Bayesian Techniques for Parameter Estimation

"He has Van Gogh's ear for music," Billy Wilder

Reading: Sections 4.6, 4.8 and Chapter 12

Statistical Inference

Goal: The goal in statistical inference is to make conclusions about a phenomenon based on observed data.

Frequentist: Observations made in the past are analyzed with a specified model. Result is regarded as confidence about state of real world.

- Probabilities defined as frequencies with which an event occurs if experiment is repeated several times.
- Parameter Estimation:
 - o Relies on estimators derived from different data sets and a specific sampling distribution.
 - o Parameters may be unknown but are fixed and deterministic.

Bayesian: Interpretation of probability is subjective and can be updated with new data.

 Parameter Estimation: Parameters are considered to be random variables having associated densities.

Bayesian Inference

Framework:

- Prior Distribution: Quantifies prior knowledge of parameter values.
- Likelihood: Probability of observing a data if we have a certain set of parameter values; Comes from observation models in Chapter 5!
- Posterior Distribution: Conditional probability distribution of unknown parameters given observed data.

Joint PDF: Quantifies all combination of data and observations

$$\pi(\theta, y) = \pi(y|\theta)\pi_0(\theta)$$

Bayes' Relation: Specifies posterior in terms of likelihood, prior, and normalization constant

$$\pi(\theta|y) = \frac{f(y|\theta)\pi_0(\theta)}{\int_{\mathbb{R}^p} f(y|\theta)\pi_0(\theta)d\theta}$$

Problem: Evaluation of normalization constant typically requires high dimensional integration.

Bayesian Inference

Uninformative Prior: No a priori information parameters

e.g.,
$$\pi_0(\theta) = 1$$

Informative Prior: Use conjugate priors; prior and posterior from same distribution

$$\pi(\theta|y) = \frac{f(y|\theta)\pi_0(\theta)}{\int_{\mathbb{R}^p} f(y|\theta)\pi_0(\theta)d\theta}$$

Evaluation Strategies:

- Analytic integration --- Rare
- Classical Gaussian quadrature; e.g., p = 1 4
- Sparse grid quadrature techniques; e.g., p = 5 40
- Monte Carlo quadrature Techniques
- Markov chain methods

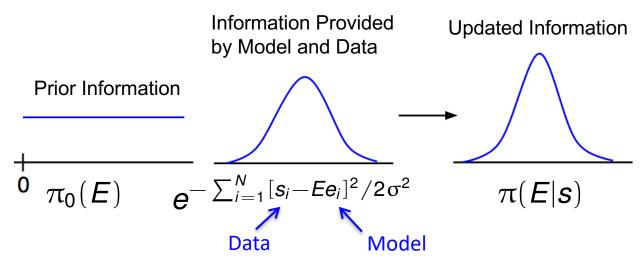
Bayesian Inference: Motivation

Example: Displacement-force relation (Hooke's Law)

··• ·· Data ····· Data -Model 0.02 0.04 0.08

Parameter: Stiffness E

Strategy: Use model fit to data to update prior information



Non-normalized Bayes' Relation:

$$\pi(E|s) = e^{-\sum_{i=1}^{N} [s_i - Ee_i]^2/2\sigma^2} \pi_0(E)$$

· · Data

0.1

Bayesian Inference

Bayes' Relation: Specifies posterior in terms of likelihood and prior

Likelihood:
$$e^{-\sum_{i=1}^{N}[s_i-Ee_i]^2/2\sigma^2}$$
, $q=E$ $v=[s_1,\dots,s_N]$ Posterior Distribution
$$\pi(\theta|y) = \frac{f(y|\theta)\pi_0(\theta)}{\int_{\mathbb{R}^p}f(y|\theta)\pi_0(\theta)d\theta}$$
 Prior Distribution Normalization Constant

- Prior Distribution: Quantifies prior knowledge of parameter values
- Likelihood: Probability of observing a data given set of parameter values.
- Posterior Distribution: Conditional distribution of parameters given observed data.

Problem: Can require high-dimensional integration

- e.g., Many applications: p = 10-50!
- Solution: Sampling-based Markov Chain Monte Carlo (MCMC) algorithms.
- Metropolis algorithms first used by nuclear physicists during Manhattan Project in 1940's to understand particle movement underlying first atomic bomb.

Bayesian Model Calibration

Bayes' Relation:

Bayesian Model Calibration:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Parameters assumed to be random variables

$$\pi(\theta|y) = \frac{f(y|\theta)\pi_0(\theta)}{\int_{\mathbb{R}^p} f(y|\theta)\pi_0(\theta)d\theta}$$

Example: Coin Flip

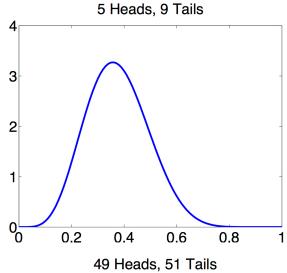
$$Y_i(\omega) = \begin{cases} 0 & , & \omega = T \\ 1 & , & \omega = H \end{cases}$$

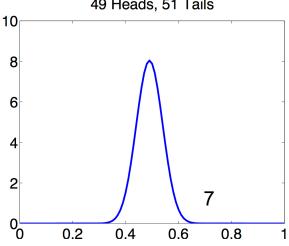
Likelihood:

$$\pi(y|\theta) = \prod_{i=1}^{N} \theta^{y_i} (1-\theta)^{1-y_i}$$
$$= \theta^{N_1} (1-\theta)^{N_0}$$

Posterior with flat Prior: $\pi_0(\theta) = 1$

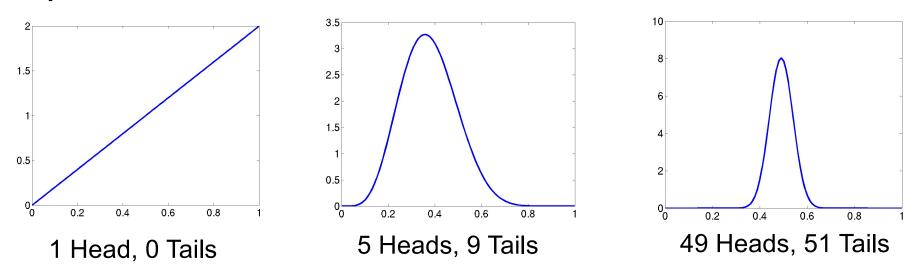
$$\pi(\theta|y) = \frac{\theta^{N_1}(1-\theta)^{N_0}}{\int_0^1 \theta^{N_1}(1-\theta)^{N_0} dq} = \frac{(N+1)!}{N_0!N_1!} \theta^{N_1}(1-\theta)^{N_0}$$





Bayesian Inference

Example:



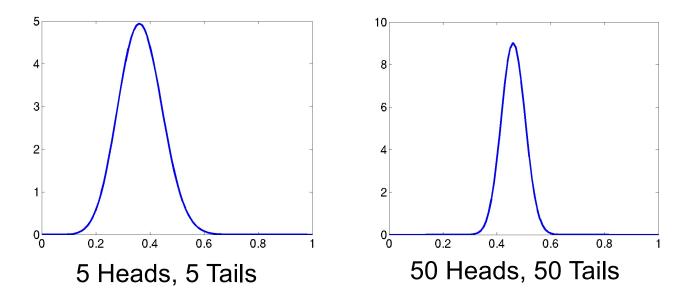
Note: For N=1, frequentist theory would give probability 1 or 0

Bayesian Inference

Example: Now consider

$$\pi_0(\theta) = rac{1}{\sigma\sqrt{2\pi}}e^{-(\theta-\mu)^2/2\sigma^2}$$

with $\mu = 0.3$ and $\sigma = 0.1$



Note: Poor informative prior incorrectly influences results for a long time.

Parameter Estimation Problem

Observation Model:

$$y_i = f_i(\theta) + \varepsilon_i$$
, $i = 1, ..., n$

Assumption: Assume that measurement errors are iid and $\varepsilon_i \sim N(0, \sigma^2)$

Likelihood:

$$f(y|\theta) = L(\theta, \sigma|y) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-SS_{\theta}/2\sigma^2}$$

where

$$SS_{\theta} = \sum_{j=1}^{n} \left[y_j - f_i(\theta) \right]^2$$

is the sum of squares error.

Parameter Estimation: Example

Example: Consider the spring model

Note: Take
$$K = 20.5$$
, $C^0 = 1.5$

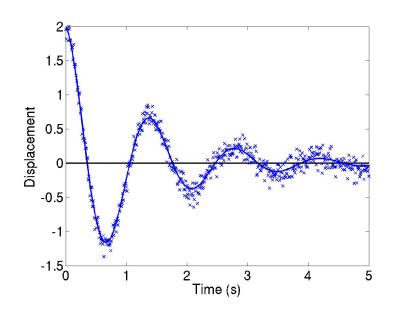
$$\ddot{z} + C\dot{z} + Kz = 0$$

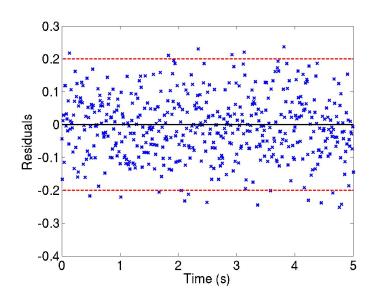
$$z(0) = 2$$
, $\dot{z}(0) = -C$

which has the solution

$$z(t) = 2e^{-Ct/2}\cos(\sqrt{K - C^2/4} \cdot t)$$

Take K to be known and $\theta = C$. Assume that $\varepsilon_i \sim N(0, \sigma_0^2)$ where $\sigma_0 = 0.1$





Parameter Estimation: Example

Example: The sensitivity matrix is

$$\mathfrak{X}(\theta) = \left[\frac{\partial y}{\partial C}(t_1, \theta), \cdots, \frac{\partial y}{\partial C}(t_n, \theta)\right]^T$$

where

$$\frac{\partial y}{\partial C} = e^{-Ct/2} \left[\frac{Ct}{\sqrt{4K - C^2}} \sin\left(\sqrt{K - C^2/4} \cdot t\right) - t\cos\left(\sqrt{K - C^2/4} \cdot t\right) \right]$$

Here

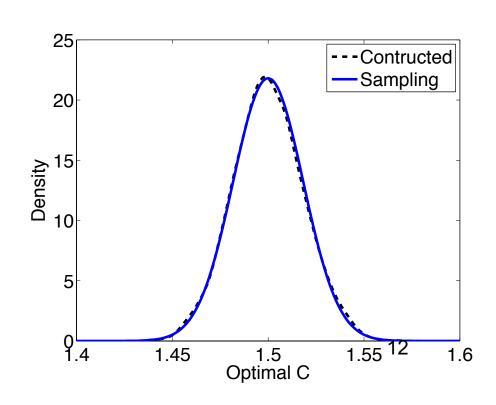
$$V = \sigma_c^2 = \sigma_0^2 \left[\chi^T(\theta) \chi(\theta) \right]^{-1} = 3.35 \times 10^{-4}$$

so that

$$\widehat{\textit{C}} \sim \textit{N}\left(\textit{C}_{0}, \sigma_{\textit{c}}^{2}\right)$$
 , $\sigma_{\textit{c}} = 0.0183$

Note: In 10,000 simulations, 9455 of confidence intervals contained true parameter value.

Figure: Sampling distribution compared with that constructed using 10,000 estimated values of C.



Parameter Estimation: Example

Bayesian Inference: Employ the flat prior

$$\pi_0(\theta) = \chi_{[0,\infty)}(\theta)$$

Posterior Distribution:

$$\pi(\theta|y) = \frac{e^{-SS_{\theta}/2\sigma_0^2}}{\int_0^{\infty} e^{-SS_{\zeta}/2\sigma_0^2} d\zeta} = \frac{1}{\int_0^{\infty} e^{-(SS_{\zeta}-SS_{\theta})/2\sigma_0^2} d\zeta}$$

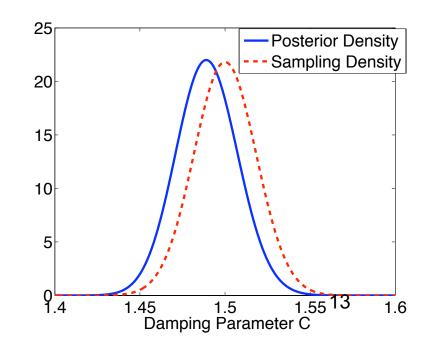
Issue: $e^{-SS_{\theta_{MAP}}} \approx 3 \times 10^{-113}$

Midpoint formula:

$$\pi(\theta|y) pprox rac{1}{\sum_{i=1}^{k} e^{-(SS_{\zeta_i} - SS_{\theta})/2\sigma_0^2} W_i}$$

Note:

- •Slow even for one parameter.
- •Strategy: create Markov chain using random sampling so that created chain has the posterior distribution as its limiting (stationary) distribution.



Bayesian Model Calibration

Bayesian Model Calibration:

•Parameters considered to be random variables with associated densities.

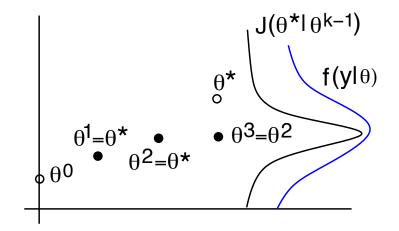
$$\pi(\theta|y) = \frac{f(y|\theta)\pi_0(\theta)}{\int_{\mathbb{R}^p} f(y|\theta)\pi_0(\theta)d\theta}$$

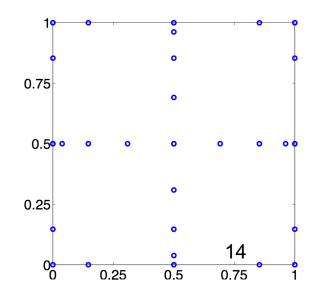
Problem:

- Often requires high dimensional integration;
 - o e.g., p = 18 for MFC model
 - p = thousands to millions for some models

Strategies:

- Sampling methods
- Sparse grid quadrature techniques





Markov Chains

Definition: Sequence of random variables X_1, X_2, \cdots that satisfy Markov property: X_{n+1} depends only on X_n ; that is

$$P(X_{n+1} = x_{n+1} | X_0 = x_0, X_1 = x_1, \dots, X_n = x_n) = P(X_{n+1} = x_{n+1} | X_n = x_n)$$

where x_i is the state of the chain at time i.

Note: A Markov chain is characterized by three components: a state space, an initial distribution, and a transition kernel.

State Space: Range of X_i : Set of all possible values

Initial Distribution: (Mass)

$$p^0 = [p_1^0, p_2^0, \cdots, p_n^0]$$
 , $p_i^0 = P(X_0 = x_i)$

Transition Probability: (Markov Kernel)

$$p_{ij}=P(X_{n+1}=x_j|X_n=x_i)$$
 $p_{ij}^{(n)}=P(X_{m+n}=x_j|X_m=x_i)$ (n -step transition probability) $P=[p_{ij}]$, $P_n=[p_{ij}^{(n)}]$

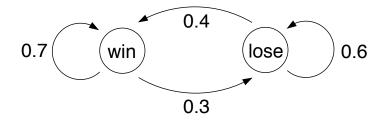
15

Markov Chain Techniques

Markov Chain: Sequence of events where current state depends only on last value.

Baseball: States are $S = \{\text{win,lose}\}$. Initial state is $p^0 = [0.8, 0.2]$.

- •Assume that team which won last game has 70% chance of winning next game and 30% chance of losing next game.
- •Assume losing team wins 40% and loses 60% of next games.



Percentage of teams who win/lose next game given by

$$p^{1} = [0.8, 0.2] \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = [0.64, 0.36]$$

•Question: does the following limit exist?

$$p^{n} = \begin{bmatrix} 0.8 & 0.2 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}^{n}$$

Markov Chain Techniques

Baseball Example: Solve constrained relation

$$\pi = \pi P$$
 , $\sum \pi_i = 1$

$$\Rightarrow [\pi_{win}, \pi_{lose}] \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = [\pi_{win}, \pi_{lose}]$$
 , $\pi_{win} + \pi_{lose} = 1$

to obtain

$$\pi = [0.5714, 0.4286]$$

Markov Chain Techniques

Baseball Example: Solve constrained relation

$$\pi = \pi P$$
 , $\sum \pi_i = 1$

$$\Rightarrow [\pi_{win}, \pi_{lose}] \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = [\pi_{win}, \pi_{lose}]$$
 , $\pi_{win} + \pi_{lose} = 1$

to obtain

$$\pi = [0.5714, 0.4286]$$

Alternative: Iterate to compute solution

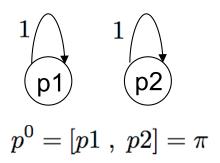
\overline{n}	p^n	n	p^n	n	p^n
0	[0.8000,0.2000]	4	[0.5733,0.4267]	8	[0.5714, 0.4286]
1	[0.6400,0.3600]	5	[0.5720,0.4280]	9	[0.5714,0.4286]
2	[0.5920,0.4080]	6	[0.5716,0.4284]	10	[0.5714,0.4286]
3	[0.5776,0.4224]	7	[0.5715,0.4285]		•

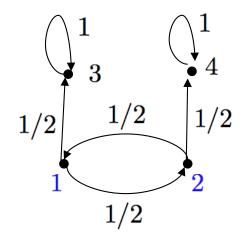
Notes:

- Forms basis for Markov Chain Monte Carlo (MCMC) techniques
- Goal: construct chains whose stationary distribution is the posterior density 18

Irreducible Markov Chains

Reducible Markov Chain:





$$P = \left[\begin{array}{cccc} 0 & 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

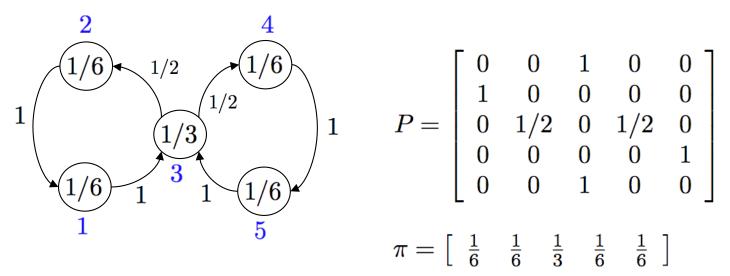
Note: Limiting distribution not unique if chain is reducible.

Irreducible: A Markov chain is *irreducible* if any state x_j and be reached from any state x_i in a finite number of steps; that is

 $p_{ij}^{(n)} > 0$ for all states in finite n

Periodic Markov Chains

Example:



Note: Chain returns to state 1 at steps $3, 6, 9, \cdots$ so Period = 3

Note: Probability mass "cycles" through chain so no convergence

Periodicity: A Markov chain is *periodic* if parts of the state space are visited at regular intervals. The period *k* is defined as

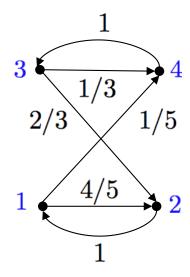
$$k = \gcd \left\{ n | p_{ii}^{(n)} > 0 \right\}$$

= $\gcd \left\{ n | P(X_{m+n} = x_i | X_m = x_i) > 0 \right\}$

• The chain is aperiodic if k=1.

Periodic Markov Chains

Example:



$$P = \left[\begin{array}{cccc} 0 & 4/5 & 0 & 1/5 \\ 1 & 0 & 0 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

$$p^0 = \left[\begin{array}{cccc} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{array} \right]$$

$$p^0 = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \end{array}
ight]$$

Stationary Distribution

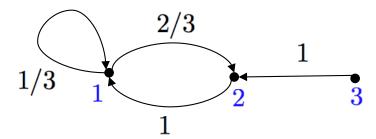
Theorem: A finite, homogeneous Markov chain that is irreducible and aperiodic has a unique stationary distribution π and the chain will converge in the sense of distributions from any initial distribution p^0 .

Recurrence (Persistence): A state x_i is recurrent (persistent) if the probability of returning to x_i is 1; that is,

$$P(X_{m+n} = x_i \text{ for some } n \ge 1 | X_m = x_i) = 1$$

It is transient if probability strictly less than 1

Example: State 3 is transient



Ergodicity: A state is termed *ergodic* if it is aperiodic and recurrent. If all states of an irreducible Markov chain are ergodic, the chain is said to be *ergodic*.

Matrix Theory

Definition: A matrix $A \in \mathbb{R}^{(n \times n)}$ is

- (i) Nonnegative, denoted $A \geq 0$, if $a_{ij} \geq 0$ for all i, j
- (ii) Strictly positive, denoted A > 0, if $a_{ij} > 0$ for all i, j

Lemma: Let P be the transition matrix of an ergodic finite Markov chain with state space S. Then for some $N_0 \ge 1, P_n > 0$ for all $n > N_0$.

Example:

$$1/3$$

$$1$$

$$1$$

$$1$$

$$P = \begin{bmatrix} 1/3 & 2/3 \\ 1 & 0 \end{bmatrix}$$

$$P_2 = \begin{bmatrix} 7/9 & 2/9 \\ 1/3 & 2/3 \end{bmatrix}$$

$$P_2 = \begin{bmatrix} 7/9 & 2/9 \\ 1/3 & 2/3 \end{bmatrix}$$

Matrix Theory

Theorem (Perron-Frobenius): For any strictly positive matrix A > 0, there exist $\lambda_0 > 0$ and $x_0 > 0$ such that

- (i) $Ax_0 = \lambda_0 x_0$
- (ii) If $\lambda \neq \lambda_0$ is any other eigenvalue of A, then $|\lambda| < \lambda_0$
- (iii) λ_0 has geometric and algebraic multiplicity 1

Corollary 1: If $A \ge 0$ is a nonnegative matrix such that $A^n > 0$, then theorem also applies to A.

Proposition: Let A>0 be a strictly positive $n\times n$ matrix with row and column sums

$$r_i = \sum_j a_{ij}$$
 , $c_j = \sum_i a_{ij}$, $i, j = 1, \cdots, n$

Then

$$\min_{i} r_i \le \lambda_0 \le \max_{i} r_i$$
 , $\min_{j} c_j \le \lambda_0 \le \max_{j} c_j$

Stationary Distribution

Corollary: Let $P \ge 0$ be the transition matrix of an ergodic Markov chain. Then there exists a unique stationary distribution π such that $\pi P = \pi$.

Proof: By Lemma and Corollary 1, P has a largest eigenvalue $\lambda_0=1$. Since multiplicity is 1, unique π such that $\pi P=\pi$ and $\sum_i \pi_i=1$.

Convergence: Express

$$UPV = \Lambda = \left[egin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & & \\ \vdots & & \ddots & \vdots \\ 0 & & \cdots & \lambda_k \end{array}
ight]$$

where $1 > |\lambda_2| \geqslant \cdots \geqslant |\lambda_k|$ and $V = U^{-1}$

Note:

$$\lim_{n\to\infty} P^n = \lim_{n\to\infty} V \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & \lambda_2^n & & \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_k^n \end{bmatrix} U = V \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & & \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} U$$
25

Stationary Distribution

Note: $UP = \Lambda U$ implies

$$\begin{bmatrix} \pi_1 & \cdots & \pi_k \\ \vdots & & \vdots \\ u_{k1} & \cdots & u_{kk} \end{bmatrix} \begin{bmatrix} P \end{bmatrix} = \begin{bmatrix} 1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \begin{bmatrix} \pi_1 & \cdots & \pi_k \\ \vdots & & \vdots \\ u_{k1} & \cdots & u_{kk} \end{bmatrix}$$

and $V = U^{-1} \Rightarrow$

$$UV = \begin{bmatrix} \pi_1 & \cdots & \pi_k \\ \vdots & & \vdots \\ u_{k1} & \cdots & u_{kk} \end{bmatrix} \begin{bmatrix} 1 & \cdots & v_{1k} \\ \vdots & & \vdots \\ 1 & \cdots & v_{kk} \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 1 \end{bmatrix}$$

Thus

$$\lim_{n \to \infty} p^{n} = \lim_{n \to \infty} p^{0} P^{n}$$

$$= \lim_{n \to \infty} \left[p_{1}^{0}, \dots, p_{k}^{0} \right] \begin{bmatrix} 1 & \cdots & v_{k1} \\ \vdots & & \vdots \\ 1 & \cdots & v_{kk} \end{bmatrix} \begin{bmatrix} 1 & \lambda_{2}^{n} & & \\ & \ddots & & \\ & & \ddots & \\ & & & \lambda_{k}^{n} \end{bmatrix} \begin{bmatrix} \pi_{1} & \cdots & \pi_{k} \\ \vdots & & \vdots \\ u_{k1} & \cdots & u_{kk} \end{bmatrix}$$

$$= \begin{bmatrix} p_{1}^{0} & \cdots & p_{k}^{0} \end{bmatrix} \begin{bmatrix} 1 & \cdots & v_{k1} \\ \vdots & & \vdots \\ 1 & \cdots & v_{kk} \end{bmatrix} \begin{bmatrix} 1 & 0 & & \\ & \ddots & & \\ & & \ddots & \\ & & & 0 \end{bmatrix} \begin{bmatrix} \pi_{1} & \cdots & \pi_{k} \\ \vdots & & \vdots \\ u_{k1} & \cdots & u_{kk} \end{bmatrix}$$

$$= [\pi_{1}, \dots, \pi_{k}]$$

$$= \pi,$$

$$26$$

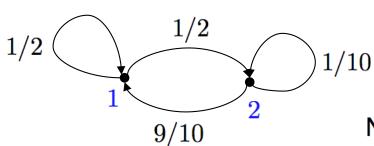
Detailed Balance Conditions

Reversible Chains: A Markov chain determined by the transition matrix $P=[p_{ij}]$ is reversible if there is a distribution π that satisfies the detailed balance conditions

$$\pi_i p_{ij} = \pi_j p_{ji}$$

Proof: We need to show that $\pi_j = \sum_i \pi_i p_{ij}$. Note that $\sum_i \pi_i p_{ij} = \sum_i \pi_j p_{ji} = \pi_j \sum_i p_{ji}$

Example:



$$P = \left[egin{array}{ccc} 1/2 & 1/2 \ 9/10 & 1/10 \end{array}
ight]$$
 $\pi = \left[egin{array}{ccc} 9/14 & 5/14 \end{array}
ight]$

Note: $\frac{1}{2} \cdot \frac{9}{14} = \frac{9}{10} \cdot \frac{5}{14}$ so detailed balance satisfied

Strategy: Markov chain simulation used when it is impossible, or computationally prohibitive, to sample q directly from

$$\pi(\theta|y) = \frac{f(y|\theta)\pi_0(\theta)}{\int_{\mathbb{R}^p} f(y|\theta)\pi_0(\theta)d\theta}$$

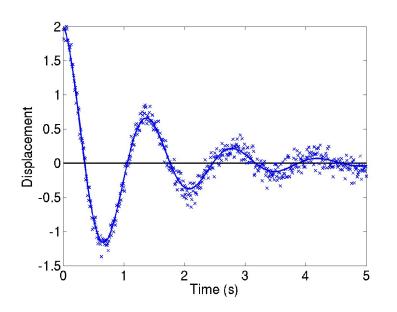
• Create a Markov process whose stationary distribution is $\pi(\theta|y)$

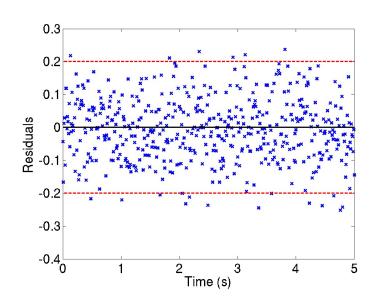
Note:

- In Markov chain theory, we are given a Markov chain, P, and we construct its equilibrium distribution.
- In MCMC theory, we are "given" a distribution and we want to construct a Markov chain that is reversible with respect to it.

Model Calibration Problem

Assumption: Assume that measurement errors are iid and $\varepsilon_i \sim N(0, \sigma^2)$





Likelihood:

$$f(y|\theta) = L(\theta, \sigma|y) = \frac{1}{(2\pi\sigma^2)^{n/2}}e^{-SS_{\theta}/2\sigma^2}$$

where

$$SS_{\theta} = \sum_{j=1}^{n} [y_j - f_i(\theta)]^2$$

is the sum of squares error.

General Strategy:

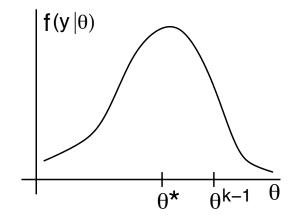
- Current value: $X_{k-1} = \theta^{k-1}$
- Propose candidate $\theta^* \sim J(\theta^* | \theta^{k-1})$ from proposal (jumping) distribution
- With probability $\alpha(\theta^*, \theta^{k-1})$, accept θ^* ; i.e., $X_k = \theta^*$
- Otherwise, stay where you are: $X_k = \theta^{k-1}$

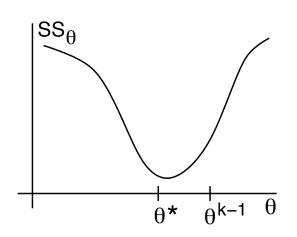
Intuition: Recall that

$$\pi(\theta|y) = \frac{f(y|\theta)\pi_0(\theta)}{\int_{\mathbb{R}^p} f(y|\theta)\pi_0(\theta)d\theta}$$

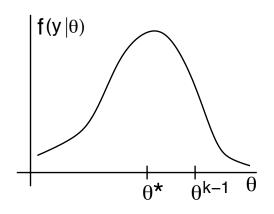
where

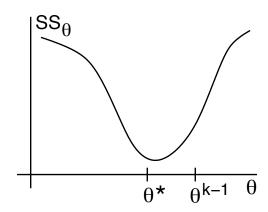
$$f(y|\theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} [y_i - f_i(\theta)]^2/2\sigma^2} = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-SS_{\theta}/2\sigma^2}$$





Intuition:

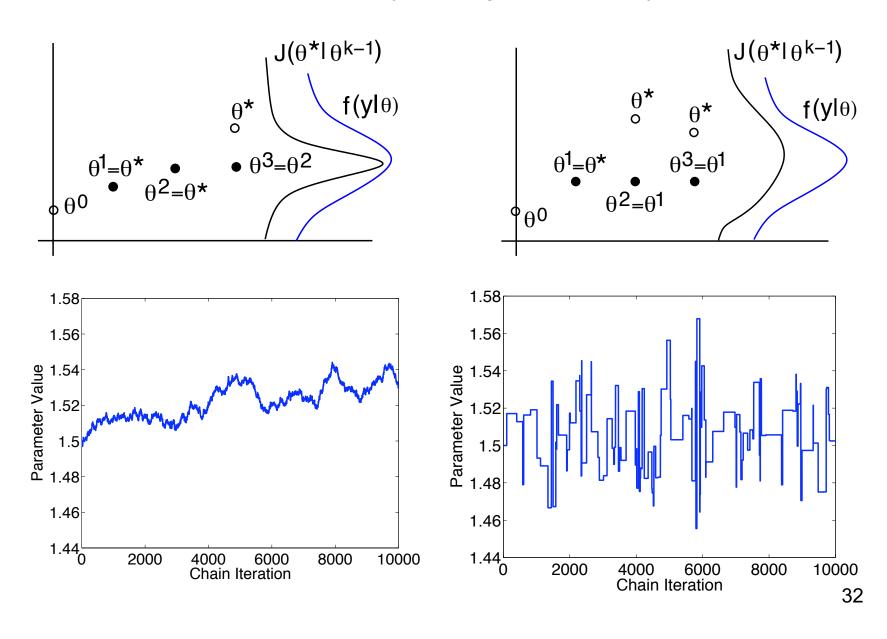




- Consider $r(\theta^*|\theta^{k-1}) = \frac{\pi(\theta^*|y)}{\pi(\theta^{k-1}|y)} = \frac{f(y|\theta^*)\pi_0(\theta^*)}{f(y|\theta^{k-1})\pi_0(\theta^{k-1})}$
 - o If $r < 1 \Rightarrow f(y|\theta^*) < f(y|\theta^{k-1})$, accept with probability $\alpha = r$
 - o If r > 1, accept with probability $\alpha = 1$

Note: Narrower proposal distribution yields higher probability of acceptance.

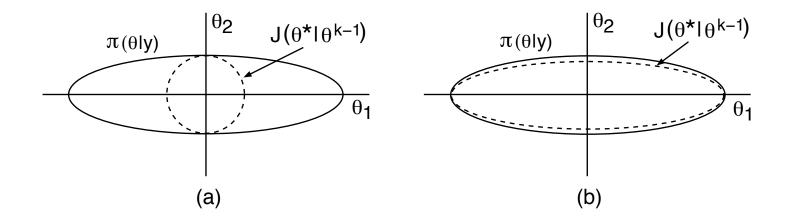
Note: Narrower proposal distribution yields higher probability of acceptance.



Proposal Distribution

Proposal Distribution: Significantly affects mixing

- Too wide: Too many points rejected and chain stays still for long periods;
- Too narrow: Acceptance ratio is high but algorithm is slow to explore parameter space
- Ideally, it should have similar "shape" to posterior distribution.



Problem:

- Anisotropic posterior, isotropic proposal;
- Efficiency nonuniform for different parameters

Result:

 Recovers efficiency of univariate case