not changing entries
which are already 1.

A = (A | (rand(L) < p))*1; A = (A | (matrix(runif(L^2),L)

< p))*1

350 Take an L×L matrix A of 0s
and 1s, and “kill” fraction p
of the 1s (turn them into 0s),
not changing the rest of the
entries

A = (A & (rand(L) < 1-p))*1; A = (A & (matrix(runif(L^2),L)

< 1-p))*1

351 Do “wraparound” on a coor-
dinate newx that you’ve al-
ready calculated. You can
replace newx with x+dx if
you want to do wraparound
on an offset x coordinate.

mod(newx-1,L)+1 Note: for porta-
bility with other languages such as
C which handle MOD of negative
values differently, you may want to
get in the habit of instead doing
mod(newx-1+L,L)+1

((newx-1) %% L) + 1 Note: for
portability with other languages such
as C which handle MOD of nega-
tive values differently, you may want
to get in the habit of instead doing
((newx-1+L)%%L) + 1

352 Randomly initialize a portion
of an array: set fraction p of
sites in rows iy1 through iy2
and columns ix1 through ix2
equal to 1 (and set the rest of
the sites in that block equal
to zero). Note: this assume
iy1 < iy2 and ix1 < ix2.

dx=ix2-ix1+1; dy=iy2-iy1+1;

A(iy1:iy2,ix1:ix2) = ...

(rand(dy,dx) < p0)*1;

dx=ix2-ix1+1; dy=iy2-iy1+1;

A[iy1:iy2,ix1:ix2] =

(matrix(runif(dy*dx),dy) <

p0)*1

INDEX OF MATLAB COMMANDS AND CONCEPTS 46

Index of MATLAB commands and concepts

’, 87
,, 340
.*, 86
..., 316
./, 94
.^, 98
/, 93
:, 12–14
;, 340
=, 300
[, 6–8
%, 319
&, 196, 197
^, 56, 96, 97
\, 88, 95
!, 347
{ 51

abs, 57, 78
acos, 62
acosh, 64
addpath, 344
all, 198
angle, 79
annotation, 274, 275
ans, 314
any, 199
arrows in plots, 274, 275
asin, 62
asinh, 64
assignin, 301
atan, 62
atanh, 64
average, see mean
axis, 266

bar, 255, 257, 258
beep, 335
binocdf, 240
binopdf, 233
binornd, 224
bitand, 76
bitcmp, 76
bitor, 76
bitshift, 76
bitwise logical operations, 76
bitxor, 76
boolean tests

scalar, 196
vector, 197–199

break, 201
bsxfun, 28

cd, 291
ceil, 68
cell, 50
cell arrays, 50

extracting elements of, 51
cellular automata animation, 289
chol, 104
circshift, 35
class, 312
clear, 308–310
clf, 277
clock, 337
close, 250
colon, see :
colorbar, 281
colormap

building your own, 283
colormap, 282, 283
column vector, 7
comments, 319
complex numbers, 77–82
cond, 108–110
conj, 80
continue, 201
contour, 265
conv, 175
corr, 127–132
cos, 61
cosh, 63
cov, 125, 126
cputime, 336
cross, 84
csape, 188, 190, 191
cubic splines, 189, 190

natural, 188
not-a-knot, 192
periodic, 191

cumprod, 144
cumsum, 140–143
cumulative distribution functions

binomial, 240
continuous uniform on interval (a, b), 244
discrete uniform from 1..n, 245
exponential, 242
normal, 243
Poisson, 241

dataset, 124

INDEX OF MATLAB COMMANDS AND CONCEPTS 47

debugging, 342
det, 90
diag, 22, 23
diff, 146
differential equations, see ode45

dir, 293
disp, 320, 321
doc, 4
dot, 83
drawnow, 285, 289

echelon form, see matrix
eig, 100
element-by-element matrix operations, see ma-

trix
else, 195
elseif, 195
end, 42
eps, 332
erf, 71
erfc, 72
erfcinv, 74
erfinv, 73
error, 338
errorbar, 259, 260
etime, 337
eval, 341
evalin, 302
exist, 311
exit, 318, 346
exp, 58
expcdf, 242
expm, 139
exppdf, 235
exprnd, 226
eye, 21

figure, 246, 247
file

restoring workspace from, 299
running commands in, 294
saving workspace to, 298
text
reading data from, 295, 296
saving data to, 297

find, 169–171
finish.m, 346
fix, 69
fliplr, 36
flipud, 37
floor, 67
fminbnd, 178, 179
fminsearch, 180, 181

font size in plots, 270
for, 193
format, 317
fplot, 279
fprintf, 320, 321
function

multi-variable
minimization, 180
minimization over first parameter only, 179
minimization over only some parameters,

181
single-variable
minimization, 178

user-written, 203
returning multiple values, 204

fzero, 177

gca, 270
gcf, 248
get, 249
Greek letters

in plot labels, 269
grid, 271

help, 1–3
helpbrowser, 4
helpdesk, 4
hilb, 48
hist, 173, 174, 256, 257
hold, 277

identity, see matrix
if, 194–196
imag, 82
image, 280, 289
imagesc, 280
importdata, 295, 296
ind2sub, 38
indexing

matrix, 10
with a single index, 11

vector, 9
input, 322, 323
inv, 91
inverse, see matrix
ismember, 327

keyboard, 342

legend, 276
length, 159, 161
linspace, 15
load, 295, 299
log, 59

INDEX OF MATLAB COMMANDS AND CONCEPTS 48

log10, 60
log2, 60
loglog, 254
logspace, 16
lookfor, 5
lu, 101

matrix, 8
basis for image/range/column space, 112
basis for null space, 111
boolean operations on, 170, 171
changing shape of, 45
Cholesky factorization, 104
circular shift, 35
condition number, 108–110
containing all indentical entries, 20
containing all zeros, 19
converting row, column to single index, 39
converting single-index to row, column, 38
cumulative sums of all elements of, 143
cumulative sums of columns, 141
cumulative sums of rows, 142
determinant, 90
diagonal, 22
echelon form, 89
eigenvalues and eigenvectors of, 100
equation
solving, 88

exponential of, 139
extracting a column of, 30
extracting a rectangular piece of, 33
extracting a row of, 31
extracting specified rows and columns of, 34
“gluing” together, 24, 25
identity, 21
inverse, 91
lower-triangular portion of, 46
LU factorization, 101
minimum of values of, 149
minimum value of each column of, 150
minimum value of each row of, 151
modifying elements given lists of rows and

columns, 40
multiplication, 85
element-by-element, 86

N -dimensional, 49
norm, 107
powers of, 97
product
of all elements, 136
of columns of, 137
of rows of, 138

QR factorization, 105

rank, 99
re-shaping its elements into a vector, 32
reverse elements in columns, 37
reverse elements in rows, 36
Schur decomposition, 103
singular value decomposition, 102
size of, 156–158, 160, 161
sum
of all elements, 133
of columns of, 134
of rows of, 135

trace, 92
transpose, 87
upper-triangular portion of, 47

max, see min

mean, 113–115
median, 123
mesh, 265
meshgrid, 27, 127, 264
min, 148–151, 153–155
mind, 152
mkdir, 290
mnpdf, 239
mnrnd, 231, 232
mod, 65, 351
mode, 122
mode of vector of values, 122
modulo arithmetic, 65, 351
multiple statements on one line, 340

nchoosek, 75
norm, 106, 107
normcdf, 243
normpdf, 236
normrnd, 230
null, 111
num2str, 330
numel, 160

ode45, 205–207
ones, 18, 20
openvar, 307
optimization, 178–181
orth, 112

path, 344
pause, 333, 334
pcolor, 265, 280, 289
perform some commands with probability p, 217
permutation of integers 1..n, 218
plot, 251–253, 278

Greek letters in axis labels, 269
plot3, 262
poisscdf, 241

INDEX OF MATLAB COMMANDS AND CONCEPTS 49

poisspdf, 234
poissrnd, 225
polar, 261
polyfit, 184–186
polynomial

least-squares fitted, 185–187
multiplication, 175
roots of, 176

ppval, 188, 190, 191
print, 286–288
probability density functions

binomial, 233
continuous uniform on interval (a, b), 237
discrete uniform from 1..n, 238
exponential, 235
multinomial, 239
normal, 236
Poisson, 234

prod, 136–138
pwd, 292

qr, 105
quad, 182
quit, 318, 346

rand, 208–216, 222, 223
randi, 212, 213
random values

Bernoulli, 214
binomial, 224
continuous uniform distribution on interval

(a, b), 211, 229
continuous uniform distribution on interval

(0,1), 208–210
discrete uniform distribution from a..b, 216
discrete uniform distribution from 1..k, 213,

227, 228
discrete uniform distribution, 212
exponential, 226
general discrete distribution, 222
k unique values sampled from integers 1..n,

219
multinomial, 231, 232
normal, 230
Poisson, 225
setting the seed, 223

randperm, 218, 219
randsample, 219–221
RandStream, 223
rank, 99
rcond, 108
real, 81
regexp, 328, 329

repmat, 26
reshape, 45, 49
rng, 223
roots

of general single-variable function, 177
polynomial, 176

roots, 176
round, 66
row vector, 6
rref, 89

sampling values from a vector, 220, 221
save, 297, 298
schur, 103
semilogx, 254
semilogy, 254
set, 270
shading, 280
sign, 70
sin, 61
sinh, 63
size, 156–158
slice, 265
sort, 162, 163, 219
sortrows, 164–167
spline, 192
splines, see cubic splines
sprintf, 331
sqrt, 55
stairs, 261
standard deviation, see std

startup.m, 345
std, 116–118
stem, 261
stop, 338
strcat, 325
string

concatenation, 324
converting number to, 330
pattern matching, 328, 329
substrings, 326

struct, 53
sub2ind, 39, 40
subplot, 284
sum, 133–135, 197
summary, 124
surf, 263, 264
surfc, 265
surfl, 265
svd, 102
switch, 202

tan, 61

INDEX OF MATLAB COMMANDS AND CONCEPTS 50

tanh, 63
text, 272, 273
tic, 337
title, 267
toc, 337
trace, 92
transpose, see matrix
trapz, 183
tril, 46
triu, 47

unidcdf, 245
unidpdf, 238
unidrnd, 227, 228
unifcdf, 244
unifpdf, 237
unifrnd, 229
unique, 172, 173, 257

var, 119–121
variables

assigning, 300
assigning in base environment from func-

tion, 301
evaluating from base environment within func-

tion, 302
names, 313

variance, see var

vector
boolean operations on, 168, 169
containing all indentical entries, 18
containing all zeros, 17
counts of binned values in, 174
counts of discrete values in, 173
cross product, 84
cumulative sum of elements of, 140
differences between consecutive elements of,

146
dot product, 83
minimum of values of, 148
norm, 106
position of first occurance of minimum value

in, 155
product of all elements, 136
reversing order of elements in, 29
size of, 159
sum of all elements, 133
summary of values in, 124
truncating, 41
unique values in, 172

warning, 339
waterfall, 265
which, 343

while, 200
who, 303
whos, 304–306, 315

xlabel, 268–270

ylabel, 268, 269

zeros, 17, 19

INDEX OF R COMMANDS AND CONCEPTS 51

Index of R commands and concepts

*, 96
/, 94
:, 12, 13
;, 340
<-, 300
<<-, 301
=, 300
?, 1, 2
[[, 51
#, 319
%%, 65, 351
%x%, 26
&, 196, 197
^, 56, 98

abs, 57, 78
acos, 62
acosh, 64
alarm, 335
all, 198
any, 199
apply, 36, 37, 118, 120, 121, 137, 150, 151
Arg, 79
array, 49
arrayInd, 38
arrows, 274, 275
as.character, 330
as.formula, 186
as.numeric, 173
asin, 62
asinh, 64
atan, 62
atanh, 64
average, see mean

barplot, 257
bitwAnd, 76
bitwise logical operations, 76
bitwNot, 76
bitwOr, 76
bitwShiftL, 76
bitwShiftR, 76
bitwXor, 76
boolean tests

scalar, 196
vector, 197–199

break, 201
browser, 342

c, 6, 7
cat, 320

cbind, 24, 40
ceiling, 68
cellular automata animation, 289
chol, 104
choose, 75
class, 312
cloud, 262
coef, 184–187
colMeans, 114
colon, see :
colormap

building your own, 283
for image, 282

colSums, 134
column vector, 7
comments, 319
complex numbers, 77–82
Conj, 80
contour, 265
convolve, 175
cor, 128–132
cos, 61
cosh, 63
cov, 125–127
cubic splines, 189, 190, 192

natural, 188
periodic, 191

cummax, 145
cummin, 145
cumprod, 144
cumsum, 140–143
cumulative distribution functions

binomial, 240
continuous uniform on interval (a, b), 244
discrete uniform from 1..n, 245
exponential, 242
normal, 243
Poisson, 241

curve, 279

data.frame, 53
dbinom, 233
debugging, 342
det, 90
dev.control, 286, 287, 289
dev.copy, 286, 287
dev.copy2eps, 287
dev.copy2pdf, 286
dev.cur(), 248
dev.list, 249

INDEX OF R COMMANDS AND CONCEPTS 52

dev.new, 246
dev.off, 250, 286–288
dev.set, 247
dexp, 235
diag, 21–23
diff, 146
differential equations, see lsoda

dim, 45, 156–158, 161
dir, 293
dir.create, 290
dmultinom, 239
dnorm, 236
dpois, 234
dunif, 237

echelon form, see matrix
eig, 100
element-by-element matrix operations, see ma-

trix
else, 195
errbar, 259, 260
eval, 341
exists, 311
exp, 58
expand, 101
expand.grid, 265
expm, 139

file
restoring workspace from, 299
running commands in, 294
saving workspace to, 298
text
reading data from, 295, 296
saving data to, 297

filled.contour, 281
.First, 345
fix, 307
floor, 67
font size in plots, 270
for, 193
function

multi-variable
minimization, 180
minimization over first parameter only, 179
minimization over only some parameters,
181

single-variable
minimization, 178

user-written, 203
returning multiple values, 204

get, 302
getwd, 292

globalenv, 302
graphics

not being displayed from scripts/functions,
285

Greek letters
in plot labels, 269

gregexpr, 328
grepl, 329
grid, 271

help, 1, 2
help.search, 5
help.start, 4
Hilbert, 48
hist, 174, 256, 258

identity, see matrix
if, 194–196
ifelse, 147
Im, 82
image, 280, 289
indexing

matrix, 10
with a single index, 11

vector, 9
install.packages, 348
integrate, 182
inverse, see matrix

jpeg, 288

kappa, 109
kronecker, 26

.Last, 346

.Last.value, 314
lattice package, 265, 281, 285, 348
layout, 284
legend, 276
length, 41, 42, 159, 160
levelplot, 281, 285
library, 3, 348
lines, 277
lists, 50

extracting elements of, 51
lm, 184–187
lm.fit, 186
load, 299
log, 59
log10, 60
log2, 60
lower.tri, 47
ls, 303
ls.str, 304, 306

INDEX OF R COMMANDS AND CONCEPTS 53

lsoda, 205–207

.Machine$double.eps, 332
match, 327
matplot, 278
matrix, 8

basis for image/range/column space, 112
basis for null space, 111
boolean operations on, 170, 171
changing shape of, 45
Cholesky factorization, 104
circular shift, 35
condition number, 108–110
containing all indentical entries, 20
containing all zeros, 19
converting row, column to single index, 39
converting single-index to row, column, 38
cumulative sums of all elements of, 143
cumulative sums of columns, 141
cumulative sums of rows, 142
determinant, 90
diagonal, 22
echelon form, 89
eigenvalues and eigenvectors of, 100
equation
solving, 88

exponential of, 139
extracting a column of, 30
extracting a rectangular piece of, 33
extracting a row of, 31
extracting specified rows and columns of, 34
“gluing” together, 24, 25
identity, 21
inverse, 91
lower-triangular portion of, 46
LU factorization, 101
minimum of values of, 149
minimum value of each column of, 150
minimum value of each row of, 151
modifying elements given lists of rows and

columns, 40
multiplication, 85
element-by-element, 86

N -dimensional, 49
norm, 107
powers of, 97
product
of all elements, 136
of columns of, 137
of rows of, 138

QR factorization, 105
rank, 99
re-shaping its elements into a vector, 32

reverse elements in columns, 37
reverse elements in rows, 36
Schur decomposition, 103
singular value decomposition, 102
size of, 156–158, 160, 161
sum
of all elements, 133
of columns of, 134
of rows of, 135

trace, 92
transpose, 87
upper-triangular portion of, 47

matrix, 8, 19, 20
max, see min

mean, 113
median, 123
min, 148–151, 154
Mod, 78
mode, 312
mode of vector of values, 122
modulo arithmetic, 65, 351
multiple statements on one line, 340

names, 52, 173
ncol, 157
next, 201
noquote, 320
norm, 106, 107
nrow, 156
null, 111

object.size, 315
optim, 180, 181
optimization, 178–181
optimize, 178, 179
options

digits=, 317
order, 164–167
orth, 112
outer, 28, 186, 264

packages
installing, 348
loading, 348

par, 270
par

mfcol=, 284
mfrow=, 284

parse, 341
paste, 186, 324, 325
pbinom, 240
pdf, 270, 286
perform some commands with probability p, 217
permutation of integers 1..n, 218

INDEX OF R COMMANDS AND CONCEPTS 54

persp, 263, 264
pexp, 242
pie, 261
plot, 255, 257
plot, 251–254

Greek letters in axis labels, 269
main=, 267
sub=, 267
xlab=, 268, 269
xlim=, 266
ylab=, 268, 269
ylim=, 266

pmin, 152, 153
pnorm, 71, 72, 243
points, 277
polynomial

least-squares fitted, 185–187
multiplication, 175
roots of, 176

polyreg, 186
polyroot, 176
postscript, 287
ppois, 241
print, 285, 320, 321
probability density functions

binomial, 233
continuous uniform on interval (a, b), 237
discrete uniform from 1..n, 238
exponential, 235
multinomial, 239
normal, 236
Poisson, 234

proc.time, 336, 337
prod, 136–138
punif, 244

q, 318, 346
qnorm, 73, 74
qr, 99, 105
quartz, 246
quit, 318, 346

random values
Bernoulli, 214
binomial, 224
continuous uniform distribution on interval

(a, b), 211, 229
continuous uniform distribution on interval

(0,1), 208, 210
continuous uniform distribution on inteval

(0,1), 209
discrete uniform distribution from a..b, 216
discrete uniform distribution from 1..k, 213,

227, 228

discrete uniform distribution, 212
exponential, 226
general discrete distribution, 222
k unique values sampled from integers 1..n,

219
multinomial, 231, 232
normal, 230
Poisson, 225
setting the seed, 223

rbind, 25
rbinom, 224
rcond, 108, 110
.RData, 345
Re, 81
read.table, 295, 296
readline, 323
rep, 17, 18
rev, 29
rexp, 226
rgb, 283
rm, 308–310
rmultinom, 231, 232
rnorm, 230
roots

of general single-variable function, 177
polynomial, 176

round, 66
row vector, 6
rowMeans, 115
rpois, 225
.Rprofile, 345
runif, 208–216, 229

sample, 212–216, 218–222, 227, 228
sampling values from a vector, 220, 221
save.image, 298
scan, 322, 334
Schur, 103
sd, 116–118
seq, 14–16
set.seed, 223
setwd, 291
sign, 70
sin, 61
sinh, 63
solve, 88, 91, 93, 95
sort, 162, 163
source, 294
spline, 188, 189, 191
splines, see cubic splines
split.screen, 284
sprintf, 331
sqrt, 55

INDEX OF R COMMANDS AND CONCEPTS 55

standard deviation, see sd

str, 305
string

concatenation, 324
converting number to, 330
pattern matching, 328, 329
substrings, 326

substr, 326
sum, 133, 135, 197
summary, 124
svd, 102
switch, 202
symbols, 265
Sys.sleep, 333
system, 347

t, 87
table, 122, 173, 257
tan, 61
tanh, 63
text, 272, 273
title, 267, 268
transpose, see matrix
trunc, 69
typeof, 312

unique, 172
uniroot, 177
upper.tri, 46

var, 119–121, 126
variables

assigning, 300
assigning in base environment from func-

tion, 301
evaluating from base environment within func-

tion, 302
names, 313

variance, see var

vector
boolean operations on, 168, 169
containing all indentical entries, 18
containing all zeros, 17
counts of binned values in, 174
counts of discrete values in, 173
cross product, 84
cumulative sum of elements of, 140
differences between consecutive elements of,

146
dot product, 83
minimum of values of, 148
norm, 106
position of first occurance of minimum value

in, 155

product of all elements, 136
reversing order of elements in, 29
size of, 159
sum of all elements, 133
summary of values in, 124
truncating, 41
unique values in, 172

vector, 50

warning, 339
which, 169–171
which.max, see which.min

which.min, 155
while, 200
windows, 246
wireframe, 265
write, 297

x11, 246

