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Abstract

We present an overview of some concepts and methodologies we believe useful in modeling HIV pathogenesis.
After a brief discussion of motivation for and previous efforts in the development of mathematical models for
progression of HIV infection and treatment, we discuss mathematical and statistical ideas relevant to Structured
Treatment Interruptions (STI). Among these are model development and validation procedures including parameter
estimation, data reduction and representation, and optimal control relative to STI. Results from initial attempts in
each of these areas by an interdisciplinary team of applied mathematicians, statisticians and clinicians are presented.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction—HIV modeling and STI

Although the correlates of immune protection in HIV infection remain largely unknown, our knowledge
of viral replication dynamics and virus-specific immune responses has grown. Concurrent with these
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advances, there has been an abundance of mathematical models that attempt to describe these phenomena.
The models proposed have principally involved linear and nonlinear ordinary differential equations, both
with and without delay terms. While data fitting problems motivated the development of some models,
others have been proposed in a more abstract sense to suggest new experiments or possibilities for ways in
which the body interacts with this pathogen. Mathematical models alone cannot answer questions about
the pathogenesis of HIV infection or similar biological processes. But when used in conjunction with
data as part of designed experiments, models can be a powerful tool in understanding mechanisms in
complex systems. Moreover, data-oriented mathematical models can also stimulate further clinical and
laboratory research. In any discussions of mathematical modeling of complex systems, it is appropriate
to point out that while complex models may be needed to provide accurate descriptions of the underlying
dynamics, the models are most useful when they can be compared to clinical and/or experimental data.
In developing models for HIV infection and treatment, this requires that a balance be struck between
complexity and utility.

We begin this paper with a brief summary of issues that have arisen in the development of models
for HIV infection and motivate the model fitting problem. We also offer an introduction to STIs as a
potentially improved treatment strategy and indicate how mathematical control theory can be helpful in
finding treatment schemes. This background will set the stage for the model- and data-based examples
that follow.

1.1. Models for HIV infection

Numerous factors have been considered in modeling HIV infection as one must typically choose
only a critical subset of the many possible biological compartments and interactions. Moreover, scale
is important in that one must decide whether to model at the micro level of viral RNA or more at the
systemic level. Our focus is on compartmental models in which compartments each typically correspond
to a type of cell population throughout the body. We do not attempt to provide a comprehensive survey
of the extensive collection of mathematical models used with HIV infection. Rather, we refer the reader
to one of the excellent survey articles already published; see, for example,[15,55]. We provide a brief
overview of some important developments here.

Investigations of the kinetics of virus and CD4+ T-cell populations using mathematical models with
data from patients undergoing highly active anti-retroviral therapy (HAART) support the theory of very
rapid and constant turnover of the viral and infected cell populations in all individuals studied; see, for
example[30,66,56]. This contrasts with researchers’previous assumptions that the stable viral and CD4+
T-cell concentrations seen during the period of clinical latency of chronic HIV infection were due to
the absence of any significant viral replication. The studies by Ho, Wei and Perelson indicate that both
the viral and infected cell populations are turning over rapidly and continuously. Further work in[54]
revealed a second population of longer lived infected cells contributing to the population of viral RNA.
Since these reports, numerous groups have used mathematical models to estimate decay rates for infected
cell populations[42,44,46,47,70]. In Section 2 we present a model that can predict the observed persistent
low-level replication of virus and includes multiple infected cell populations.

The early linear models developed in[66,30,56,54]are approximations to more realistic nonlinear
models for viral and infected cell decay, and thus are applicable only over short periods of time, most
likely on the order of days. While these linear models have been extremely useful in characterizing short-
term dynamics of HIV infection after therapy, several researchers have attempted to use these models to
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estimate time to eradication of virus from individuals. Such predictions involve periods of time which
extend beyond that which is appropriate for approximation of the nonlinear dynamics by a linear model.

To model data over longer periods of time and make predictions about long term outcomes, nonlinear
mathematical models are necessary. In addition to the unrealistic simplifying assumptions that make it
difficult for linear models to accurately describe long-term HIV infection dynamics, factors that could
play an important role in dynamic disease outcomes may be omitted in linear models. For example,
several authors have raised the question as to whether or not these linear mathematical models have
adequately described the decay of compartments relevant to HIV infection dynamics. The authors in[8]
argue that more complex nonlinear models are needed to accurately describe long-term viral decay. In[42]
the authors point out that the biphasic pattern which has been attributed to two populations of infected
cells could be the result of exponential decay of a single population of infected cells with decreasing
exponent over time. This phenomenon is well-known in population biology, and is often referred to as
density-dependent decay.

Viral production by cells infected with HIV depends on the “age” (e.g., time since infection) of the
infected cells and there are several different biological aspects of this age dependence. Intra-cellular delay
due to viral reverse transcription, integration, transcription, and virion formation is described by Mittler et
al. [45], extending the work in[54]. Mittler allows intra-cellular delay to vary across cells, and estimates
these delays to be more significant than the pharmacological delays associated with drug absorption.
Recent efforts[5] with in vitro data suggest the importance of modeling these distributed delays with
some care. Incorporation of this variability of delays into models may lead to improved estimates of the
half-life of free virus from short-term clinical data on patients undergoing HAART.

Since the qualitative behavior of a dynamical system is determined by its underlying parameters,
knowledge of the bifurcation properties of the system is important for understanding the associated
characteristics of the biological system described by the model. If the range of model parameters for a
population is such that dramatically different outcomes are predicted for different individuals, bifurcation
values for different parameters could suggest target interventions for continued successful treatment. For
example, loss of stability of the zero steady state for viral load could be reversed by treatments affecting
the parameters which influence this stability. In addition, variability in initial conditions, which one can
consider as parameters in the model, can lead to trajectories of the system lying in different regions of
attraction, i.e., different initial population sizes can lead to dramatically different qualitative outcomes
in a nonlinear model. Such situations are described in[9,68] for structured treatment interruption (STI)
studies, discussed below. The models in these reports and that discussed in Section 2 have multiple
equilibria; different equilibria describe the success or failure of the immune system to control infection
and the initial conditions and parameters of the system determine which equilibrium is realized. Careful
qualitative analysis of mathematical models that describe HIV infection dynamics can contribute to
understanding of fundamental qualitative features of infection, and possibly suggest targets for improved
disease monitoring and/or treatment.

In using any of these complex models, one would like to understand the identifiability of parameters,
i.e., which parameters can be successfully estimated and with what type of data. In Section 3, we examine
the ability to estimate parameters in a typical nonlinear model of HIV infection dynamics. In doing so,
we describe a relevant inverse problem methodology, including sensitivity analysis, the generalized least
squares method, and estimation of standard errors in the estimation process.

The complexity of nonlinear HIV models and data sets may necessitate the extraction of only essential
states or information in order to successfully fit models to data. In Section 4 we demonstrate the use of
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the proper orthogonal decomposition (POD) method to capture essential elements of actual HIV patient
time series data. This data reduction technique is similar to the singular value decomposition or principal
component analysis often seen in statistical literature and could be used to reduce the dimensionality of
ODE model solutions as well. While this tool may not be helpful for determining variability of individuals
in a population, it can help determine the essential characteristics which pervade the entire population.
One possibility is to fit ODE models to the obtained essential basis elements, rather than to the noisy
aggregate population data.

1.2. STIs and control theory

In spite of the early hopes of a cure for HIV infection with potent antiretroviral therapy, it has become
apparent that suppression, and not eradication, is most likely the best that can be achieved with this
strategy. The current strategy of continuous combination therapy is difficult to maintain for long periods
of time due to short- and long-term toxicities (metabolic abnormalities, body habitus changes, lipid
abnormalities, mitochondrial toxicity and liver toxicity) as well as adherence challenges inherent in these
complicated pill regimes, cost, and the development of resistance to medications.

Consequently, strategies have been sought that can decrease the side effects for and medication burden
placed on patients while maintaining some control over HIV replication through an individual’s immune
system. Excitement for such strategies surfaced with the reporting of the “Berlin patient”[38], a patient
initially treated during the course of seroconversion, who interrupted therapy temporarily twice within
the first 6 months of treatment and then permanently stopped treatment and maintained control of HIV
replication.

Numerous authors have discussed the effect on immune response as antigen declines
[19,12,18,49,50,16,26,33,62,52,57,10,60], and these contributions suggest that viral replication is re-
quired to maintain an HIV-1 specific Cytotoxic T Lymphocyte (CTL) response. These observations are
supported by data in[33,62] where it is observed that HIV-specific CTL activity increases in patients
who experience viral rebound, either as a spike during ongoing suppression or as the result of changes in
treatment regimen. These results, combined with the data on the “Berlin patient,” have led a number of
investigators to propose methods of immune stimulation through vaccine or structured treatment inter-
ruption (STI) once patients have successfully suppressed viral replication. Hence, an underlying premise
in treatment interruption is that allowing virus to replicate stimulates the immune system and may even
cause some patients to “self-vaccinate.”

In an ideal scenario, individual immune response would be stimulated and augmented sufficiently
through a number of interruptions to the point where patients control their infections without need for
the cumbersome treatment regimens currently available. Initial investigations aimed at assessing immune
response to viral replication through treatment interruptions offer promise. Control of viremia during
therapy discontinuation has been associated with successful HIV-1 specific immune response[38,18,51].
A good overview of the concept of STI and its promise in several scenarios is offered in[37].

Many studies of treatment interruption assess changes in HIV-specific immune response[59,28,53,24].
In investigations of treatment interruption in acutely infected individuals[51,58], HIV-specific immune
responses were associated with control of viremia. Ortiz et al.[51] note the role of broad and strong
CTL response in tandem with neutralizing antibodies in association with control of viremia after drug
discontinuation. Rosenberg et al.[58], report increased and sustained HIV-specific CTL response during
one, two, or three treatment interruptions, and, once CTL response was established, eventual control
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of viremia in all eight patients studied. These examples support the inclusion of immune response as a
factor in any model of HIV infection to be used in STI studies. They also suggest that a realistic model
should take into account the possibility of little or no immune response in some situations and a strong
HIV-specific immune response in others. The model discussed in Section 2 below tries to capture these
features.

The cited studies have involved small numbers of patients and most do not employ standardized
protocols for interruption schedules (e.g., see[59]). Two of the primary questions associated with STI
are: (i) Is there an optimal duration of therapy needed in order to benefit from structured treatment
interruption? (shorter lengths of initial therapy may limit the number of toxicities and inconveniences
experienced by patients but may not be sufficient to maximally suppress HIV in all body compartments to
allow for controlled viral replication in a structured interruption setting); (ii) Can the host immune system
be augmented through repeated exposure to viral antigens so as to control HIV infection without the use of
anti-retroviral therapies? There is data to suggest that repeated exposure to antigen stimulates the immune
system. Moreover, some individuals appear to control their infections after treatment interruptions with
little or no need for further treatment.

In principle, these questions may be addressed using standard comparative statistical analysis tech-
niques if sufficient numbers of subjects are randomized to different regimens (e.g., length of therapy).
However, questions about the relationship between antigen level and immune response or factors which
influence biological mechanisms associated with host immune control of infection may be more appro-
priately addressed through the use of mathematical modeling (including such models as those referenced
above in Section 1.1) with formal estimation of and inference on biologically meaningful parameters
combined with control theory.

Previous efforts on mathematical modeling of treatment interruption have been reported in[68,9].
Wodarz and Nowak[68] employ a mathematical model which represents uninfected CD4+ T-cells, in-
fected CD4+ T-cells, CTL precursors (immune memory), and CTL effectors. Bonhoeffer et al.[9] use
a model incorporating uninfected, actively infected, and latently infected T-cells, as well as immune re-
sponse (CTL effectors). Both investigations offer important theoretical insights into immune control of
virus based on treatment strategies. In what follows, we utilize another model that incorporates some of
the ideas from these papers in the context of STI scenarios.

A number of researchers[11,14,21,32,36,67]have begun to consider theoretical control of HIV infec-
tion models in attempts to suggest optimal treatment strategies. Open loop control for differential equation
models is considered in[14,36,21]to develop strategies for treatment in primary infection. Other authors
[11,67]use feedback controls, i.e., control laws chosen in a real-time fashion based on current observa-
tions of the (full) state of the underlying dynamical systems. In these studies the “controls” range from
chemotherapy to combination strategies, e.g., see[32], in which treatments enhancing the immune system
component of the model are combined with those that directly delay progression of disease.

For example, to control the dynamics of the mathematical system that describes the viral and immune
system dynamics during structured treatment interruption, one might consider a scaled periodic control
input u(t) (therapy) that is zero for some time�t1 and then rises with constant slope (linearly) to a
value of one, remains there for time�t2, and then ramps linearly back to zero. This input affects states
and parameters in the dynamic model that are related to infectivity. A cost functional, established in
collaboration with clinicians, subject to the infection dynamics, could then be investigated. In a typical
situation one might minimize the cost functional over permutations of treatment schedules; the free
parameters would then be�t1 and�t2 in the controlu(t), yielding a treatment that is in some sense,
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optimal. We demonstrate open loop control theoretic techniques for solving this problem with examples
of continuously variable drug control (Section 5) and discrete (STI-like) control (Section 6).

Eventually, one should investigate these types of control problems in the context of patient data. Since
patient data for immune response and antigen behavior are collected relatively infrequently and involve
only partial state observations, a compensator theory combined with state feedback for nonlinear systems
must be developed. Mathematical tools for closed-loop or feedback control of Structured Treatment
Interruption for specific models are still needed. One must also determine the type and quantity of data
on a patient’s current health that would be required to successfully carry out an optimal or sub-optimal
feedback control-based STI.

In the remainder of this paper, we discuss mathematical issues and tools relevant to STIs for HIV
infection. Rather than purporting to provide a specific solution for HIV treatment, the nature of our
presentation is more to demonstrate these tools with examples that may be pertinent to data available
from clinicians. We suggest mathematical methods for solving some of the related problems and point
out where further developments are needed.

2. A model for control and parameter estimation

In this section we discuss a number of important issues encountered in attempting to formulate a
dynamic model of HIV progression in an individual. Desirable features in a model to be used with
clinical observations of treated and untreated patients are presented. In addition to summarizing some
of the difficulties in choosing a model, we ultimately must formulate a “typical” model to be employed
in the subsequent discussions of mathematical and statistical methodologies presented in the remaining
sections of this paper. Given this goal and given the existence of several recent survey papers on models
noted in the Introduction, we do not include here discussions of all the important aspects of modeling of
HIV. Nor do we represent that we have a good model of HIV progression and treatment; rather we have
a model that contains some of the more desirable features one could expect!

A wide variety of mathematical models have been proposed to describe various aspects of in-host
HIV infection dynamics. The most basic of these models typically include two or three of the key
dynamic compartments: virus, uninfected target cells, and infected cells. A model used for estima-
tion and control should include these compartments at a minimum. Infected and uninfected CD4+ T-
cells are not usually censused separately, so they may need to aggregated for purposes of model fit-
ting, i.e., the estimation of mechanisms and parameters in a model. However, current knowledge of
the infection process justifies incorporation of three distinct physiologically relevant compartments. In
addition, the documented importance of the immune system in responding to HIV infection (and espe-
cially its apparent crucial role during structured treatment interruptions) strongly motivates the inclusion
of at least one model compartment representing immune response to the pathogen. We thus seek a
model that includes some measure of cytotoxic T-lymphocyte (CD8) response to HIV infection. The
incorporation of these compartments is important when relating the model to observable quantities in
patient data.

A model used to suggest treatment strategies should be capable of incorporating the action of commonly
used reverse transcriptase (RT) inhibitors and protease inhibitors (PIs). Inclusion of the latter usually
implies inclusion of a compartment for virus rendered noninfectious by the PI. Given the predominance
of HAART in the form of drug cocktails combining two or more drugs, the model should behave reasonably
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when simulating multi-drug therapy. In spite of these comments, the model we will employ herein only
includes RT inhibitors, but this aspect could be readily generalized.

As pointed out in[15] in the 2002 review paper, a reasonable model of HIV infection predicts a nonzero
steady-state viral load in the presence of drug therapy. Patients who are subject to drug therapy often
successfully suppress virus for a long time, potentially at undetectable levels. However, some reservoir
exists which almost always causes the virus to grow out again upon removal of drug therapy. Hence we do
not expect incorporation of drug therapy in the model, at a sensible efficacy, to drive the viral load to zero,
but rather reduce it considerably, perhaps below the assay limits of detection. The authors of[15] note
that many models typically employed to describe HIV infection do not exhibit a reasonable relationship
between drug efficacy and the viral load. In these models, a very slight change in drug efficacy can yield a
drastic change in the viral load equilibrium. This has important consequences for the control problem—a
successful model must exhibit reasonable sensitivity of the viral load equilibrium to treatment efficacy.

The model we provide as an example is adapted from one proposed by Callaway and Perelson (denoted
(5.3) in [15]). Our modified system of ODEs is given by

Type 1 target:

Ṫ1 = �1 − d1T1 − (1 − �)k1V T 1,

Type 2 target:

Ṫ2 = �2 − d2T2 − (1 − f �)k2V T 2,

Type 1 infected:

Ṫ ∗
1 = (1 − �)k1V T 1 − �T ∗

1 − m1ET ∗
1,

Type 2 infected:

Ṫ ∗
2 = (1 − f �)k2V T 2 − �T ∗

2 − m2ET ∗
2,

Free virions:

V̇ = NT �(T ∗
1 + T ∗

2 ) − cV − [(1 − �)�1k1T1 + (1 − f �)�2k2T2]V ,

Immune effectors:

Ė = �E + bE(T
∗
1 + T ∗

2 )

(T ∗
1 + T ∗

2 ) + Kb

E − dE(T
∗
1 + T ∗

2 )

(T ∗
1 + T ∗

2 ) + Kd

E − �EE. (2.1)

This model entails two co-circulating populations of target cells, perhaps representing CD4 T-
lymphocytes(T1) and macrophages(T2). The drug efficacy parameter� models a reverse transcrip-
tase (RT) inhibitor that blocks new infections and is potentially more effective in population 1(T1, T

∗
1 )

than in population 2(T2, T
∗
2 ), where the efficacy isf �, with f ∈ [0,1]. As in the Callaway–Perelson

paper, we only model an RT inhibitor, though again, it is simple to incorporate a PI. The populations of
uninfected target cellsT1 andT2 may have different source rates�i and natural death ratesdi .

As is common in models of HIV infection, infected cellsT ∗
i result from encounters between uninfected

target cellsTi and free virusV. The natural infection rateki may differ between the two populations, which
could account for believed differences in activation rates between lymphocytes and macrophages. The
differences in infection rates and treatment efficacy help create a low, but nonzero, infected cell steady
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state forT ∗
2 , which is commensurate with the idea that macrophages may be an important source of virus

after T-cell depletion. Infected cells may be removed from the system via either natural death or by the
action of immune effector cellsE described below. For our efforts here we assume that both target cell
types have the same death rate�, though this could be readily generalized as well.

To preserve simplicity in the model, we omit the chronically infected cell compartments proposed in
the original Callaway–Perelson model. The important qualitative behaviors seem preserved in the model
we propose and specifically modeling this feature is not essential to our present work. In particular, the
existence of a low steady-state viral load equilibrium and sensitivity of the viral load equilibrium to the
drug efficacy is obtained with or without such compartments. We note that while removing the chronically
infected compartments does not affect the sensitivity to treatment, the addition of immune response terms
does, as discussed below.

Free virus particles are produced by both types of infected cells, which we assume produce virus
at the same rate (again this could be easily generalized to account for different productivity). In the
Callaway–Perelson model, virus only leaves theV compartment via natural death at ratec; there is
no removal term in thėV equation representing loss of virus due to infection of a cell. One potential
justification for this omission is offered by Nelson and Perelson in[55, p. 10]who suggest that this term
can be omitted since the termkiTiV is small in comparison tocV in the typical HIV-infected patient.
They further assert that ifTi is approximately constant, one can absorb the loss of virus due to infection
into thecV term, thus making it account for all clearance processes.

While the arguments offered by Nelson and Perelson could justify the exclusion of the virus re-
moval term, we investigate situations where treatment is interrupted abruptly, potentially effecting drastic
changes in all of the cell populations under consideration. We therefore include the term[(1− �)�1k1T1+
(1 − f �)�2k2T2]V in the V̇ equation to account for the removal of free virus that takes place when free
virions infect aT1 or T2 cell. We make the simplifying assumption�i = 1, i.e., one free virus particle
is responsible for each new infection. This could easily be adapted for multiple virus particles being
responsible for each new infection by choosing�i >1.

Finally, the immune effectorsE, or cytotoxic T-lymphocytes, are produced in response to the presence
of infected cells and existing immune effectors. The immune response assumed here is similar to that sug-
gested by Bonhoeffer, et al., in their 2000 paper[9], with a Michaelis–Menten type saturation nonlinearity.
The infected cell dependent death term in the immune response represents immune system impairment
“at high virus load”. In[9], the authors demonstrate that a model with this structure of immune response
and a latently infected cell compartment can exhibit transfer between “healthy” and “unhealthy” stable
steady states via STI, making it a good candidate for our investigation. We also add a source term�E
to create a nonzero off-treatment steady state forE. While immune effectors are not inherently present,
some small persistence of them is to be expected during infection. We note that other immune responses
models, such as those considered in[68] or [48] could be substituted, if desired. However, the latter does
not appear to admit multiple stable off-treatment steady states.

The immune response we model is that of cytotoxic T-lymphocytes (CTL). CTL act by lysing in-
fected cells, causing them to explode. Thus CTL remove infected cells from the system in the equa-
tions for Ṫ ∗

1 and Ṫ ∗
2 , at ratesm1 andm2, respectively. Unlike interferons, they do not directly target

free virus, so there is no interaction term with the virus compartment. As with any immune system re-
sponders, we suspect that CTL sometimes mistarget or misidentify receptors and thus kill healthy cells
or misidentify self versus antigen. But again for the sake of simplicity, we do not attempt to model
that here.
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Table 1
Parameters used in model (2.1)

Parameter Value Units Description

�1 10,000 cells
ml·day Target cell type 1 production (source) rate

d1 0.01∗∗ 1
day

Target cell type 1 death rate

� ∈ [0,1] – Population 1 treatment efficacy
k1 8.0 × 10−7 ml

virions·day Population 1 infection rate

�2 31.98 cells
ml·day Target cell type 2 production (source) rate

d2 0.01∗∗ 1
day

Target cell type 2 death rate

f 0.34 (∈ [0,1]) – Treatment efficacy reduction in population 2
k2 1 × 10−4 ml

virions·day Population 2 infection rate

� 0.7∗ 1
day

Infected cell death rate

m1 1.0 × 10−5 ml
cells·day Immune-induced clearance rate for population 1

m2 1.0 × 10−5 ml
cells·day Immune-induced clearance rate for population 2

NT 100∗ virions
cell

Virions produced per infected cell
c 13∗ 1

day
Virus natural death rate

�1 1 virions
cell

Average number virions infecting a type 1 cell
�2 1 virions

cell
Average number virions infecting a type 2 cell

�E 1 cells
ml·day Immune effector production (source) rate

bE 0.3 1
day

Maximum birth rate for immune effectors

Kb 100 cells
ml

Saturation constant for immune effector birth
dE 0.25 1

day
Maximum death rate for immune effectors

Kd 500 cells
ml

Saturation constant for immune effector death
�E 0.1∗ 1

day
Natural death rate for immune effectors

Those in the top section of the table are taken directly from Callaway and Perelson. Parameters in the bottom section of the
table are taken from Bonhoeffer et al., withKb andKd scaled to reflect the volumetric units used in our model and also adjusted.
The superscripts∗ denote parameters the authors indicated were estimated from human data and∗∗ denote those estimated from
macqaque data.

2.1. Parameter specifications

The model (2.1) contains numerous parameters that must be assigned values before simulations can be
carried out. In specifying model parameters, to the greatest extent possible we employ values similar to
those reported or justified in the literature. The parameters indicated inTable 1are principally extracted
from the Callaway–Perelson[15] and Bonhoeffer et al.[9] papers.

Callaway and Perelson point out that several model parameters are not available from human or animal
data. They choose the parameters�1, k1, �2, andk2 such that several conditions on target cell and viral
load equilibria are satisfied for their model. We note that these conditions are not precisely satisfied by our
model which has no chronic cell compartment and an added immune response. However, the conditions
are closely approximated by the model’s behavior and we believe the parameters could be adjusted to
obtain the same qualitative behavior. Further explanation of these criteria appears below.
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Table 2
Off treatment(� = 0) steady states (c/ml) for model (2.1). Nonphysical steady states have been omitted

EQ1 EQ2 EQ3 EQ4

T1 1 000 000 664 938 163 573 967 839
T2 3198 50 5 621
T ∗

1 0 1207 11945 76
T ∗

2 0 11 46 6
V 0 6299 63919 415
E 10 207658 24 353108
Local stab. Unstable Unstable Stable Stable

In general, immune response parameters are not well known and are thus frequently chosen to demon-
strate model behavior in simulations. The parametersm1 andm2 represent cytopathicity of the immune
effectors. Their common value was taken from[15] where the authors note that the value was suggested
originally in [48]. We scale the parameterKb by a factor of 1000 since the Bonhoeffer paper appears to
use units of microliters, whereas we consider infected cells per milliliter. The parameterKd is adjusted
by a factor of 100 in order to demonstrate the possibility of multiple stable equilibria for the model.

2.2. Model steady states and simulation

Given the specified parameters, in the absence of therapy, the model exhibits several steady states as
shown inTable 2. Equilibrium EQ1 represents the uninfected patient, with healthy T-cell counts and
no virus or infected cells present. When the system is in this state, introduction of a small amount of
virus causes the system to converge toEQ3, where healthy target cells are substantially depleted and a
dangerously high viral load is present. The system also exhibits a second stable equilibriumEQ4, where
a strong immune response has developed, successfully controlling the virus and consequently restoring
target cell(T1) help.

We turn to the criteria on the steady states suggested by Callaway and Perelson. When�=1 andf =0,
they desire a viral load of 100. In this scenario, our model exhibits a viral load ofV = 143 c/ml, which
is on that order. The equilibrium is:

T1 = 1 000 000, T2 = 1314, T ∗
1 = 0, T ∗

2 = 27, V = 143, E = 20.

When� = 1 andf = 0.5, they desire eradication of the virus. Our model does not precisely attain that,
though the viral steady state(V = 43 c/ml) is below the limit of detection for most assays currently in
use. The complete equilibrium is given by:

T1 = 1 000 000, T2 = 2627, T ∗
1 = 0, T ∗

2 = 8, V = 43, E = 12.

Further, by increasing the treatment efficacy factor tof=0.6, the virus is eradicated because the uninfected
steady state becomes stable.

Fig. 1 depicts the sensitivity of the viral load equilibrium to drug efficacy�. The introduction of
the immune response terms causes a discontinuity in this curve as stability is exchanged between viral
dominant and immune-dominant equilibria. This is in contrast to the sensitivity curve of the original
Callaway–Perelson model which is continuous across the range of drug efficacies. However, this may be
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Fig. 1. Sensitivity of stable viral load equilibrium to drug.

reasonable—a certain amount of drug may be necessary to augment the immune system to counteract
effects of the virus. The low (nonzero) steady state viral load is maintained across the entire range of
reasonable drug efficacies. The model also exhibits approximately a 1–2 log drop in viral load across the
range of drug efficacies, which is typical for monotherapy with RT inhibitors.

A simulation of early infection is shown inFig. 2. Simulation is started near steady stateEQ1, with
the addition of one (1) viral copy per ml(V = 1 c/ml). Upon infection, the virus replicates to a peak
before converging in damped oscillations to equilibrium. There is a delayed initial immune response
to the presence of the infected cells, but a sustained and vigorous immune response does not develop.
The higher infection rate in theT2 population is evident in its more dramatic decline than theT1 cell
population.

3. Sample inverse problem calculation and standard error estimates

As discussed above, if one wishes to use a mathematical model to make predictions about a particular
individual or population, estimation of model parameters from data is crucial. In this section, we outline
an inverse problem methodology for estimating parameters and associated uncertainty from single patient
data. We use simulated data generated in a manner that respects conditions encountered in clinical studies.
It is generally a standard (and wise) practice to test one’s inverse algorithms on simulated data before
attempting to use them with experimental or clinical data.

3.1. Simulated data generation

In generating simulated data for a single patient, we assume that measurement error is a dominant
source of variation and that measurements of different system states (e.g.,T1 andV) are independent at
any given time. This is valid for certain, but not all, assays, and a reasonable assumption given that the
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Fig. 2. Simulation of early infection scenario using model (2.1). Note varying scales in different subplots.

assays here are not performed sequentially but independently on distinct portions of the same specimen
or on entirely different specimens. Measurements over time in clinical studies are generally taken on
a given patient at intervals sufficiently separated in time that correlation over time may be reasonably
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taken as negligible. We thus assume further that measurements over time are independent and take typical
measurement intervals of 3–10 days.

Assume that the mean response for measurements on a single patient is given by the solution to the
ODE model with some true parameter vectorq0. Specifically, letx̄ = (T1, T2, T

∗
1 , T

∗
2 , V ,E) be the state

vector of the ODE model (2.1), and denote the model response for statei at timetj by x̄ji (q0)= x̄i(t
j ; q0),

so thati = 1, . . . ,6 indexes the state andj = 1, . . . , N indexes the observation times. Application of an
observer matrixC to the model solution to observe only some states or combination of states results in
valuesxji (q0), i=1, . . . , �. This renders the model consistent with actual patient data where, for example,

only the sum ofT1 andT ∗
1 may be measured. We then assume thaty

j
i , observed measurements onxji ,

are independent with meanE(y
j
i ) = x

j
i .

Variation introduced by the assay and other sources is acknowledged to increase with the mean and is
commonly represented by the variance model Var(y

j
i )=�2

i {xji }2, where�i is the (constant) coefficient of

variation corresponding to statei. Consistent with this, we take theyji to be independently lognormally

distributed, which is accomplished by generating independentz
j
i such that

z
j
i ∼ N(log x

j
i − log(�2

i + 1)/2, log(�2
i + 1)) (3.1)

and then settingyji =exp(zji ). It may be verified using moment generating functions thaty
j
i so generated

have the desired mean and variance. An alternative probability model is the normal relative error model
commonly used in the mathematical literature, where fore

j
i ∼ N(0, �2

i ), y
j
i =x

j
i (1+ e

j
i ). However, this

model allows the possibility of generation of unrealistic negative measurements, making the lognormal
a more natural choice for our systems and data.

We employ this method to generate simulated data with coefficient of variation�i =0.20 for each state,
which is in the range observed in practice for viral load and CD4 count assays (see, e.g.,[69,63]). As
above, we consider the early infection scenario, with parameters previously specified. We consider two
scenarios—one where all six states are observed and one where there are only three observed quantities:
(T1 + T ∗

1 ),V, andE, as is typical in our clinical data sets.

3.2. Semi-relative sensitivity analysis

As a first step in testing the feasibility of inverse problem calculations, we attempt to estimate those
parameters to which the model solution is most sensitive. These, in turn, are determined through a semi-
relative sensitivity calculation.

To describe this methodology, suppose we wish to determine the relative sensitivity of the observed
model quantitiesx (and consequently the model solutionx̄) to particular parametersqk, k=1, . . . , r. The
semi-relative sensitivity of the model solution to parameterqk is given by

�x̄(t; q)
�qk

· qk (3.2)
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(see[4]) and is computed by formally differentiating the ODE model

dx̄

dt
= f (t, x̄; q)

x̄(0) = x̄0,

with respect toqk and interchanging the order of the time and parameter derivatives as outlined in
[4,20,23]. In the case ofr parameters andn state variables, we thus obtain an(n× r)-dimensional system
of differential equations for the sensitivitiesx̄q(t; q)= (�x̄/�q)(t; q), whereq is the vector of parameters
considered:

d

dt

(
�x̄(t)

�q

)
= �f

�x̄

�x̄(t)

�q
+ �f

�q
(3.3)

with initial condition

�x̄(0)

�q
= �x̄0

�q
= 0. (3.4)

The latter is simply the zero matrix whenever the initial condition is not a function of any of the parameters
estimated. Here�f/�x̄ is the Jacobian of the ODE system, and�f/�q the derivative of the right side with
respect to the parameters considered.

We solve {(3.3), (3.4)} forx̄q(t; q) by coupling it with the original differential equation system to
obtain an(nr + n)-dimensional system which we solve numerically with a Matlab ODE solver (the
routineODE15s). For another application of this methodology see[1]. Since our observation process
on the model states is linear in these states, we can apply the observerC to these sensitivities to obtain
the sensitivitiesxq(t; q) for the relevant observed model quantities.

This process yields sensitivity information as a function of time over the interval of interest. We wish to
have some overall measure of the sensitivity of the solution to the parameters, so for each state/parameter
combination, we take a norm (theL2 norm) in time and then rank the resulting scalars to determine the
most sensitive parameters. We find that these comparisons are similar using the two or sup norm—and
report using the two norm here. Also, most of the interesting system dynamics occur in the first 50 days,
so using a longer time span for these computations does not affect the results.

Fixing the parameters in (2.1) that have already been estimated from human or monkey data as known,
we find that of the remaining parameters, the model solutions (especially statesT1 andV) are most
sensitive to the parametersk1, �1, k2, and�2 (seeTable 3). Several other parameters follow closely with
less relative sensitivity, includingbE, dE , and�E . Parameters near the end of the chart are likely more
difficult to estimate from data.

Since the parameter�=0 for these simulations, we find that as expected the model solution is completely
insensitive to the treatment parameters� and f. When considering a scenario with treatment�>0, the
model solutions are highly sensitive to these parameters (results omitted). We also note that when only
making partial state observations, the observables are most sensitive to these parameters in the same order
as reported here.

There are alternate methods for computing the sensitivity matrix—see[6] for another efficient approach
for some systems. For example, in[6], the authors determine the sensitivitiesxq by taking forward
difference quotient approximations nearq. This replaces the sensitivity equation solution step withr
extra solves of the ODE system. We note that for the initial conditions and parameters considered here it
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Table 3
Ranked semi-relative sensitivity of various model states to parameters not previously estimated from human or monkey data

Statexi Paramqk
∥∥∥ �xi

�qk
(t)

∥∥∥
2

Statexi Paramqk
∥∥∥ �xi

�qk
(t)

∥∥∥
2

V k1 3.28488e+07 T ∗
2 �1 1.33382e+03

T1 k1 1.04194e+07 E �1 1.28026e+03
V �1 6.51520e+06 T ∗

1 �E 1.24200e+03
V k2 6.43367e+06 T2 �2 1.08470e+03
T ∗

1 k1 6.21024e+06 E k1 1.05731e+03
T1 �1 4.30398e+06 T ∗

2 �2 1.03413e+03
T1 k2 1.70261e+06 T ∗

1 m1 6.32270e+02
T ∗

1 �1 1.22538e+06 E �E 6.08686e+02
T ∗

1 k2 1.21751e+06 E Kd 6.04010e+02
V �2 2.84012e+05 T ∗

1 Kd 5.28876e+02
T1 �2 2.16825e+05 T ∗

1 �E 5.07648e+02
T ∗

1 �2 5.35385e+04 E Kb 3.69105e+02
T2 k1 1.94056e+04 T ∗

1 Kb 3.20193e+02
V bE 1.76378e+04 V m2 2.41282e+02
T ∗

2 k1 1.55804e+04 T1 m2 1.21678e+02
T1 bE 1.43228e+04 E �2 9.11780e+01
V dE 1.12343e+04 T ∗

1 m2 4.52933e+01
T2 k2 9.81344e+03 E k2 3.11716e+01
T1 dE 9.03250e+03 T2 bE 1.16408e+01
T ∗

2 k2 8.08379e+03 T2 dE 7.77859e+00
V �E 6.63642e+03 T2 �E 4.38937e+00
T2 �1 6.27148e+03 T ∗

2 bE 3.13943e+00
T1 �E 5.40935e+03 T2 m1 3.04099e+00
E bE 3.91597e+03 T2 �E 2.53350e+00
V m1 3.37951e+03 T ∗

2 dE 2.00294e+00
T ∗

1 bE 3.30042e+03 T2 Kd 1.55823e+00
V Kd 2.82209e+03 T ∗

2 �E 1.22305e+00
V �E 2.71019e+03 T ∗

2 m2 1.13910e+00
T1 m1 2.55536e+03 T2 Kb 9.81833e−01
E dE 2.52360e+03 T ∗

2 m1 6.96854e−01
T1 Kd 2.31335e+03 T ∗

2 �E 6.65082e−01
T1 �E 2.27849e+03 E m1 6.28564e−01
T ∗

1 dE 2.10127e+03 T ∗
2 Kd 5.07039e−01

V Kb 1.70767e+03 T ∗
2 Kb 3.34275e−01

E �E 1.46946e+03 T2 m2 2.68566e−01
T1 Kb 1.41645e+03 E m2 3.98107e−02

seems to make a considerable difference whether one uses one-sided (forward) or centered differences to
approximate the derivatives. The latter provide much more accurate derivative information, at twice the
computational cost.

3.3. Parameter estimation algorithm

We estimate the parameters from� observed quantities simultaneously based on data fromN time
points. The state variable observations are potentially different from each other by orders of magnitude,
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so, intuitively, it is critical that the estimation scheme take this into account. One way to do this is by
appropriately weighting the states in a least squares cost criterion. Formal statistical large sample theory
implies that the optimal (in the sense of yielding the estimator for the true valueq0 making most efficient
use of the data whenN is large) least squares criterion uses weights equal to the inverse of the true model
for variance [14]. Such weighting may be implemented via an iterative generalized least squares (GLS)
algorithm based on the mean model

E
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j
�


=
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j
1(q)
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j
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j
� (q)
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and covariance model
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=




�2
1{xj1(q)}2 0 · · · 0

0 �2
2{xj2(q)}2 ...

...
. . . 0

0 · · · 0 �2
�{xj� (q)}2


 (3.6)

for the data at each time pointtj .
To calculate initial weights for the GLS algorithm, we perform a preliminary weighted least squares

estimation. We minimize a least squares objective functional over admissible parametersq to obtain the
initial estimateq(1)

q(1) = arg min
q

�∑
i=1

N∑
j=1

{yji − x
j
i (q)}2

{xji (q(0))}2
, (3.7)

whereq(0) is the initial iterate for the estimation process.
The estimation proceeds with the following iterative algorithm: Setk = 1.

1. Estimate coefficients of variation�2
i for each state:

�2
i = 1

N − r

N∑
j=1

{yji − x
j
i (q

(k))}2

{xji (q(k))}2
, (3.8)

where we recall thatr is the dimension of the free parameter vectorq.
2. Form estimated weights

w
j
i = 1

�2
i {xji (q(k))}2

. (3.9)



26 B.M. Adams et al. / Journal of Computational and Applied Mathematics 184 (2005) 10–49

3. Minimize the weighted least squares cost function to obtain the next estimate

q(k+1) = arg min
q

�∑
i=1

N∑
j=1

w
j
i {yji − x

j
i (q)}2. (3.10)

4. Setk = k + 1 and repeat steps 1.–3. until convergence. One can use either a fixed number of GLS
iterations, or iterate until the relative change in the parameter vectorq is small (say 10−6). The results
that follow use the former criterion with a preliminary estimate followed by five GLS iterations.

We will denote the resulting optimal parameter vector estimate byq∗.

3.4. Standard error calculation

When estimating parameters using a procedure such as the one given above, it is vital to understand the
uncertainty of the estimationprocess, that is, any estimate of mean model parameters from data should
be accompanied by an estimate of uncertainty. Here we assess the variance in the estimated model pa-
rametersq∗ by computing standard errors. The method here is a more general version of that described
in [17] and uses sensitivity equations for derivative information, as described above. An example of this
methodology in the single state case can be seen in[1].

We stack the model responsesX = (x1
1, . . . , x

N
1 ; x1

2, . . . , x
N
2 ; . . . ; x1

�, . . . , x
N
� )T. Let Xq denote the

matrix with entries[Xq]ik = �Xi/�qk using the solution of the sensitivity equations (3.3). (ThusXq is a
�N × r matrix.) To obtain standard errors, this is computed at the optimal estimate for the parameters:
Xq(q

∗).
Recall that we assume that the measurement process errors are independently distributed. With our

assumed model for the distribution of the data, we expect the GLS estimateq̂ = q∗ to be approximately
normally distributed (at least asymptotically). Specifically, for large samples,

q̂ = q∗ ∼ N(q0,�), (3.11)

whereq0 is the true vector of parameters and the true covariance matrix is

� = {Xq(q0)
TG−1Xq(q0)}−1. (3.12)

HereG is the weighting matrix

G = diag((�2
1{x1

1}2, . . . , �2
1{xN1 }2; �2

2{x1
2}2, . . . , �2

2{xN2 }2; . . . ; �2
�{x1

�}2, . . . , �2
�{xN� }2))

with �2
i computed as in the GLS algorithm above. (See[17, Chapter 2]for an explanation of this idea.)

Having no better approximation to the true valuesq0 available, we follow standard statistical practice
and substitute the computed estimateq∗ for q0 in the above matrices in (3.12) to obtain standard errors
for our estimates. In particular, taking� from (3.12) above (taken with the described substitutions), we
then take

√
�kk to obtain the standard error for parameter componentk.

3.5. Inverse problem results

To illustrate the type of information that can be obtained using the methodology discussed above,
we present results for several inverse problems, considering first the case with full state observations
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Table 4
Parameter estimates, standard errors, and cost function values at optimal parameters when estimatingk1 or k2 with either full-
or partial-state data

Parameter, obs. type q∗ Std. Err. Weighted cost Unweighted cost

k1, full state 8.0750e−07 1.1455e−09 120 4.121e+11
k1, partial state 7.9388e−07 1.6828e−07 60 8.209e+10
k2, full state 9.6730e−05 3.1889e−07 120 3.435e+11
k2, partial state 9.1280e−05 5.5781e−04 60 7.390e+10

Results obtained with observations every 5 days(N = 41).

(T1, T2, T
∗
1 , T

∗
2 , V ,E) as well as a case with partial state observations (T1 + T ∗

1 , V ,E). The latter case is
representative of the type of clinical data discussed in Section 4. The data used simulated measurements
every five days from 0 to 200 days, inclusive. We estimate three subsets of the model parameters:k1
only,k2 only, and the pairk1, k2 jointly. Recall that the simulated data are generated with true parameters
k1 = 8.0 × 10−7 andk2 = 1.0 × 10−4. These infectivity parameters are important to estimate since they
describe the viral infection rate for the two cell populations and the overall system dynamics are highly
sensitive to them.

When estimatingk1 only, each of the initial iteratesq(0)=10−2,10−4,10−6,10−8, and 10−10 produces
the same optimal parameter estimate. The same is true when estimating onlyk2 for each of the initial
iteratesq(0)=10−1,10−2,10−4,10−6, and 10−8.This robustness of the estimation process to the choice of
initial iterate would be particularly important when using clinical data. The resulting parameter estimates,
standard errors, and cost function values are displayed inTable 4. In all four cases, we successfully recover
reasonable estimates of the true parameters. Of course, we do not expect to precisely recover the true
parameter values since we are fitting noisy simulated data (see Section 3.1 above). The standard errors
for the full state data are acceptably small, although those for the partial state data are appreciably
larger. These calculations are based on observing 6 states at each of 41 time points in the full state
case (total 246 data points) and 3 states at the same time points in the partial state case (total 123
data points).

To estimatek1 andk2 jointly, we consider five initial iterates taken as ordered pairs from the iterates
used for single parameter estimation above. When using full state observations, the algorithm returns
the same parameter pair for each initial iterate pair:q∗ = (k1, k2) = (8.1065× 10−7,9.3961× 10−5)

with corresponding standard errors(5.0385× 10−9,1.5997× 10−6) and cost function values of 117
(weighted) and 3.7172e+11 (unweighted). The fit to data can be viewed inFig. 3, where the solid lines
are the simulations corresponding to the optimized parametersq∗.

For partial state observations we obtain similar results, although the initial iterate(10−8,10−6) does
not lead to convergence within the allotted five GLS iterations. (This is the only such exception among
the results presented here.) Overall though, for the joint estimation case, the algorithm is relatively robust
to the choice of initial iterates (seeTable 5). Fig. 4depicts a typical fit to the partial state data.

Even with only observations ofT1 + T ∗
1 , V , andE, the estimation process yields acceptable estimates

of k2, although the large standard errors do not lend a lot of confidence to their accuracy.
In a forthcoming paper, we will explore the ability to fit this model with greater numbers of free param-

eters and discuss the merits of different weighting schemes in the estimation process. As an alternative to
the methodology presented here, one could use sampling-based methods, such as Monte Carlo Markov
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Fig. 3. Fit of model using estimated parameters (solid lines) to data (‘x’ markers) when jointly estimatingk1, k2 using third
initial iterate (10−6,10−4). Estimates are based on full state observations. Note different scale on each subplot.

chain algorithms, to obtain parameter information from data. These methods yield an estimate for the
distribution of a parameter (and hence estimates of the mean and variance similar to those we have re-
ported here). Our group is currently comparing the efficiency of such methods to those discussed in this
paper.
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Table 5
Resulting parameter estimates, standard errors, and cost function values for partial state data, simultaneous estimation ofk1 and
k2

q(0) q∗ Std. Err J (q∗)

[k1, k2] [k1, k2] [k1, k2] Weighted Unweighted

(10−2,10−1) (7.9420e−07, 9.9007e−05) (3.0605e−07, 1.0957e−03) 58.5 7.9624e+10
(10−4,10−2) (7.9420e−07, 9.9007e−05) (3.0605e−07, 1.0957e−03) 58.5 7.9624e+10
(10−6,10−4) (7.9420e−07, 9.9007e−05) (3.0605e−07, 1.0957e−03) 58.5 7.9624e+10
(10−8,10−6) (7.9373e−07, 1.0050e−04) (3.0325e−07, 1.1074e−03) 58.0 8.3495e+10
(10−10,10−8) (7.9420e−07, 9.8996e−05) (3.0607e−07, 1.0956e−03) 58.5 7.9598e+10
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Fig. 4. Fit of model using estimated parameters (solid lines) to data (‘x’ markers) when jointly estimatingk1, k2 using third
initial iterate (10−6,10−4). Estimates are based on partial state observations. Note different scale on each subplot.

4. Modeling HIV dynamics: a POD approach

There are many families of patterns occurring in both nature and in the sciences for which it is possible to
obtain a useful systematic characterization. Often, the motivation is that the family is of low dimension,
that is, in some sense, any given member of the family might be represented by a small number of
parameters. Examples of these pattern families occur in turbulent flows[41,3,61,7], image processing
[29,64], data compression[2], human speech[65], and human faces[35]. In these applications the
technique used to represent such characteristics is known as the proper orthogonal decomposition (POD).
In other disciplines it also called the Karhunen–Loève decomposition[39], principal component analysis
[31], and the Hotelling transform[25].

Typically, the POD procedure is implemented in engineering or science applications where the physical
or biological system may be described by a mathematical model, i.e., a nonlinear distributed parameter
system with boundary and initial conditions. The pedagogy to obtain the governing equations begins with
some simplifying assumptions about the physical or biological system and then applies first principles
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to derive quantitative models. The POD procedure, applied together with the Galerkin, finite element,
finite volume, or spectral method, results in a reduced order model which represents the underlying low
dimensional system.

On the other hand, many problems in engineering and medicine, including HIV population level
dynamics, are sufficiently complex that a mathematical description is either nearly impossible, or when
a model is obtained, it cannot be implemented without undue complications. For example, the degree of
freedom of distributed parameter systems is essentially infinite, and in the case of HIV population level
models, the parameters are often formulated as random variables in order to accurately account for various
sources of variability contained in aggregate clinical data. It is possible to apply the POD method to an
ensemble of data (with or without an underlying model) to extract a basis that characterizes the salient
features of the ensemble. In this section, we assume that the mathematical model for HIV dynamics is
not yet known, but data to be used to guide and validate model development is available. Our primary
goal is to show that characteristic features, extracted from collected data using the POD procedure, can
be used to organize HIV data (RNA viral load values) more efficiently and accurately.

4.1. HIV STI clinical data

The data that we employ for our demonstration were collected by one of the authors (Rosenberg) from
patients studied at Massachusetts General Hospital. The ensemble provides RNA viral load, CD4, and
CD8 data for 102 patients. Approximately 40 patients have at least one treatment interruption, and some
have as many as four treatment interruptions. The interruptions are either approved according to protocol,
are due to illness or drug toxicity, or are patient initiated.

The data set contains a high degree of variability. For an individual patient viral load values may range
from a censored value of fifty (c/ml) to several million (c/ml); the duration of the interruptions range
from one week to several years. We have inter-patient variability (long-term nonprogressors versus rapid
progressors) as well as intra-patient variability (on treatment, off treatment, poor adherence, short drug
holidays, or structured treatment interruptions).

4.2. The proper orthogonal decomposition

In the following we provide a basic description of the POD method; a more detailed description is
given in[43]. LetUi = Ui(t), i = 1,2, . . . , N , denote the set ofN observations (also called snapshots)
for t ∈ �, � bounded. For example,Ui could represent the RNA values observed for patienti at times
t ∈ �. We wish to find an optimal compressed description of the sequence of data. One description of the
process is a series expansion in terms of a set of basis functions. Intuitively, the basis functions should
in some sense be representative of the members of the ensemble. Such a coordinate system is provided
by the Karhunen–Loève expansion, where the basis functions� are, in fact, linear combinations of the
snapshots and are given by

� =
N∑
i=1

aiUi . (4.1)

Here, the coefficientsai are to be determined so that� given by (4.1) will most resemble the ensemble
{Ui}Ni=1. Indeed, it follows that (see, e.g.,[43]) the coefficientsai are the entries of theith eigenvector
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corresponding to theith largest eigenvalue of theN × N covariance matrix

C�u = 1

N

∫
�
U(t)U(t)T dt , (4.2)

whereU = (U1, U2, . . . , UN)
T. It is noted that the covariance matrix is a symmetric and nonnegative

matrix and, hence, the eigenvalues,�i are real and nonnegative. We arrange the eigenvalues in decreasing
order as�1��2� · · · �N �0. Thus�1 is the basis function corresponding to the largest eigenvalue. Any
snapshot in the ensemble can be represented as a linear combination of the basis functions as follows

Ui =
N∑
i=1

〈�k, Ui〉L2(�)�k. (4.3)

Employing only the firstM POD basis elements, we obtain the approximationUM
i for Ui such that

UM
i =

M∑
i=1

〈�k, Ui〉L2(�)�k. (4.4)

It is well known that (see, e.g.,[43]) expansion (4.4) is in some sense optimal. In particular, among all
linear combinations, the POD is the most efficient, in the sense that, for a given number of modesM, the
POD decomposition will capture the most possible kinetic energy. One way to quantify the error of the
approximation is by computing the relative error

ER(UM
i ) = ‖Ui − UM

i ‖L2(�)

‖Ui‖L2(�)
. (4.5)

4.3. RNA modeling results and discussions

In this section, we demonstrate the effectiveness of using the POD expansion to model RNA values on
an ensemble clinical data set collected at Massachusetts General Hospital. One could use the entire data
set for the ensemble, using each patient as a snapshot. Indeed, initially we followed this approach with
very limited success. This was due to the significant inter-patient and intra-patient variability observed
in the data set. This contributed to the difficulty in representing the data by a reduced POD basis. Here,
we first focus on a subset of the data ensemble—HIV patients that undergo treatment interruptions. We
focus only on data points that correspond to ON treatment entries. Modeling of the OFF treatment entries
will be addressed later.

Before applying the POD method to the restricted set of ON segments (snapshots), we first perform
some preliminary data manipulations to obtain a more realistic “guess” of the OFF/ON treatment cycle.
For example, in looking at the RNA data we often encountered segments similar to the following:

date on/off RNA value comment
1/22/02 off 750,000 no medication
1/24/02 on start medication
1/30/02 on 1000
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In this example, the 1/24/02 entry has no RNA value, and is ignored (deleted). As a result, the ON
segment begins on 1/30/02 with a relatively low RNA value of 1000. For this example we would modify
the data by copying the previous OFF treatment value as follows:

date on/off RNA value comment
1/22/02 off 750,000 no medication
1/24/02 on 750,000 start medication
1/30/02 on 1000

We feel this is a more realistic guess of the OFF/ON cycle. We did this for patient segments where a
relatively recent OFF value was available, normally within one week of starting medications. If no recent
OFF value was available, we left the data as is.

With these data modifications, we obtain 78 snapshots of RNA data for patients starting and continuing
on treatment. The length of these segments vary from 13 days to 1421 days. The general ON profile starts
with high viral load, it rapidly decreases due to medication, and then typically stays small (i.e., censored
data).

To apply the POD method to the set of HIV ON snapshots, the snapshots should be defined on a similar
time interval, i.e.,� = [0, T ]. We start all snapshots at day zero, and then interpolate each snapshot onto
a common (merged) set of time points. The ON snapshots are of variable length, i.e.,Ui(t) is defined on
[0, Ti] and not on[0, T ], except forT = min{Ti} small. We deal with the variable data length in one of
two ways: we truncate a subset of patient data defined on[0, TON ] for a set of fixed length snapshots, or
we compute the ‘covariance’ matrixC�u with variable length time series. For the later,C�u is computed as

C�uki = 1

N

∫ Tki

0
Uk(s)Ui(s)ds, Tki = min(Tk, Ti) (4.6)

for Uk(t) andUi(t) defined on[0, Tk] and[0, Ti], respectively.
To apply the POD method to fixed length vectors, we extract a subset of segments with length greater

thanTON and then truncate. For example, ifTON =482 days, the subset includes 18 snapshots. A reduced
order basis may be used to approximate the subset of truncated ON snapshots. The full POD basis may
also be used to approximate the additional 60 ON segments, outside the subset of snapshots used to
generate the POD basis, using approximation (4.4) computed on[0, Ti] for Ti <TON. In general, the
relative error for the shorter snapshots is not great.

The POD method applied to the 78 variable length ON segments produces 78 POD basis elements
defined onTmax = maxTi . We can reconstruct all 78 ON segments using approximation (4.4) with
M = 18 POD basis elements to obtain a 5% average relative error. Nine snapshots have a relative error
greater than 10%, i.e., ER(UM

i )>0.1. In Fig. 5we compare the relative errors of the fixed length POD
approximations to the variable length POD approximations. In either case, the approximation is computed
withM=18 basis elements. The POD method based on the variable length snapshots obtains better overall
approximations. The ability to successfully approximate most ON segments is likely due to the apparently
homogeneous nature of patient profiles while on treatment.With good adherence to drugs, the RNA profile
of most patients on treatment is relatively flat, i.e., the RNA values are(<)50 or(<)400, depending on
the assay.

Given the variability of the data and the sometimes incomplete data records, we relax the notion of
approximating all ON snapshots well. If we delete the nine snapshots with the worst POD approxi-
mation relative error from the ON treatment ensemble, 69 ON snapshots remain. Applying the POD
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method to these remaining variable length ON segments, we again useM = 18 basis elements to re-
construct the snapshots. All remaining snapshots have a less than 10% approximation relative error,
with max(ER(UM

i )) = 0.06 and mean(ER(UM
i )) = 0.02 (seeFig. 6). Fewer basis vectors may be

used, but the relative error increases rapidly for one segment in particular. See alsoFigs. 7and8 for
the POD approximation of the 3 ON segments with the best and worst approximation relative error,
respectively.

Next we turn to the original ensemble including all 102 patients, patients with treatment interruptions
and with no treatment interruptions. We repeat the same process: manipulating the data to more accurately
represent the ON/OFF treatment cycle using a slightly more rigorous protocol, and then extracting the
ON segments. We obtain 138 ON segments with lengths varying from 4 days to 1833 days. We apply the
POD method to the variable length ON snapshots, useM = 33 POD basis elements to approximate the
snapshots, and identify and remove the 9 snapshots with more than 10% approximation relative error. If
we rerun the POD method, again usingM = 33 POD basis elements for approximation, we obtain good
overall relative error (i.e., max(ER(UM

i )) = 0.084 and mean(ER(UM
i )) = 0.014) (seeFig. 9).

Similarly, we have attempted to approximate the OFF treatment snapshots from patients with treat-
ment interruptions. To date, the results are not as promising; the OFF segments achieve a 20% average
approximation error. This is most likely due to the inhomogeneity of the OFF snapshots. Some patients
maintain a low viral load after discontinuing treatment, some experience viral rebound and decline during
treatment interruptions, while others exhibit a slow, steady increase in viral load. All of these scenarios
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are included in the OFF treatment ensemble. Future effort will include the application of the POD method
to subgroups within the OFF treatment ensemble.

Procedures such as those described here should prove quite useful in selecting subsets of clinical data
for use with the model fitting and validation methods presented in Section 3.

5. An optimal control problem

In this section, we consider optimal control methods to derive optimal drug treatments as functions of
time. We attempt to control HIV populations in finite time intervals using a control function�(t) which
represents the drug efficacy satisfying 0�a��(t)�b<1. Here�(t) = b represents maximal efficacy,
where we tacitly assume that we control efficacy by simply controlling the dose level.

Together with the model described by Eq. (2.1) for HIV infection we consider a cost functional
given by

J (�) =
∫ t1

t0

[QV (t) + R�2(t)] dt , (5.1)

whereQandRare weight constants of virus and control, respectively. The second term represents systemic
costs of the drug treatment. Our goal is to minimize both the HIV virus population and the systemic cost



B.M. Adams et al. / Journal of Computational and Applied Mathematics 184 (2005) 10–49 35

0 50 100 150 200 250 300 350 400 450 500 550
100

102

104

106

100

102

104

106

100

102

104

106

R
N

A
best ON snapshot approx (ti-worst, M=18)

patient 6, 1st ON segment

0 50 100 150 200 250 300 350 400 450 500 550

R
N

A

patient 45, 1st ON segment

0 50 100 150 200 250 300 350 400 450 500 550

days

R
N

A

patient 25, 2nd ON segment
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to body. We seek an optimal control�∗ such that

J (�∗) = min{J (�)|� ∈ U},

whereU = {�(t)| � is measurable,a���b, t ∈ [t0, t1]} is the control set. Given the criterion (5.1) and
the regularity of the system in our model equations (2.1), it is rather straightforward to establish existence
of optimal controls by relying on standard results in control theory (e.g., see[22]). We turn therefore to
methods for computation of optimal controls.

5.1. Optimality system

Since an optimal control exists for minimizing the cost functional (5.1) subject to (2.1), we present
necessary conditions for optimality (see, e.g.,[34,40]for details on these procedures). These can be used
to compute candidates for optimal controls (which may or may not be uniquely determined).
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Given an optimal control�∗ and solutions of the corresponding state system (2.1), we can define adjoint
variables	i , i = 1, . . . ,6, as follows:

	̇1 = −{	1(−d1 − (1 − �)k1V ) + 	3(1 − �)k1V − 	5(1 − �)�1k1V },
	̇2 = −{	2(−d2 − (1 − f �)k2V ) + 	4(1 − f �)k2V − 	5(1 − f �)�2k2V },
	̇3 = −

{
	3(−� − m1E) + 	5NT � + 	6

(
bEEKb

(T ∗
1 + T ∗

2 + Kb)
2 − dEEKd

(T ∗
1 + T ∗

2 + Kd)
2

)}
,

	̇4 = −
{

	4(−� − m2E) + 	5NT � + 	6

(
bEEKb

(T ∗
1 + T ∗

2 + Kb)
2 − dEEKd

(T ∗
1 + T ∗

2 + Kd)
2

)}
,

	̇5 = −{Q − 	1(1 − �)k1T1 − 	2(1 − f �)k2T2 + 	3(1 − �)k1T1 + 	4(1 − f �)k2T2,
+ 	5(−c − (1 − �)�1k1T1 − (1 − f �)�2k2T2)},

	̇6 = −
{
−	3m1T

∗
1 − 	4m2T

∗
2 + 	6

(
bE(T

∗
1 + T ∗

2 )

T ∗
1 + T ∗

2 + Kb

− dE(T
∗
1 + T ∗

2 )

T ∗
1 + T ∗

2 + Kd

− �E

)}
,

	i(t1) = 0 for i = 1, . . . ,6. (5.2)
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Using these we find that an optimal control�∗ is given by

�∗ = max

(
a,min

(
b,

−(	1 − 	3 + �1	5)k1V T 1 − (	2 − 	4 + �2	5)f k2V T 2

2R

))
. (5.3)

To see this, define the Lagrangian (which is the Hamiltonian augmented with penalty terms for the
constraints) to be

L(T1, T2, T
∗
1 , T

∗
2 , V ,E, �, 	1, 	2, 	3, 	4, 	5, 	6)

= QV (t) + R�2 + 	1(�1 − d1T1 − (1 − �(t))k1V T 1)

+ 	2(�2 − d2T2 − (1 − f �(t))k2V T 2) + 	3((1 − �(t))k1V T 1 − �T ∗
1 − m1ET ∗

1)

+ 	4((1 − f �(t))k2V T 2 − �T ∗
2 − m2ET ∗

2)

+ 	5(NT �(T ∗
1 + T ∗

2 ) − cV − [(1 − �(t))�1k1T1 + (1 − f �(t))�2k2T2]V )

+ 	6

(
�E + bE(T

∗
1 + T ∗

2 )

(T ∗
1 + T ∗

2 ) + Kb

E − dE(T
∗
1 + T ∗

2 )

(T ∗
1 + T ∗

2 ) + Kd

E − �EE

)
− w1(t)(�(t) − a) − w2(t)(b − �(t)), (5.4)

wherew1(t)�0, w2(t)�0 are the penalty multipliers satisfying

w1(t)(�(t) − a) = 0 and w2(t)(b − �(t)) = 0 at optimal controls�∗.
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We differentiate the Lagrangian with respect to states,T1, T2, T
∗
1 , T

∗
2 , V , andE, respectively, to obtain

the following equations for the adjoint variables

	̇1 = − �L

�T1
, 	̇2 = − �L

�T2
, 	̇3 = − �L

�T ∗
1
, 	̇4 = − �L

�T ∗
2

,

	̇5 = − �L

�V
and 	̇6 = − �L

�E
.

By differentiating the LagrangianL with respect to�, we also have

�L

��
= 2R� + (	1 − 	3 + �1	5)k1V T 1 + (	2 − 	4 + �2	5)f k2V T 2 − w1(t) + w2(t) = 0.

Solving for the optimal control we find

�∗ = −(	1 − 	3 + �1	5)k1V T 1 − (	2 − 	4 + �2	5)f k2V T 2 + w1(t) − w2(t)

2R
.

To determine an explicit expression for an optimal control withoutw1 andw2, we consider the following
three cases:

(i) On the set{t |a < �∗(t)< b}, we havew1(t) = w2(t) = 0. Hence the optimal control is

�∗ = −(	1 − 	3 + �1	5)k1V T 1 − (	2 − 	4 + �2	5)f k2V T 2

2R
.

(ii) On the set{t | �∗(t) = b}, we havew1(t) = 0. Hence

b = �∗ = −(	1 − 	3 + �1	5)k1V T 1 − (	2 − 	4 + �2	5)f k2V T 2 − w2(t)

2R
,

which implies that

−(	1 − 	3 + �1	5)k1V T 1 − (	2 − 	4 + �2	5)f k2V T 2

2R
�b sincew2(t)�0.

(iii) On the set{t | �∗(t) = a}, we havew2(t) = 0. Hence

a = �∗ = −(	1 − 	3 + �1	5)k1V T 1 − (	2 − 	4 + �2	5)f k2V T 2 + w1(t)

2R
.

Sincew1(t)�0, it follows that

−(	1 − 	3 + �1	5)k1V T 1 − (	2 − 	4 + �2	5)f k2V T 2

2R
�a.

Combining these three cases, we obtain the optimal control given by (5.3).
The optimality system thus consists of the state system (2.1) coupled with the adjoint system (5.2) with

the initial conditions and terminal conditions together with relationship (5.3). Any optimal controls must
satisfy this system.
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Fig. 10. Optimal controls with different weightsRon control cost:Q = 0.1. −−: R = 5000−: R = 10000−·: R = 15000.

5.2. Continuous optimal treatment

The optimality system is a two-point boundary value problem since it includes initial conditions spec-
ified for the state equations and terminal conditions specified for the adjoint or costate system. We use a
gradient methodfor solving the optimality system. The state system (2.1) with initial conditions is solved
(once again we use standard Matlab routines) forward in time using an initial guess for the control and then
the adjoint system (5.2) with terminal conditions is solved backward in time. The controls are updated
in each iteration using the formula (5.3) for optimal controls. The iterations continue until convergence
is achieved. For further discussion of this iterative method we refer the interested reader to[27]. The
parameters used in solving the optimality system are summarized in Table 2.1. Treatment was simulated
for 100 days.

We simulate early infection by introducing one virus particle per ml of blood plasma, i.e.,T1(0)=106,
T2(0) = 3198,T ∗

1 (0) = 10−4, T ∗
2 (0) = 10−4, V (0) = 1 andE(0) = 10. In addition, we usea = 0 and

b = 0.8. We ran simulations with three different values of weight factorR. The corresponding optimal
control functions are presented inFig. 10. As we increaseR, thereby increasing the cost of therapy, the
optimal control function is decreasing. In the other figures presented in this section, we present only the
caseQ= 0.1 andR = 10000 for brevity. Since the magnitude of virus population is much larger than the
magnitude of the cost of the drug treatment in the objective function (5.1), this difference in magnitude
is balanced by this choice ofQ andR.
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Fig. 11. Optimal solutions(−); solutions(−·) with full treatment (i.e.,� = 0.8); and solutions(−−) with no treatment (i.e.,
� = 0) of early infection:Q = 0.1 andR = 10000.

Table 6
The values of objective functional

Optimal control �(t) = 0 �(t) = 0.8 STI control

J 9.4438e+05 1.2488e+06 9.6007e+05 1.1495e+06

We solve the HIV model (2.1) with no treatment (� ≡ 0) and with fully efficacious treatment (� ≡
0.8). The numerical results for these two cases as well as the optimal case are presented inFig. 11for
comparison. The corresponding values of the objective functional for all cases are given inTable 6.
As depicted inFig. 11 the optimal solutions are very close to the solutions corresponding to the fully
efficacious treatment. However, the optimal cost is smaller than the cost functional corresponding to the
fully efficacious treatment case.
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6. An optimal STI control problem

In Section 5 we formulated and synthesized continuous optimal control solutions for a model-based
infection treatment. However, this type of (continuous) treatment, especially, for long periods is difficult
to maintain due to possible long-term toxicity of the drugs as well as possible development of resistance
to medications. In this section we consider the optimal control of viremia through a number of drug
structured treatment interruptions (STI).

To this end, we assume our control� is a 1× 100 vector which consists of only 0 orb in each vector
element. If an element of a control vector is 0, it signifies drug treatment being off on that day and if
an element of a control vector isb, it represents full drug treatment being on. Since we consider a drug
treatment strategy over 100 days, the size of� is 1× 100. The set of all such control vectors is denoted
by 
. The goal is to seek the optimal control vector�∗ satisfying

J (�∗) = min
�∈


J (�),

subject to the state system (2.1) and whereJ (�) is defined by (5.1).
Since the number of elements of the set
 is finite, existence of an optimal control solution is guaranteed.

To find the discrete STI optimal solution, we could use a direct search approach and begin by selecting
any element in the set
 and then solving the state system using this element as a control. We next would
select another element in the set
 and solve again the state system using the element as a control. Then
we compare the values of the objective functional,J, and select the element corresponding to the smaller
cost functional value. If we iterate this strategy over all elements in the set
, we obtain the optimal control
solution�∗. However, this strategy to obtain the discrete optimal solution can lead to a large number of
cost functional evaluations (and hence a large number of solutions to Eq. (2.1)). In our case, where the
control vector� is a 1× 100 vector, the number of cost functional evaluations would be 2100, rendering
this approach computationally impractical.

There are several ideas that we considered to reduce the number of iterations. The simplest approach is
to consider, for illustration, a 5 day segment (instead of a one day segment as above). This is reasonable
from a practical point of view because it is not reasonable to have drug on one day and off the next day.
For a 5 day segment, the size of the control vector is reduced to 1× 20 from 1× 100. Hence, the number
of iterations to find the discrete optimal STI solution is now 220 instead of 2100.

Using the above iterative reduction technique, we obtained the optimal 5 day segment STI control
vector

�∗ = (0 0 0 0 0b 0 0b 0b b b 0b b b b b 0),

which is depicted inFig. 12. The associated optimal state solutions are shown inFig. 13.
As depicted inFig. 12, the optimal 5 day segment STI strategy is that drug is off for the first 25 days,

drug is on for the next 5 days, drug is off for the next 10 days, and so on. In addition,Fig. 13reveals that
solutions of the state system with the optimal STI control are similar to solutions with no treatment up
to the 25th day. After that, the population of uninfectedT1 cells with STI approaches the population of
uninfectedT1 cells with full treatment and the virus population is also maintained at a low level. Moreover,
the immune effectors (E) with STI have larger values than in the other cases. That is, this optimal STI
control boosts the immune effectors (E) while reducing virus load and increasing uninfectedT1 andT2
cells over the treatment period.



42 B.M. Adams et al. / Journal of Computational and Applied Mathematics 184 (2005) 10–49

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 12. Optimal STI control withQ = 0.1 andR = 10000 (5 day segments).

6.1. STI control problem with long time horizon

The above reduced iterative approach is still not computationally efficient for long time treatment
regimens. For example, if one considers a treatment interruption strategy over 400 days duration of
therapy, the resulting required number of cost functional evaluations is 280 for a 5 day segment, which
is still considerably large. One approach to mitigate this shortcoming is to consider subperiods of the
given period such as[0,50], [0,100], [0,150], . . . , [0,400]. We then find an optimal STI control vector,
�∗1 over the first subperiod,[0,50], using the reduced iteration technique as above. Since the size of�∗1 is
1 × 10 (for a 5 day segment), its optimal solution can be obtained very quickly (with only 210 = 1024
iterations). In the second step, we consider our control vectors over the period[0,100] as follows:

�2 = (�∗1, /, /, /, /, /, /, /, /, /, /) where / is 0 or b.

That is, we fix the optimal STI�∗1 as the first 10 elements of the control, and iterate�2 to find the last
10 elements of�2. In this case, the number of iterations is again just 210. We repeat this process to find
an optimal STI control,�∗3 over [0,150] , �∗4 over [0,200], etc. The STI control obtained over the entire
treatment period[0,400] is �∗=�∗8. It should be emphasized that�∗ is only suboptimal. However, our initial
efforts suggest that it is a good approximation to the optimal STI control. In particular, the suboptimal
STI control over[0,100] that is obtained using the above subperiod method is almost identical (visually)
to the optimal control using the reduced iterative method from above.
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Fig. 13. Optimal 5 day segment STI solutions(−); solutions(−·) with full treatment (i.e.,� = 0.8); and solutions(−−) with no
treatment (i.e.,� = 0) of early infection:Q = 0.1 andR = 10000.

Using the subperiod method (which might be viewed as a type of dynamic programming idea), the sub-
optimal STI control and its associated suboptimal solutions are depicted inFigs. 14and15, respectively.
It is noted that the dynamics of uninfectedT1 cells with suboptimal STI control and full treatment are very
close and the virus is also maintained at a low level. Moreover, the immune effectors with suboptimal
STI control are maintained at a high level while the immune effectors with full treatment are at a lower
level.

Finally, we consider a treatment interruption protocol where we apply suboptimal STI for the first
treatment period[0,300] then follow with full treatment over the final period[300,400]. As depicted in
Fig. 16we see a substantial increase in the population of uninfectedT2 cells with suboptimal STI control
followed by full treatment over[300,400]. In addition, the immune effectors with the suboptimal STI
and full treatment are also much higher on the 400th day. This increase in immune effectors allows the
virus to maintain a small population. However, if we have full treatment for too long, (for example, if
we consider a suboptimal STI over[0,200] and follow with full treatment over[200,400]), the immune
effectors are increasing until around the 300th day and are decreasing after the 300th day.
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Fig. 14. Suboptimal STI control withQ = 0.1 andR = 10000 over [0, 400].

7. Concluding remarks

In this paper we have discussed a number of important issues relative to the investigation of HIV
infection and treatment. The mathematical and statistical ideas we include are not meant to be exhaustive;
rather they reflect some of those that our own experiences suggest are relevant in the investigation of models
for the progression of diseases and possible therapeutic protocols. In particular, ideas and techniques in
the important areas of model comparison and validation are not addressed here. While these are topics that
need much attention, there are a few statistically-based model comparison methods currently available
for use. These include the Akaike Information and related criteria (see[13] for extensive discussions and
examples) as well as ANOVA type asymptotic statistical inverse problem methodology discussed in an
HIV cellular level modeling context in[5].

The model we employed to illustrate the selected tools and techniques is not proposed as a penultimate
model; it is simply one that we feel possesses features that we and other investigators believe are relevant in
trying to understand certain quantitative and qualitative aspects of a very complex immunological process.
Indeed, the immune response component of our model is naive in a number of ways. For example, it is so
simple as to preclude investigations on a number of important immune response questions such as how
early treatment during acute infection may affect and preserve certain aspects of the long term immune
response in disease progression (e.g., the preservation of a memory cell based response).

In this regard we offer some philosophical thoughts about models and modeling in general. The very
nature of modeling is that it is (or should be) an iterative process conductively (both collectively as a
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Fig. 15. Suboptimal STI solutions(−); solutions(−·) with full treatment (i.e.,� = 0.8); and solutions(−−) with no treatment
(i.e., � = 0) of early infection:Q = 0.1 andR = 10000.

community of HIV modelers and individually as an member of a focused team). Therefore it should be
neither surprising nor bewildering to find (as discussed in Section 1.1) a substantial number of different
types and levels of models for HIV progression. The “biologically correct” or “best” model (linear or
nonlinear as may be required) is not the goal. Rather one models to gain insight and understanding into a
biological or physical process (in our case, disease progression in the presence of therapy). This can result
in a number of useful outcomes: the suggestion of new experiments (in vitro and/or in vivo) and clinical
trials with new therapy regimes; the discovery of heretofore unelaborated mechanisms and/or pathways,
etc. Model building and evaluation are challenging tasks and it is certainly true that one frequently faces
difficult choices when deciding on which states (compartments) to include and which to omit. There are
no clear, easy guidelines and procedures to follow other than some common sense points. For example,
one cannot hope to ask and resolve questions about the possibility of immune system control of a disease
unless some state(s) representing immune response levels are included. Moreover, the complex interplay
between multiscale phenomena (e.g., cellular to system) always presents difficult modeling challenges;
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Fig. 16. STI solution(−) on [0, 300], coupled with full treatment over [300, 400]; solutions(−·) with full treatment (i.e.,�=0.8)
over [0, 400]; and solutions(−−) with no treatment (i.e.,� = 0) for early infection scenario:Q = 0.1 andR = 10000.

these challenges continue to grow as our knowledge of diseases at the genomic and cellular level becomes
more extensive.

In spite of (or perhaps because of) these challenges, development of mathematical and statistical tools
and our knowledge on how to use these in modeling efforts also continue to advance. While the human
immune system and its related diseases are so complex as to often be perceived as overwhelming, it is
precisely in such an environment that sophisticated quantitative modeling efforts should be pursued. The
development of advanced mathematical, statistical and computational ideas for this endeavor offers fertile
albeit challenging areas of scientific investigation for the foreseeable future and should be viewed as a
source of great intellectual opportunity. We hope that this paper will help stimulate and promote such
development with enthusiasm.
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