Techniques to Propagate Uncertainties

Goal: Consider the nonlinearly parameterized model

$$y = f(q), q = [q_1, ..., q_p]$$

with a specified distribution for q. What are appropriate techniques to determine a distribution or prediction interval for Y?

Techniques for Uncertainty Propagation:

- Monte Carlo sampling: General but slow convergence
- Analytic techniques for linearly parameterized models
- Perturbation techniques for nonlinear models
- Techniques utilizing surrogate models
 - General polynomial models (Chapter 16)
 - Stochastic spectral methods (Chapters 16 and 17)
 - Gaussian process or Kriging representations (Chapter 18)

Surrogate and Reduced-Order Models

Horizontal Grid (Latitude-Longitude)

leight or Pressure)

Physical Processes in a Model

Problem: Difficult to obtain sufficient number of realizations of discretized PDE models for Bayesian model calibration, design and control.

Mass
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$$
Momentum
$$\frac{\partial v}{\partial t} = -v \cdot \nabla v - \frac{1}{\rho} \nabla \rho - g \hat{k} - 2\Omega \times v$$
Energy
$$\rho c_V \frac{\partial T}{\partial t} + \rho \nabla \cdot v = -\nabla \cdot F + \nabla \cdot (k \nabla T) + \rho \dot{q}(T, \rho, \rho)$$

$$\rho = \rho R T$$
Water
$$\frac{\partial m_j}{\partial t} = -v \cdot \nabla m_j + S_{m_j}(T, m_j, \chi_j, \rho) , j = 1, 2, 3,$$

$$\frac{\partial \chi_j}{\partial t} = -v \cdot \nabla \chi_j + S_{\chi_j}(T, \chi_j, \rho) , j = 1, \cdots, J,$$
Phy

- Also termed data-fit models, response surface models, emulators, meta-models
- Projection-based models often called reduced-order models (Chapter 19)

Surrogate Models: Motivation

Example: Consider the heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + f(q)$$

Boundary Conditions

Initial Conditions

with the response

$$y(q) = \int_0^1 \int_0^1 \int_0^1 \int_0^1 u(t, x, y, z) dx dy dz dt$$

Notes:

- Requires approximation of PDE in 3-D
- What would be a simple surrogate?

Surrogate Models: Motivation

Example: Consider the heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + f(q)$$

Boundary Conditions
Initial Conditions

with the response

$$y(q) = \int_0^1 \int_0^1 \int_0^1 \int_0^1 u(t, x, y, z) dx dy dz dt$$

Question: How do you construct a polynomial surrogate?

- Regression
- Interpolation

Surrogate: Quadratic

$$y_s(q) = (q - 0.25)^2 + 0.5$$

Surrogate Models

Recall: Consider the model

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + f(q)$$

Boundary Conditions
Initial Conditions

with the response

$$y(q) = \int_0^1 \int_0^1 \int_0^1 \int_0^1 u(t, x, y, z) dx dy dz dt$$

Question: How do you construct a polynomial surrogate?

- Interpolation
- Regression

Surrogate: Quadratic

$$y_s(q) = (q - 0.25)^2 + 0.5$$

Surrogate Models

Question: How do we keep from fitting noise?

Akaike Information Criterion (AIC)

$$AIC = 2k - 2\log[\pi(y|q)]$$

Bayesian Information Criterion (BIC)

$$BIC = k \log(M) - 2 \log[\pi(y|q)]$$

Likelihood:

$$\pi(y|q) = rac{1}{(2\pi\sigma^2)^{M/2}}e^{-SS_q/2\sigma^2}$$
 $SS_q = \sum_{m=1}^{M} [y_m - y_s(q^m)]^2$

Maximize

$$SS_q = \sum_{m=1}^{M} [y_m - y_s(q^m)]^2$$

Minimize

Data-Fit Models

Notes:

- Often termed response surface models, surrogates, emulators, meta-models.
- Rely on interpolation or regression.
- Data can consist of high-fidelity simulations or experiments.
- Common techniques: polynomial models, kriging (Gaussian process regression), orthogonal polynomials.

Strategy: Consider high fidelity model

$$y = f(q)$$

with M model evaluations

$$y^m = f(q^m), m = 1, ..., M$$

Statistical Model: $f_s(q)$: Surrogate for f(q)

$$y^m = f_s(q^m) + \varepsilon^m, m = 1, ..., M$$

Surrogate:

$$f_s^K(q, u) = \sum_{k=0}^K u_k \Psi_k(q) + P(q)$$

Options:

- Numerical: Often based on smoothness
- Statistical: Determined by covariance structure

Surrogate Models – Grid Choice

Example: Consider the Runge function $f(q) = \frac{1}{1+25q^2}$ with points

$$q^{j} = -1 + (j-1)\frac{2}{M}$$
, $j = 1, ..., M$ $q^{j} = -\cos\frac{\pi(j-1)}{M-1}$, $j = 1, ..., M$

$$q^{j} = -\cos\frac{\pi(j-1)}{M-1} , j = 1, ..., N$$

Sparse Grid Techniques

Tensored Grids: Exponential growth as a function of dimension

Sparse Grids: Same accuracy with significantly reduce number of points

Motivation: Do not need full set of points to achieve same degree of accuracy

R								
0				1				
1			x		y			
2		x^2		xy		y^2		
3	x	.3	x^2y		xy^2		y^3	
4	x^4	x^3y		x^2y^2		xy^3		y^4

Sparse Grid Techniques

Tensored Grids: Exponential growth

Sparse Grids: Same accuracy

\overline{p}	R_{ℓ}	Sparse Grid ${\cal R}$	Tensored Grid $R = (R_{\ell})^p$
2	9	29	81
5	9	241	59,049
10	9	1581	$> 3 \times 10^9$
50	9	171,901	$> 5 \times 10^{47}$
100	9	1,353,801	$> 2 \times 10^{95}$

Numerical Surrogate Models

Polynomial Surrogates:

$$f_s^K(q) = \sum_{k=0}^K u_k \Psi_k(q),$$

Notes:

- $\Psi_k(q)$ are univariate or multivariate polynomials
- Use interpolation or regression to determine weights $u = [u_0, ..., u_K]^T$

Univariate Interpolation: Consider

$$f_s^K(q) = \sum_{k=0}^K u_k \cdot (q)^k$$

Vandemonde System: y = Xu where

$$X = \begin{bmatrix} 1 & q^{1} & (q^{1})^{2} & \cdots & (q^{1})^{K} \\ \vdots & & & \vdots \\ 1 & q^{M} & (q^{M})^{2} & \cdots & (q^{M})^{K} \end{bmatrix} , y = \begin{bmatrix} y^{0} \\ \vdots \\ y^{M} \end{bmatrix}$$

Warning: Typically ill-conditions so best avoided!

Polynomial Interpolation

Lagrange representation: Take

$$f_s^M(q) = \sum_{m=0}^M y^m L_m(q)$$

where

$$L_m(q) = \prod_{\substack{j=0\\j\neq m}}^{M} \frac{q - q^j}{q^m - Q^j}$$

$$=\frac{(q-q^{0})\cdots(q-q^{m-1})(q-q^{m+1})\cdots(q-q^{M})}{(q^{m}-q^{0})\cdots(q^{m}-q^{m-1})(q^{m}-q^{m+1})\cdots(q^{m}-q^{M})}$$

Note: Because

$$L_m(q^j) = \delta_{mj}, \ 0 \leqslant m, j \leqslant M$$

it follows that

$$f_s^M(q^m) = y^m$$

Warning: Be careful of extrapolation!

Multivariate: Tensor of 1-D relations

Example: $f(q) = (6q - 2)^2 \sin(12q - 4)$

Stochastic Collocation

MATLAB Code: lagrangepoly.m

```
X = [1 2 3 4 5 6 7 8];
Y = [0 1 0 1 0 1 0 1];
[P,R,S] = lagrangepoly(X,Y);
```

xx = 0.5 : 0.01 : 8.5;

plot(xx,polyval(P,xx),X,Y,'or',R,S,'+b',xx,spline(X,Y,xx),'--g','linewidth',3)

grid

axis([0.5 8.5 -5 5])

Note: Recall use of unequally spaced points.

Polynomial Interpolation

Response Mean and Variance: Note that

$$\mathbb{E}[f_s^M(q)] = \int_{\Gamma} f_s^M(q) \rho(q) dq$$

$$= \sum_{m=0}^M f(q^m) \int_{\Gamma} L_m(q) \rho(q) dq$$

$$\approx \sum_{m=0}^M f(q^m) \sum_{r=0}^R L_m(q^r) \rho(q^r) w^r,$$

Strategy: Quadrature with $q^r = q^m$ and R = M

Mean:

$$\mathbb{E}[f_s^M(q)] \approx \bar{f}_s^M = \sum_{m=0}^M f(q^m) \rho(q^m) w^m$$

Monte Carlo:

$$\bar{f}_s^M = \frac{1}{M+1} \sum_{m=0}^{M} f(q^m)$$

Note: Same computational complexity but Newton-Cotes, Clenshaw-Curtis or Gaussian quadrature are MUCH more accurate than Monte Carlo!!

Polynomial Interpolation

Response Variance:

$$\operatorname{var}[f_{s}^{M}(q)] = \int_{\Gamma} \left[f_{s}^{M}(q) - \mathbb{E}[f_{s}^{M}(q)] \right]^{2} \rho(q) dq$$

$$\approx \sum_{r=0}^{R} \left[\sum_{m=0}^{M} f(q^{m}) L_{m}(q^{r}) - \bar{f}_{s}^{M} \right]^{2} \rho(q^{r}) w^{r}$$

$$= \sum_{m=0}^{M} \left[f(q^{m}) - \bar{f}_{s}^{M} \right]^{2} \rho(q^{m}) w^{m}$$

Sample Variance:

$$var[f_s^M(q)] = \frac{1}{M} \sum_{m=0}^{M} [f(q^m) - \bar{f}_s^M]^2$$

Note:

- Same computational complexity but Newton-Cotes, Clenshaw-Curtis or Gaussian quadrature are MUCH more accurate than Monte Carlo!!
- Often cannot use Monte Carlo for PDE examples.

Polynomial Regression

Strategy: Take M+1 > K+1 training points and minimize

$$\mathcal{J}(u) = \sum_{m=0}^{M} \left[y^m - \sum_{k=0}^{K} u_k \cdot (q^m)^k \right]^2$$
$$= (y - Xu)^T (y - Xu)$$

for

$$X = \begin{bmatrix} 1 & q^{1} & (q^{1})^{2} & \cdots & (q^{1})^{K} \\ \vdots & & & \vdots \\ 1 & q^{M} & (q^{M})^{2} & \cdots & (q^{M})^{K} \end{bmatrix} , y = \begin{bmatrix} y^{0} \\ \vdots \\ y^{M} \end{bmatrix}$$

Least Squares Solution:

$$u = (X^T X)^{-1} X^T y = X^{\dagger} y$$

MATLAB: $u = X \setminus y$

Motivation for Orthogonal Polynomial Methods

Heat Equation:

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$

$$u(t,0) = u(t,L) = 0$$

$$u(0,x) = u_0(x)$$

Note: $q = \alpha$

Separation of Variables: Take

$$u(t,x) = T(t)X(x)$$

General Solution: Surrogate – truncate to upper limit of N

$$u(t,x) = \sum_{n=1}^{\infty} \beta_n e^{-\alpha \lambda_n^2 t} \sin(\lambda_n x)$$
, $\lambda_n = \frac{n\pi}{L}$

Coefficients:

$$\beta_n = \frac{2}{L} \int_0^L u_0(x) \sin(\lambda_n x) dx$$

Response:
$$y(t,x) = \int_{\Gamma} u(t,x,q) \rho(q) dq$$

Recall: Trig functions orthogonal

$$\int_{-L}^{L} \sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) dx = \delta_{mn}L$$

Spectral Representation of Random Processes

Strategy: Consider high fidelity model

$$y = f(q)$$

with M model evaluations

$$y^m = f(q^m), m = 1, ..., M$$

Statistical Model: $f_s(q)$: Surrogate for f(q)

$$y^m = f_s(q^m) + \varepsilon^m$$
, $m = 1, ..., M$

Surrogate:

$$f_s^K(q, u) = \sum_{k=0}^K u_k \Psi_k(q) + P(q)$$

Note: $\Psi_k(q)$ orthogonal with respect to inner product associated with pdf

e.g.,
$$q \sim \mathcal{N}(0, 1)$$
: Hermite polynomials $q \sim \mathcal{U}(-1, 1)$: Legendre polynomials

Case 1: Single random variable

Spectral Representation of Random Processes

Hermite Polynomials: $q \sim \mathcal{N}(0, 1)$

$$H_0(q) = 1$$
 , $H_1(q) = q$, $H_2(q) = q^2 - 1$, $H_3(q) = q^3 - 3q$, $H_4(q) = q^4 - 6q^2 + 3$

with the weight

$$\rho(q) = \frac{1}{\sqrt{2\pi}} e^{-q^2/2},$$

Normalization factor: $\gamma_k = \int_{\mathbb{R}} \psi_k^2(q) \rho(q) dq = k!$

Legendre Polynomials: $q \sim \mathcal{U}(-1, 1)$

$$P_0(q) = 1$$
 , $P_1(q) = q$, $P_2(q) = \frac{1}{2}(3q^2 - 1)$, $P_3(q) = \frac{1}{2}(5q^3 - 3q)$, $P_4(q) = \frac{1}{8}(35q^4 - 30q^2 + 3)$,

with the weight

$$\rho(\textbf{q}) = \frac{1}{2}$$

Normalization factor:
$$\gamma_k = \frac{1}{2k+1}$$

Representation:

$$f_s^K(q) = \sum_{k=0}^K u_k \psi_k(q)$$

Note: $\psi_0(q) = 1$ implies that

$$\mathbb{E}[\psi_0(q)] = 1$$

$$\mathbb{E}[\psi_j(q)\psi_k(q)] = \int_{\Gamma} \psi_j(q)\psi_k(q)\rho(q)dq$$

$$= \delta_{jk}\gamma_k$$

where $\gamma_k = \mathbb{E}[\psi_k^2(q)]$

Properties:

(i)
$$\mathbb{E}[f_s^K(q)] = u_0$$

(ii)
$$\operatorname{var}[f_s^K(q)] = \sum_{k=1}^K u_k^2 \gamma_k$$

Note: Can be used for:

- Uncertainty propagation
- Sobol-based global sensitivity analysis

Issue: How does one compute u_k , k = 0, ... K?

- Stochastic Galerkin techniques (Polynomial Chaos Expansion PCE)
- Nonintrusive PCE (Discrete projection)
- Stochastic collocation
- Regression-based methods with sparsity control (Lasso)

Note: Methods nonintrusive and treat code as blackbox.

Properties:

$$\mathbb{E}\left[f_s^K(q)\right] = \mathbb{E}\left[\sum_{k=0}^K u_k \Psi_k(q)\right]$$

$$= u_0 \mathbb{E}[\Psi_0(q)] + \sum_{k=1}^K u_k \mathbb{E}[\Psi_k(q)]$$

$$= u_0$$

and

$$\operatorname{var}[f_{s}^{K}(q)] = \mathbb{E}\left[\left(f_{s}^{K}(q) - \mathbb{E}[f_{s}^{K}(q)]\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\sum_{k=0}^{K} u_{k} \Psi_{k}(q) - u_{0}\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\sum_{k=1}^{K} u_{k} \Psi_{k}(q)\right)^{2}\right]$$

$$= \sum_{k=1}^{K} u_{k}^{2} \gamma_{k},$$

Multiple Random Variables:

Definition: (p-Dimensional Multi-Index): a p-tuple

$$\mathbf{k}' = (k_1, \cdots, k_p) \in \mathbb{N}_0^p$$

of non-negative integers is termed a p-dimensional multi-index with magnitude $|\mathbf{k}'| = k_1 + k_2 + \cdots + k_p$ and satisfying the ordering $\mathbf{j}' \leq \mathbf{k}' \Leftrightarrow j_i \leq k_i$ for $i = 1, \dots, p$.

Consider the p-variate basis functions

$$\Psi_{\mathbf{k}'}(q) = \psi_{k_1}(q_1), \dots, \psi_{k_p}(q_p)$$

which satisfy

$$\begin{split} \mathbb{E}[\Psi_{\mathbf{j}'}(q)\Psi_{\mathbf{k}'}(q)] &= \int_{\Gamma} \Psi_{\mathbf{j}'}(q)\Psi_{\mathbf{k}'}(q)\rho(q)dq \\ &= \langle \Psi_{\mathbf{j}'}, \Psi_{\mathbf{k}'} \rangle_{\rho} \\ &= \delta_{\mathbf{j}'\mathbf{k}'}\gamma_{\mathbf{k}'}, \end{split}$$

Multi-Index Representation:

$$f_{s}^{K}(q) = \sum_{|\mathbf{k}'|=0}^{K} u_{\mathbf{k}'} \Psi_{\mathbf{k}'}(q)$$

Single Index Representation:

$$f_s^K(q) = \sum_{k=0}^K u_k \Psi_k(q)$$

k	$ \mathbf{k}' $	Multi-Index	Polynomial
0	0	(0,0,0)	$\psi_0(q_1)\psi_0(q_2)\psi_0(q_3)$
1	1	(1,0,0)	$\psi_1(q_1)\psi_0(q_2)\psi_0(q_3)$
2		(0, 1, 0)	$\psi_0(q_1)\psi_1(q_2)\psi_0(q_3)$
3		(0,0,1)	$\psi_0(q_1)\psi_0(q_2)\psi_1(q_3)$
4	2	(2,0,0)	$\psi_2(q_1)\psi_0(q_2)\psi_0(q_3)$
5		(1, 1, 0)	$\psi_1(q_1)\psi_1(q_2)\psi_0(q_3)$
6		(1,0,1)	$\psi_1(q_1)\psi_0(q_2)\psi_1(q_3)$
7		(0, 2, 0)	$\psi_0(q_1)\psi_2(q_2)\psi_0(q_3)$
8		(0, 1, 1)	$\psi_0(q_1)\psi_1(q_2)\psi_1(q_3)$
9		(0,0,2)	$\psi_0(q_1)\psi_0(q_2)\psi_2(q_3)$

Discrete Projection: Take weighted inner product of $f(q) = \sum_{k=0}^{\infty} u_k \Psi_k(q)$ to obtain

$$u_k = \frac{1}{\gamma_k} \int_{\Gamma} f(q) \Psi_k(q) \rho(q) dq$$

Quadrature:

$$u_k \approx \frac{1}{\gamma_k} \sum_{r=1}^R f(q^r) \Psi(q^r) w^r$$

Note:

- (i) Low-dimensional: Tensored 1-D quadrature rules e.g., Gaussian
- (ii) Moderate-dimensional: Sparse grid (Smolyak) techniques
- (iii) High-dimensional: Monte Carlo or quasi-Monte Carlo (QMC) techniques

Regression-Based Methods with Sparsity Control (Lasso): Solve

$$\min_{u\in\mathbb{R}^{K+1}}\|Xu-y\|^2 \text{ subject to } \sum_{k=0}^K|u_k|\leqslant \tau,$$

Note: Sample points $\{q^m\}_{m=0}^M$

$$[X]_{ij} = \Psi_j(q^i)$$

 $y = [f(q^0), ..., f(q^M)]^T$

e.g., SPGL1

 MATLAB Solver for large-scale sparse reconstruction

Galerkin: Seek solutions $f_s^K(q)$ that satisfy

$$\langle f_s^K(q) - f(q), \Psi_i \rangle_{\rho} = 0$$

which yields

$$\sum_{k=0}^{K} u_k \int_{\Gamma} \Psi_k(q) \Psi_i(q) \rho(q) dq = \int_{\Gamma} f(q) \Psi_i(q) \rho(q) dq$$

Equivalent Formulation:

$$\mathbb{E}\left[f_{s}^{K}(q)\Psi_{i}(q)\right] = \mathbb{E}\left[f(q)\Psi_{i}(q)\right]$$

Result:

$$u_k = \frac{1}{\gamma_k} \int_{\Gamma} f(q) \Psi_k(q) \rho(q) dq$$

Note: This technique is often invasive in the sense that it requires the modification of existing codes.

Note: Consider $q \sim \mathcal{U}(a, b)$ with mean and variance

$$\mu = \frac{a+b}{2}$$
 , $\sigma^2 = \frac{(b-a)^2}{12}$

Then

$$q = g(\xi) = \mu + \sqrt{3}\sigma\xi = \frac{a+b}{2} + \frac{b-a}{2}\xi$$

where $\xi \sim \mathcal{U}(-1,1)$.

Random Vector:

$$q = g(\xi) = [\mu_1 + \sqrt{3}\sigma_1\xi_1, ..., \mu_p + \sqrt{3}\sigma_p\xi_p]$$

Spectral Surrogate:

$$f_s^K(q) = f_s^K(g(\xi)) = \sum_{k=0}^K u_k \Psi_k(\xi)$$

Spectral Surrogate:

$$f_s^K(q) = f_s^K(g(\xi)) = \sum_{k=0}^K u_k \Psi_k(\xi)$$

Discrete Projection:

$$u_{k} = \frac{1}{\gamma_{k}} \int_{\Gamma} f(g(\xi)) \Psi_{k}(\xi) \rho(\xi) d\xi$$
$$\approx \frac{1}{\gamma_{k}} \sum_{r=1}^{R} f(g(\xi^{r})) \Psi_{k}(\xi^{r}) w^{r}$$

Galerkin:

$$\sum_{k=0}^{K} u_k \int_{\Gamma} \Psi_k(\xi) \Psi_i(\xi) \rho(\xi) d\xi = \int_{\Gamma} f(g(\xi)) \Psi_i(\xi) \rho(\xi) d\xi, \quad i = 0, 1, \dots, K$$

Example: Consider

$$f(\alpha_1,\alpha_{11})=\int_0^{0.8} [\alpha_1 P^2+\alpha_{11} P^4]dP=c_1\alpha_1+c_2\alpha_{11},$$

where $c_1=\frac{0.8^3}{3}$ and $c_2=\frac{0.8^5}{5}$ and $q=[\alpha_1,\alpha_{11}]$

Approach: Take $\alpha_1 \sim \mathcal{U}(a_1, b_1)$ and $\alpha_{11} \sim \mathcal{U}(a_2, b_2)$ so

$$\alpha_1 = \bar{\alpha}_1 + \sqrt{3}\sigma_1\xi_1$$
 , $\bar{\alpha}_1 = \frac{a_1 + b_1}{2}$, $\sqrt{3}\sigma_1 = \frac{b_1 - a_1}{2}$

$$\alpha_{11} = \bar{\alpha}_{11} + \sqrt{3}\sigma_{11}\xi_2$$
 , $\bar{\alpha}_{11} = \frac{a_2 + b_2}{2}$, $\sqrt{3}\sigma_{11} = \frac{b_2 - a_2}{2}$,

where ξ , $\xi_2 \sim \mathcal{U}(-1,1)$ and $\rho(\xi_1) = \rho(\xi_2) = \frac{1}{2}$

Response:

$$f(q) = f(g(\xi)) = c_1 \left(\bar{\alpha}_1 + \sqrt{3}\sigma_1\xi_1\right) + c_2 \left(\bar{\alpha}_{11} + \sqrt{3}\sigma_{11}\xi_2\right)$$

Response:

$$f(q) = f(g(\xi)) = c_1 \left(\bar{\alpha}_1 + \sqrt{3}\sigma_1\xi_1\right) + c_2 \left(\bar{\alpha}_{11} + \sqrt{3}\sigma_{11}\xi_2\right)$$

Surrogate:

$$f_s^K(q) = f_s^K(g(\xi)) = \sum_{k=0}^K u_k \Psi_k(\xi),$$

where $\Psi_k(\xi)$ are tensored Legendre polynomials on $\Gamma = [-1, 1]^2$

Galerkin: From

$$\int_{\Gamma} [f_s^K(\xi) - f(\xi)] \Psi_i(\xi) \rho(\xi) d\xi = 0$$

it follows that

$$\sum_{k=0}^{K} u_k \int_{\Gamma} \Psi_k(\xi) \Psi_i(\xi) \rho(\xi) d\xi = c_1 \int_{\Gamma} (\bar{\alpha}_1 + \sqrt{3}\sigma_1 \xi_1) \Psi_i(\xi) \rho(\xi) d\xi$$
$$+c_2 \int_{\Gamma} (\bar{\alpha}_{11} + \sqrt{3}\sigma_{11} \xi_2) \Psi_i(\xi) \rho(\xi) d\xi$$

Note:

$$\sum_{k=0}^{K} u_k \int_{\Gamma} \Psi_k(\xi) \Psi_i(\xi) \rho(\xi) d\xi = c_1 \int_{\Gamma} (\bar{\alpha}_1 + \sqrt{3}\sigma_1 \xi_1) \Psi_i(\xi) \rho(\xi) d\xi$$
$$+c_2 \int_{\Gamma} (\bar{\alpha}_{11} + \sqrt{3}\sigma_{11} \xi_2) \Psi_i(\xi) \rho(\xi) d\xi$$

For i = 0, 1 and 2, the Legendre basis functions and weights are

$$\Psi_{0}(\xi) = \psi_{0}(\xi_{1})\psi_{0}(\xi_{2}) \Rightarrow u_{0} = c_{1}\bar{\alpha}_{1} + c_{2}\bar{\alpha}_{11}$$
 $\Psi_{1}(\xi) = \psi_{1}(\xi_{1})\psi_{0}(\xi_{2}) \Rightarrow u_{1} = c_{1}\sqrt{3}\sigma_{1}$
 $\Psi_{2}(\xi) = \psi_{0}(\xi_{1})\psi_{1}(\xi_{2}) \Rightarrow u_{2} = c_{2}\sqrt{3}\sigma_{11}$

Surrogate:

$$f_s^K(q) = f_s^K(g(\xi)) = (c_1\bar{\alpha}_1 + c_2\bar{\alpha}_{11}) + c_1\sqrt{3}\sigma_1\xi_1 + c_2\sqrt{3}$$

Moments:

$$\mathbb{E}[f_s^K(q)] = c_1 \bar{\alpha}_1 + c_2 \bar{\alpha}_{11}$$

$$\text{var}[f_s^K(q)] = 3c_1^2 \sigma_1^2 + 3c_2^2 \sigma_{11}^2$$

Note: Employ physical parameters in the model and transformed parameters in weak formulation and computation of weights.

Discrete Projection Example

Spring Model: See perturbation notes

$$m\frac{d^2z}{\partial t^2} + c\frac{dz}{dt} + kz = f_0\cos(\omega_F t)$$

$$z(0)=z_0$$
 , $\frac{dz}{dt}(0)=z_1$

Parameters:

$$m \sim \mathcal{U}(\bar{m} - \sigma_m, \bar{m} + \sigma_m)$$

$$c \sim \mathcal{U}(\bar{c} - \sigma_c, \bar{c} + \sigma_c)$$

$$k \sim \mathcal{U}(\bar{k} - \sigma_k, \bar{k} + \sigma_k)$$

Response:

$$z(\omega_F, q) = \frac{1}{\sqrt{(k - m\omega_F^2)^2 + (c\omega_f)^2}}$$

Representation:

$$f_s^K(\omega_F, q) = f_s^K(\omega_F, g(\xi)) = \sum_{k=0}^K u_k(\omega_F) \Psi_k(\xi)$$

Discrete Projection Example

Discrete Projection:

$$\begin{split} u_{k}(\omega_{F}) &= \frac{1}{\gamma_{k}} \int_{\Gamma} f(g(\omega_{F}, \xi)) \Psi_{k}(\xi) \rho(\xi) d\xi \\ &= \frac{1}{\gamma_{k}} \int_{\Gamma} \frac{\Psi_{k}(\xi) \rho(\xi) d\xi}{\sqrt{\left[(\bar{k} + \sqrt{3}\sigma_{k}\xi_{3}) - (\bar{m} + \sqrt{3}\sigma_{m}\xi_{1})\omega_{F}^{2}\right]^{2} + (\bar{c} + \sqrt{3}\sigma_{c}\xi_{2})^{2}\omega_{F}^{2}} \\ &\approx \frac{1}{\gamma_{k}} \sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \sum_{r_{3}=1}^{R_{3}} \frac{\Psi_{k}(\xi^{r}) w^{r}}{\sqrt{\left[(\bar{k} + \sqrt{3}\sigma_{k}\xi_{3}^{r_{3}}) - (\bar{m} + \sqrt{3}\sigma_{m}\xi_{1}^{r_{1}})\omega_{F}^{2}\right]^{2} + (\bar{c} + \sqrt{3}\sigma_{c}\xi_{2}^{r_{2}})^{2}\omega_{F}^{2}} \end{split}$$

Surrogate: Mean and variance

$$\mathbb{E}[f_s^K(\omega_F, q)] = u_0(\omega_F) \qquad \qquad \bar{f}_s^K(\omega_F) = \frac{1}{M} \sum_{i=1}^M f(\omega_F, q^m),$$

$$\operatorname{var}[f_s^K(\omega_F, q)] = \sum_{k=1}^K u_k^2(\omega_F) \gamma_k \qquad \qquad \sigma_s^K(\omega_F) = \left[\frac{1}{M-1} \sum_{i=1}^M \left[f(\omega_F, q^m) - \bar{f}_s^K(\omega_F) \right]^2 \right]^{1/2}$$

Monte Carlo: With M = 1e+5

Note: We plot the standard deviations

Discrete Projection Example

Result: Mean and standard deviation

Surrogate Models

Example: Consider the heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + f(q)$$

with the response

$$y(q) = \int_0^1 \int_0^1 \int_0^1 \int_0^1 u(t, x, y, z) dx dy dz dt$$

Note: Regression with sparsity control $u = [0.6406, 0.2305, 0.1289, 0, 0]^T$

Surrogate:

$$f_s^K(q) = \sum_{k=0}^K u_k \psi_k(q)$$

Note:

$$\phi_0(q) = 1$$

$$\phi_1(q) = 2q - 1$$

$$\phi_2(q) = \frac{3}{2}(2q-1)^2 - \frac{1}{2}$$

Stochastic Galerkin Method

Properties:

- Accuracy is optimal in L2 sense.
- Projection method with associated error bounds.
- Disadvantages
 - Method is intrusive and hence difficult to implement with legacy codes or codes for which only executable is available.
 - Method requires densities with associated orthogonal polynomials.
 These can sometimes be constructed from empirical histograms.
 - Method requires mutually independent parameters.

Note:

• Very commonly termed polynomial chaos expansion [Weiner, 1938]. However, no chaos in the present use.

Discrete Projection

Properties:

- Advantages
 - Like collocation, the method is nonintrusive and hence can be employed with post-processing to existing codes. The method is often referred to as nonintrusive PCE.
 - Projection method with associated error bounds.
 - Algorithms available in Sandia Dakota package.

Disadvantages

 Requires the construction of the joint density which often relies on mutually independent parameters.

Neural Networks

Single Perceptron:

$$z_k = h\left(\sum_{j=1}^p v_{jk}q_j + b_k^0\right) = h(\mathbf{v}_k^T \tilde{q})$$

Activation Functions:

$$h(\mathbf{v}_k^T \tilde{q}) = \tanh(\mathbf{v}_k^T \tilde{q})$$

$$h(\mathbf{v}_k^T \tilde{q}) = \frac{2}{1 + \exp(-2\mathbf{v}_k^T \tilde{q})} - 1$$

Regression:

$$y = \sum_{k=1}^{N_H} u_k h(\mathbf{v}_k^T \tilde{q}) + b^1 = \mathbf{u}^T z$$

