Techniques to Propagate Uncertainties

Goal: Consider the nonlinearly parameterized model

y=1q), g=1qg1, ..., qp]
with a specified distribution for g. What are appropriate techniques to
determine a distribution or prediction interval for Y?

Techniques for Uncertainty Propagation:
- Monte Carlo sampling: General but slow convergence
 Analytic techniques for linearly parameterized models
* Perturbation techniques for nonlinear models
 Techniques utilizing surrogate models
o General polynomial models (Chapter 16)
o Stochastic spectral methods (Chapters 16 and 17)

o Gaussian process or Kriging representations (Chapter 18)



Surrogate and Reduced-Order Models

Problem: Difficult to obtain sufficient number of realizations of discretized PDE
models for Bayesian model calibration, design and control.
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Solution: Construct surrogate models
- Also termed data-fit models, response surface models, emulators, meta-models

* Projection-based models often called reduced-order models (Chapter 19)



Surrogate Models: Motivation
Example: Consider the heat equation

au_62u+62u+62u+f() t
ot ox2 oy2 "oz ' \d

Boundary Conditions

Initial Conditions

with the response 1 X,Y,2

y(q) = J; f f J1 u(t, x, y, z)dxdydzdt

0JO JO

Notes:
* Requires approximation of PDE in 3-D

- What would be a simple surrogate?
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Surrogate Models: Motivation
Example: Consider the heat equation t

ou 62u+62u+62u+f( )
ot ox2 oy2 "oz ' \d

Boundary Conditions

Initial Conditions

with the response 1 X,),z
G o Surrogate: Quadratic
y(q) :J J J J u(t, x, y, z)dxdydzat ys(g) = (g—0.25)* + 0.5
0 Jo Jo Jo
1.1 ‘
— Response
11 © Evaluation Pts
Question: How do you construct a - - - Surrogate

polynomial surrogate?
Regression

Interpolation
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Surrogate Models

Recall: Consider the model

ou 62u+62u+62u+f( )
ot ox2 oy2 "oz ' \d

Boundary Conditions

Initial Conditions
with the response

1 p1 p1 1
y(q) :J J J J u(t, x, y, z)dxdydzdt
0 Jo Jo Jo

Question: How do you construct a
polynomial surrogate?

Interpolation

Regression

1 X,¥,Z
Surrogate: Quadratic
¥s(q) = (g — 0.25)° + 0.5

1.1

— Response
11| @ Evaluation Pts
- == Surrogate
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Surrogate Models

Question: How do we keep from fitting noise? 1.1

— Response

Akaike Information Criterion (AIC) 1 © Evaluation Pts
- -- Surrogate

AIC = 2k — 2log[m(ylq) >l
0.8/
Bayesian Information Criterion (BIC) 0.71

BIC = klog(M) — 2logln(y|q)] 0.6/
Likelihood: 0.5
1 , 0.4 * l l 1
ni(ylq) = (2702 M/ e~ 55/29"  Maximize o2 o4 q 00 o 1
M
SS; =) lym—ys(@™P Minimize

m=1



Data-Fit Models

Notes:

High-Fidelity Simulations
or Measurements

» Often termed response surface models,
surrogates, emulators, meta-models.

Response

* Rely on interpolation or regression.

» Data can consist of high-fidelity simulations
or experiments.

« Common techniques: polynomial models, Parameters q
kriging (Gaussian process regression),
orthogonal polynomials. Surrogate:
K

Strategy: Consider high fidelity model K

W ° g (g, u) =) wVx(q)+ Pq)

y =1(q) k=0

with M model evaluations Options:
y"=fg"), m=1,...,M « Numerical: Often based on
smoothness

Statistical Model: f;(q): Surrogate for f(g) * Statistical: Determined by
covariance structure

y"=1fQq@") +", m=1,....M



Surrogate Models — Grid Choice
Example: Consider the Runge function f(q) = 1+;—5q2 with points
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Sparse Grid Techniques

Tensored Grids: Exponential growth as Sparse Grids: Same accuracy with
a function of dimension significantly reduce number of points
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Motivation: Do not need full set of points to achieve same degree of accuracy
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Sparse Grid Techniques

Tensored Grids: Exponential growth Sparse Grids: Same accuracy
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Numerical Surrogate Models
Polynomial Surrogates:
K
() =) uWVk(q),
k=0

Notes:

e W, (qg) are univariate or multivariate polynomials

e Use interpolation or regression to determine weights u = [uy, ...

Univariate Interpolation: Consider
K
(q) =) uk (q)
k=0

Vandemonde System: y = Xu where

X=1": 5 Y=

Warning: Typically ill-conditions so best avoided!

, Uk]



Polynomial Interpolation

Lagrange representation: Take

3 High—Fidelity Simulations
M §_ or Measurements
(@) =) y"Lm(q) &
m=0
where
 q—¢
j=0
j#m Parameters q
(g—q°% - (g—qg™ )g—qg™")---(g—qM)
(@qm—q%)---(gm—qgm™ 1) (gm—qm™t).-- (g™ —qgM)
Note: Because Example: f(q) = (6 — 2)% sin(12q — 4)
p 30 ; ‘ ‘ ;
Lm(qj) — 6I'T7j ’ O < mﬂj < M 25 :Eggfatlir?gef(lgc))lynomial
20 f| o Training Samples
it follows that 3 151
S 10
M &
fS (qm) — ym &) 5L
0Ok
Warning: Be careful of extrapolation! 5!
Multivariate: Tensor of 1-D relations % 02 04 o6 08 1

Parameter q



Stochastic Collocation

MATLAB Code: lagrangepoly.m

X=[12345678];
Y=[01010101];
[P,R,S] = lagrangepoly(X,Y);

xx=0.5:0.01:8.5;
plot(xx,polyval(P,xx),X,Y,'or',R,S,'+b',xx,spline(X,Y,xx),'--g",'linewidth’,3)
grid

5

axis([0.5 8.5 -5 5])

41

3L

Note: Recall use of
unequally spaced points.




Polynomial Interpolation

Response Mean and Variance: Note that

EIf¥(q) :Lfﬁ”(q)p(q)dq

M
> fla™ | Lo(@pla)dq
m=0 r

R

M
~ Y (@M ) La(q)elg )W,

m=0 r=0

Strategy: Quadrature with ¢ = q" and R = M

Mean: Monte Carlo:
M ’ M
M ~ M _ ]’ m
Elf'(q)] =~ 1§ = Eof(q’”)p(qm)wm = Zof(q )
m= m=

Note: Same computational complexity but Newton-Cotes, Clenshaw-Curtis or
Gaussian quadrature are MUCH more accurate than Monte Carlo!!



Polynomial Interpolation

Response Variance:

var[f?(q)] = J
i

Sample Variance:

varlf(q)] = 7. 3 [f(q™) — T

Note:

Same computational complexity but Newton-Cotes, Clenshaw-Curtis or
Gaussian quadrature are MUCH more accurate than Monte Carlo!!

Often cannot use Monte Carlo for PDE examples.



Polynomial Regression

Strategy: Take M+1 > K+1 training points and minimize

M K 2
Ju) =) |y"- uk~(q’")"]
m=0 k=0
= (y — Xu)" (y — Xu)
for - 1 12 1K T -0
1 q" (9" (") y
X — ’ y —
1 Y (gY)? (g")< M
1 ‘ -
Least Squares Solution: PDE Example: |- Fesooree
- - - Surrogate

u=(X"X)"" X"y =Xy

MATLAB: u = X\y

04




Motivation for Orthogonal Polynomial Methods

Heat Equation: 4
ou (xa2u Not o
— =X ote: g =
or " ox 7

u(t,0) =u(t,L) =0

u(0, x) = up(x)

Separation of Variables: Take
u(t, x) = T(H)X(x)

General Solution: Surrogate — truncate to upper limit of N

nrt

u(t,x) =) Boe " Misin(Ax)  Ap=
n=1

Coefficients: _ _
Recall: Trig functions orthogonal

2 L
Bn= —J Up(Xx) sin(Apx)dx L
L Jo J sin (@) sin (@) dx = 6,1
L

L L
Response: y(t, x) _—J u(t,x,q)p(q)dq
r



Spectral Representation of Random Processes

Strategy: Consider high fidelity model
y =1(q)
with M model evaluations

ym"=1£fq"), m=1,...M

Statistical Model: 7;(q): Surrogate for f(q)

Surrogate:

(g, u) = Z uVk(q) + P(q)

Note: W, (q) orthogonal with respect to
iInner product associated with pdf

e.g., g ~ N(0, 1): Hermite polynomials
g~ U(—1,1): Legendre polynomials

Response

High-Fidelity Simulations
or Measurements

Parameters q

Case 1: Single random variable



Spectral Representation of Random Processes

Hermite Polynomials: ¢ ~ N(0, 1)

Ho(@) =1 , Hi(@)=q , H(q) =qg°—1,
Hs(q) =q®—3q , Hi(q)=qg*—69%+3
with the weight

1 2
— —e_q /2,
Pla) = o

Normalization factor: Yk = JR Vi(q)p(q)dg = k!

Legendre Polynomials: g ~ U(—1,1)

Po(@) =1 , Pig)=gq , Palq)=—-

2
— —(3g%—1

1 1
P3(q) = 5(5673 —3q) , Puq) = 5(35674 —309° +3),

with the weight 1
1 Normalization factor: Yk = Sk + 1




Orthogonal Polynomial Representations

Representation: Properties:
K
1(q) =) ubk(q) (i) Eff(q)] = u
k=0

K
[ ] K L 2
Note: Vo(q) = 1 implies that (i) varlfs ()] = /;1 UrYk

Elpo(q)] =1 Note: Can be used for:
Elpj(ghbk(q)] = Jr bilg)bk(q)plg)dq « Uncertainty propagation
= SiYk » Sobol-based global sensitivity
analysis

where v, = E[Z(q)]

Issue: How does one compute ux , k=0, ... K?

» Stochastic Galerkin techniques (Polynomial Chaos Expansion — PCE)

—

« Nonintrusive PCE (Discrete projection) Note: Methods
__ nonintrusive and

treat code as
- Regression-based methods with sparsity control (Lasso) —  blackbox.

» Stochastic collocation




Orthogonal Polynomial Representations

Properties: .
E[f(q)] = E|) uWVlq)
- K
= wEW(q)] + ) uEVk(q)]
= U =
and




Orthogonal Polynomial Representations

Multiple Random Variables:
Definition: (p-Dimensional Multi-Index): a p-tuple
k' = (ky, - ,k,) € N

of non-negative integers is termed a p-dimensional multi-index with magnitude
k'| = ki + ko + --- + k, and satisfying the ordering j’ < k' & j; < k; for
i=1,-,p.

Consider the p-variate basis functions

Vi (@) = P, (1), -, Wk, (o)

which satisfy

E[W; (q)Wi (g)] = Jr W (9) Vi (9)p(q)dg

o <\|fj/, wk/>p

= Oj'k’ Yk’



Orthogonal Polynomial Representations

Polynomial
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Orthogonal Polynomial Representations

Discrete Projection: Take weighted inner product of f(q) = >, uxkV«(q)
to obtain

1 Note:
Uk = Y— J f(@)Vk(q)p(g)dq (i) Low-dimensional: Tensored 1-D
K JT quadrature rules — e.g., Gaussian
Quadrature: (i) Moderate-dimensional: Sparse grid
1 A (Smolyak) techniques
U, ~ — Z f(g V(g )w (iii) High-dimensional: Monte Carlo or
Yk 1 quasi-Monte Carlo (QMC) techniques

Regression-Based Methods with Sparsity Control (Lasso): Solve

K
min || Xu — y||* subject to Z luk| <,

UERK+T —
Note: Sample points {™}m_q e.g., SPGL1
(X1 = V;(q") « MATLAB Solver for large-scale

sparse reconstruction
y = f(¢%), ..., f(g")]"



Orthogonal Polynomial Representations

Galerkin: Seek solutions X (q) that satisfy

(f(q) —f(q), W), =0

P
which yields
K
> UKJ Vi(q)Vil(q)p(q)dg = J f(q)Vi(g)p(q)dq
k=0 r r

Equivalent Formulation:
E [ (q)Wi(q)] = E[f(q)Vi(q)]

Result:

1

w:—jﬂmwmmmm
Yk Jr

Note: This technique is often invasive in the sense that it requires the modification
of existing codes.



General Uniform Distributions

Note: Consider g ~ U(a, b) with mean and variance

~_a+b 62_(b—a)2
=" > RE
Then
at+b b—a
CI:Q(E)ZLHL\@G&: 5 + 5 3

where & ~ U(—1,1).

Random Vector:
qg=9(&) = [w +V301&1,..., Up + V30pE,)

Spectral Surrogate:

K
fi(q) = f9(8) = > ueWk(E)
k=0



General Uniform Distributions

Spectral Surrogate:
K
f(q) = f(g(8) = ) ueWk(&)
k=0

Discrete Projection:

1

" :%L f(g(£)) Wk (£)p(£)dE

’ R
~— Y HGEN)WK(ENW
Yk ; “

Galerkin:
K

ukjr wk(a)w,-(a)p(a)dazj F(g(E))Wi(E)p(E)dE , i = 0,1, ..., K

k=0 r



General Uniform Distributions

Example: Consider

0.8
floeq, 1) :J lot1 P? + otq1 P*dP = ¢ioty + Caotq1,
0

08

5
where ¢; = 28 and ¢, and g = [oq, &q1]

Approach: Take oq ~ U(aq, b1) and x41 ~ U(ao, bo) SO

_ _ a +b by — a
o = &1 + V301§ . &y = ——, 3oy = 12 :

_ _ a +b b, — a
a1 = &1 +V3011&2 , &y = 22 2, V3oyy = 22 =

where &, & ~ U(—1,1) and p(&1) = p(&2) = 3

Response:

flg) = f(g(&)) = ¢ (561 + \@(7151) + & (5611 + \601152)




General Uniform Distributions

Response:

—
2
I
=
=
-
I

Ci (561 + \60151) + C (5611 + \F3011£2>
Surrogate:
K
f(q) = £(9(8)) = ) ukWi(&),
k=0
where W, (&) are tensored Legendre polynomials on I' = [—1, 1]?

Galerkin: From
Jr[fé‘ (&) — fE)1Wi(E)p(E)dE = O

it follows that

K

>

k=0 r

V(E)V(E)p(E)dE = ¢ Jr(é“ VB0 £ )W (E)p(£)dE

+c Jr(&ﬂ +V3011&2) V(&) p(E)dE



General Uniform Distributions
Note:
> uc| wi(ewiElp(e)de —or | (5 -+ VBorEi(E)p(E)de

K
k=0

Lo erm V3041 £2) W (£)p(£)dE

For i = 0,1 and 2, the Legendre basis functions and weights are

Wo(&) =Wo(&1)ho(E2) = Uo = Ci&1 + Cot

V(&) =v1(E1)Wo(&2) = uy = ¢1V/30;
V(&) =Uo(&1)Pi(&2) = W= Co\/ 3011
Surrogate:

fsf((Q) = fsf((g(ﬁ)) = (184 + Co&11) + €1V301&1 + V3

Moments: _ .
Note: Employ physical parameters
E[fK(CI)] = C1Xq + CoXq1 in the model and transformed
° parameters in weak formulation

var[fX(q)] = 3c%0% + 3¢50, and computation of weights.



Discrete Projection Example

Spring Model: See perturbation notes Parameters:
d2z dz mNU(m—Gm,m+Gm)
m—— + ¢—- + kz = fy cos(wrt) i )
ot dt c~U(¢c— og, C+ 0¢)
az _ _
z(0) =2z , 5(0)221 k~U(k — ok, k+ ok)
Response:
1
zZ(wr,q) =

Representation:

K (wr, q) = i (wr, g(E) = Y ue(we)Wk(E)



Discrete Projection Example

Discrete Projection:

e wr) = lj (g(we, £))Wk(£)p(E)dE

Yk Jr
1 J Vi (E)p(&)dE
VeIt Ttk + VBoxEa) — (M+ VBomEr)w2]® + (& + VBoeks)2w
R R Rs v, (ENw'
> 5 S k(& )w

=1 p=1r3= \/[(l_( +V30kEL) — (M+ V/BopE] )w%}z + (€ + V30:E2)2w?

. Monte Carlo: With M = 1e+5
Surrogate: Mean and variance

M
EI (wr, q)] = to(wp) (wr) = 13 flwr, "),

. 1/2
varlf(wr, q)] Zuk wr)y oK lwr) = | 7= 3 [flwr,q) — (wr))’

Note: We plot the standard deviations



Discrete Projection Example

Result: Mean and standard deviation

2-5 T T T T 0-4 T T T T T
— Discrete Projection S " — Discrete Projection
— -Monte Carlo = 0.35+ — -Monte Carlo 1
20 3 03
S o
g 1.5+ g 0.25¢
& 2 o2
O —
g 1 ?0.15
o) (0]
T £ 0.1
| 3 0.05
o
0 0 — ‘ ‘ ‘ ‘
14 16 1.8 2 22 24 26
CL)F wF

Mean Standard Deviation



Example: Consider the heat equation
02u
022

ou  d4u

A "

with the response

o= ['[[ [ [|teny, oy

0

—
—

0%u

Surrogate Models

oy? +

0JO

+ f(q)

—

— High-Fidelity Response f(q)
-|= = Surrogate fSK

(@)

@ Training Data

o o
o O

Model Response
o o
(o)) ~

o
o

o
N

0.2

o

Note: Regression with sparsity control
u = [0.6406,0.2305,0.1289,0,0] "

0.4 0.6
Parameter q

0.8

1

t
1 X,),2

Surrogate: p

f(q) =) ubx(q)

k=0

Note

bo(q) =1

$1(q) =29 —1



Stochastic Galerkin Method

Properties:

 Accuracy is optimal in L2 sense.

* Projection method with associated error bounds.

 Disadvantages
= Method is intrusive and hence difficult to implement with legacy
codes or codes for which only executable is available.

= Method requires densities with associated orthogonal polynomials.
These can sometimes be constructed from empirical histograms.

= Method requires mutually independent parameters.
Note:

* Very commonly termed polynomial chaos expansion [Weiner, 1938].
However, no chaos in the present use.



Discrete Projection

Properties:

-Advantages

= Like collocation, the method is nonintrusive and hence can be
employed with post-processing to existing codes. The method is
often referred to as nonintrusive PCE.

» Projection method with associated error bounds.
= Algorithms available in Sandia Dakota package.

-Disadvantages

= Requires the construction of the joint density which often relies on
mutually independent parameters.



Neural Networks

Single Perceptron:

p
Z = h (Z VG + b2) — h(v]§)

j=1

Activation Functions:

h(v;g) = tanh(v;g)
2
h(v]g) = —1
Vi 9) 14 exp(—2v/] §)
Regression:
Ny

oy



