Bayesian Techniques for Parameter Estimation
“He has Van Gogh'’ s ear for music,” Billy Wilder

Reading: Sections 4.6, 4.8 and Chapter 12



Statistical Inference

Goal: The goal in statistical inference is to make conclusions about a
phenomenon based on observed data.

Frequentist: Observations made in the past are analyzed with a specified
model. Result is regarded as confidence about state of real world.

» Probabilities defined as frequencies with which an event occurs if
experiment is repeated several times.

 Parameter Estimation:

o Relies on estimators derived from different data sets and a specific
sampling distribution.

o Parameters may be unknown but are fixed and deterministic.

Bayesian: Interpretation of probability is subjective and can be updated with
new data.

« Parameter Estimation: Parameters are considered to be random
variables having associated densities.



Bayesian Inference

Framework:
* Prior Distribution: Quantifies prior knowledge of parameter values.

» Likelihood: Probability of observing a data if we have a certain set of
parameter values; Comes from observation models in Chapter 5!

* Posterior Distribution: Conditional probability distribution of unknown
parameters given observed data.

Joint PDF: Quantifies all combination of data and observations

7(0, y) = mt(y|0) 7o (0)

Bayes’ Relation: Specifies posterior in terms of likelihood, prior, and
normalization constant

f(y16)7o(0)

o) = J e F(¥10)70(0)dO

Problem: Evaluation of normalization constant typically requires high
dimensional integration.



Bayesian Inference

Uninformative Prior: No a priori information parameters

e.g., 7'[70(9) =1

Informative Prior: Use conjugate priors; prior and posterior from same
distribution

_ H(yl®)mo(6)
o) = Je f(y10)710(0) O

Evaluation Strategies:
* Analytic integration --- Rare
 Classical Gaussian quadrature; e.g.,p=1-4
» Sparse grid quadrature techniques; e.g., p =5-40
» Monte Carlo quadrature Techniques

 Markov chain methods



Bayesian Inference: Motivation

Example: Displacement-force relation (Hooke’s Law)

si=Eei+¢;,i=1,...,N E
= ogmerene R 0
e ~ N(0, 0%) » 1 -
—Model
Parameter: Stiffness E % 002 o004 006 008 of

Strategy: Use model fit to data to update prior information

Information Provided Updated Information
by Model and Data

Prior Information

0 0 (E) e YL, [Si/:'e/‘z/%2 (E|s)
Data Model

Non-normalized Bayes’ Relation:

n(Els) = e~ ZmiloEelt/ 20" g () ;



Bayesian Inference

Bayes’ Relation: Specifies posterior in terms of likelihood and prior

_yN _Fa.12 2 —
Likelihood: @ =i—1Isi—Eeil®/20® , q=E

\ vV =[Sy, ..., SN]

— f(y|0)7o(0) <= Prior Distribution
[ F(y10)70(8) 0B <

Posterior

Distribution\ (0]y)

| Normalization Constant

 Prior Distribution: Quantifies prior knowledge of parameter values
« Likelihood: Probability of observing a data given set of parameter values.

« Posterior Distribution: Conditional distribution of parameters given observed data.

Problem: Can require high-dimensional integration
* e.g., Many applications: p = 10-50!
 Solution: Sampling-based Markov Chain Monte Carlo (MCMC) algorithms.

» Metropolis algorithms first used by nuclear physicists during Manhattan Project
in 1940’s to understand particle movement underlying first atomic bomb.



Bayesian Model Calibration

Bayes’ Relation: Bayesian Model Calibration:
P(B|A)P(A) « Parameters assumed to be random variables
R F(y10)mo(6)
m(0ly) =

e F(¥10)710(0) O

Example: Coin Flip . 5 Heads, 9 Tails
O, w=T
viw ={ o) 3+
Likelihood: 2
N |
n(ylo) =] [6"(1—0)"”
i=1 % 02 04 06 o8
— eN1 (1 L e)NO o 49 Héads, 51‘Tails
ol
Posterior with flat Prior: o (0) = 1 6
Ni(1—9)N N+ 1)! Y
[loMi(1—0)Mag  No!Ni! .

0 02 04 06 08



Bayesian Inference

Example:
2 ‘ ‘ ‘ ‘ 35 : ‘ ‘ 10
al
8,
1.8 1 25
2 6r
nl
15 al
05! 1t
05} 2r
% 0.2 04 0.6 08 1 % 02 0.4 06 0.8 1 % 02 04 0.6 08 1
1 Head, 0 Tails 5 Heads, 9 Tails 49 Heads, 51 Tails

Note: For N = 1, frequentist theory would give probability 1 or O



Bayesian Inference

Example: Now consider

’
7(0) = g~ (6—n)?/20°

oV 2T
with 1 = 0.3 and o0 = 0.1

10

0 0.2 04 06 0.8 1 % 02 0.4 0.6 0.8 1

5 Heads, 5 Tails 50 Heads, 50 Tails

Note: Poor informative prior incorrectly influences results for a long time.



Parameter Estimation Problem
Observation Model:

y,-=f,-(9)+s,-, i=1,...,n

Assumption: Assume that measurement errors are iid and ¢; ~ N (0, 02)

Likelihood:
1 B 2
fly|0) = L(6, 0ly) = (27t02)n/2e >50/2
where

n

SSo =Y Ly — F(O)

j=1

is the sum of squares error.

10



Parameter Estimation: Example

Example: Consider the spring model

z+Cz+Kz=0
z(0)=2, z2(0)=—C

which has the solution

Take K to be known and 6 = C. Assume that ¢; ~ N(0, 03)

where oy = 0.1

Displacement

Residuals

Note: Take K =20.5,C° =15

z(t) =2e "2 cos(\/K — C2/4 - t)

0.3

-0.2
-0.3r

-04
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Parameter Estimation: Example

Example: The sensitivity matrix is

dy dy !
X(0) = | $(0,0),-++ 55 (1,0)
where
a_y:e—C"/2 [ ct sin (\/K—C2/4-t)—tcos (\/K—C2/4-t>]
oC V4K — C2
Here 1
V=02=05[X"(0)X(0)] =3.35x10""
so that o5 |
- - -Contructed
C~N(Co,03) , 0, =0.0183 —Sampiing |
Note: In 10,000 simulations, 9455 of - 15
confidence intervals contained true [
parameter value. S 40
Figure: Sampling distribution S
compared with that constructed
using 10,000 estimated values of C. 07 1 45 15 15512 16

Optimal C



Parameter Estimation: Example

Bayesian Inference: Employ the flat prior
T0(0) = X[0,00) (O)

Posterior Distribution:
e—S5S0/20%

n(Oly) =
Issue: @ S%0mr ~ 3 x 107113

Midpoint formula:
1

k —(SSCI—SSQ)/ZO% Wi

(Bly) ~
i 2 i—1€

Note:
*Slow even for one parameter.

*Strategy: create Markov chain using random
sampling so that created chain has the
posterior distribution as its limiting
(stationary) distribution.
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Bayesian Model Calibration

Bayesian Model Calibration:

Parameters considered to be random variables
with associated densities.

 yle)mo(0
MO = yieimo(e)do

Problem:
*Often requires high dimensional integration;

o e.g., p=18for MFC model

o p = thousands to millions for some models

Strategies:
*Sampling methods

*Sparse grid quadrature techniques
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Markov Chains

Definition: Sequence of random variables X, X5, - - - that satisfy Markov property:
Xn+1 depends only on X,,; that is

P(Xn+1 — $n+1|XO — anXl = T1y" " 7Xn — xn) — P(Xn+1 — xn—l—lan — xn)

where z; is the state of the chain at time .

Note: A Markov chain is characterized by three components: a state space, an
initial distribution, and a transition kernel.

State Space: Range of X;: Set of all possible values
Initial Distribution: (Mass)
p’ = [plsp2s -+ P i = P(Xo = )
Transition Probability: (Markov Kernel)
pij = P(Xnt1 = ;[ Xn = i)
pg‘) = P(Xm4n = 2| X = ;) (n-step transition probability)

n 15
P=py] , Pn=I[p}}]



Markov Chain Techniques

Markov Chain: Sequence of events where current state depends only on last value.

Baseball: States are S = {win,lose}. Initial state is p" = [0.8,0.2].

*Assume that team which won last game has 70% chance of winning next game and
30% chance of losing next game.

*Assume losing team wins 40% and loses 60% of next games.
<704
or( wm) (o os
v
0.3

*Percentage of teams who win/lose next game given by

p' =1[08,0.2][07 03] =1[0.64, 0.36]
0.4 0.6

*Question: does the following limit exist?

p" =1[0.8,02] 07 031"
0.4 0.6

16



Markov Chain Techniques

Baseball Example: Solve constrained relation

mT=7nP Zmzl

= [Wwina 7"-lose] 0.7 03| = [Wwina Wlose] s Twin T Tlose = 1
0.4 0.6

to obtain

7 = [0.5714, 0.4286]

17



Markov Chain Techniques

Baseball Example: Solve constrained relation

mT=7nP Zmzl

= [Wwina 7"-lose] 0.7 03| = [Wwina Wlose] s Twin T Tlose = 1
0.4 0.6

to obtain

7 = [0.5714, 0.4286]

Alternative: Iterate to compute solution

n n mn

p
0.8000, 0.2000

0.6400 , 0.3600
0.5920 , 0.4080)
0.5776 , 0.4224]

p L n p
0.5733, 0.4267] || 8 [0.5714, 0.4286]
9

0.5720, 0.4280] 0.5714 , 0.4286]
0.5716, 0.4284] || 10 [0.5714, 0.4286]
0.5715, 0.4285]

W =03
NO O A3

Notes:
* Forms basis for Markov Chain Monte Carlo (MCMC) techniques

» Goal: construct chains whose stationary distribution is the posterior density 18



Irreducible Markov Chains
Reducible Markov Chain:

c

pO:[pl,pQ]:W

Note: Limiting distribution not
unique if chain is reducible.

Irreducible: A Markov chain is irreducible if any state x; and be reached
from any state z; in a finite number of steps; that is

pz(-?) > (0 for all states in finite n

19



Periodic Markov Chains

Example: _ -
0O 0 1 0 O
1 0 0 0 O
P=1|0 1/2 0 1/2 0
0O 0 0 0 1
0 0 1 0 0

ST NN

Note: Chain returns to state 1 at steps 3,6,9,--- so Period =3
Note: Probability mass “cycles” through chain so no convergence

Periodicity: A Markov chain is periodic if parts of the state space are visited at
regular intervals. The period k is defined as

ko= ged{nlp{” >0}

= ged {n|P(Xmin = zi| Xon = ;) > 0}

e The chain is aperiodic if £ = 1. 20



Periodic Markov Chains

Example: 1 ] / -
0 4/5 0 1/5
) 4 p_|1 0 0 0
2/3 1/5 0 2/3 0 1/3
0 0 1 0 |
1 2 0 1 1 1 1
=011 1 1l
1
p’=[1 0 0 0]




Stationary Distribution
Theorem: A finite, homogeneous Markov chain that is irreducible and aperiodic

has a unique stationary distribution 71 and the chain will converge in the sense of
distributions from any initial distribution p°.

Recurrence (Persistence): A state x; is recurrent (persistent) if the probability
of returning to z; is 1; that is,

P(Xm+4n = x; for some n > 1| X,, = x;) =1

e It is transient if probability strictly less than 1

Example: State 3 is transient

Ergodicity: A state is termed ergodic if it is aperiodic and recurrent. If all states of
an irreducible Markov chain are ergodic, the chain is said to be ergodic. 22



Matrix Theory

Definition: A matrix A € R(nxn) jg

(i) Nonnegative, denoted A > 0, if a;; > 0 forall 7, 5

(i) Strictly positive, denoted A > 0, if a;; > 0 for all ¢, j

Lemma: Let P be the transition matrix of an ergodic finite Markov chain with

state space S. Then for some Ny > 1, P, > 0 for all n > Nj.

Example: 2/3

1/3 3

[ 1/3 2/3
1 0

[ 7/9 2/9 ]

| 1/3 2/3 |

23



Matrix Theory

Theorem (Perron-Frobenius): For any strictly positive matrix A > 0,
there exist \g > 0 and xy > 0 such that

(i) Azg = Aozo
(i) If X #£ Ao is any other eigenvalue of A, then || < Ag

(iif) Ap has geometric and algebraic multiplicity 1

Corollary 1: If A > 0 is a nonnegative matrix such that A™ > 0, then
theorem also applies to A.

Proposition: Let A > 0 be a strictly positive n x n matrix with row and
column sums

TiIE :a'ij y G5 = E :a’ijaiajzla"'an
i 7
Then

minr; < Ag <maxr; , minc; < Ag < maxc;
(] (/ J J

24



Stationary Distribution

Corollary: Let P > 0 be the transition matrix of an ergodic Markov chain. Then
there exists a unique stationary distribution = such that 7P = .

Proof: By Lemma and Corollary 1, P has a largest eigenvalue \¢ = 1.

Since multiplicity is 1, unique = such that 7P = and ) ~m; = 1.

Convergence: Express

1 0 - 0
0 A

UPV =NA=| |
|0 e Ak

where 1 > [Ao| > --- > [AfJand V = U™’

Note:
1 0 0 | 1 0 0 |
0 AJ 0 0
im P"= lim V| . _ U=V ]
n—oo n—oo . - .
' ' 25
| O 7\2_ | O 0 |




Stationary Distribution
Note: UP = AU implies

» _
vAs| Tk 7\2 T Tk
P _
Uk Ukk A Uk Ukk
- n —
andV=U""'=
[T e | [ 1 Vik | I ]
UV = —
Uk Uk 1 Vick
Thus i - - -
im p" = lim p°P" ) I
n— 00 n—00 1 Vi1 A7 74
= lim [p},...,p%] | ’ :
n—oo ’ ’ - -
- 1 Vik A7 Uk
| k
[ 1 Vi1 0 7T
_ 0 0 : .
= | A Pl :
|1 Vik 0 U1
= [y, .., 4] )




Detailed Balance Conditions

Reversible Chains: A Markov chain determined by the transition matrix P = |p;;]
is reversible if there is a distribution 7T that satisfies the detailed balance
conditions

TiPij = TjPji

Proof: We need to show that m; = ) . m;p;;. Note that Z"Tz'pij = Z TiPji = T iji

Example: ]
p_[ 12 1/
1 1/2 ~ | 9/10 1/10
. 1/10 m=|9/14 5/14 |
2
9/10 Note: 2 - 2 = % - 2 so detailed balance satisfied

27



Markov Chain Monte Carlo Methods

Strategy: Markov chain simulation used when it is impossible, or
computationally prohibitive, to sample q directly from

_ yle)mo(0)
O = T HylBime(e)de

e Create a Markov process whose stationary distribution is 7t(0|y)

Note:

* In Markov chain theory, we are given a Markov chain, P, and we
construct its equilibrium distribution.

 In MCMC theory, we are “given” a distribution and we want to construct
a Markov chain that is reversible with respect to it.

28



Model Calibration Problem

Assumption: Assume that measurement errors are iid and ¢; ~ N(O, 02)

“ ‘ ' ' ' 0.3
15 | e
1F § g 0.1 ,":; ] x %
g 0.5¢ ‘_E 0% % :‘ .
ié. 0 2-0.1;"“,‘,: ’i:
a v B 5
-0.5¢ 0.2 — o
At -0.3}
-1.5 ‘ 1 ' . -04 ] : w ‘
° 1 2Time (s) ’ ‘ > ’ 1 2Time (s) ’ ‘ °
Likelihood:
1 2
f 0)=L(0,0 — e_SSB /20
where
n
2
SSp = E ly; — £:(0)]
J=1

is the sum of squares error.



Markov Chain Monte Carlo Methods

General Strategy:
e Current value: X,_; = 0%
e Propose candidate 8* ~ J(0*|0%~1) from proposal (jumping) distribution
e With probability «(0*, 0%—1), accept 0*;i.e., Xx = 0*
e Otherwise, stay where you are: X, = 01

Intuition: Recall that
f(yl0)mo(0)

m(Oly) =
)= T Hyl)mo(0)do
where 1 1
_ — Y i lyi—fi(8)12/20% _ —8Sp /207
f(yl0) = (27‘[0‘2)”/26 1 = (27(02)n/26 0/20

f(y|o) SSy

30




Markov Chain Monte Carlo Methods

Intuition:  |f(y|e) SSg

g* gk-1 6 g* gk-1 O

e Consider r(0*|0%x—1) = T[T(Cék_m) = f(yfgi_&ﬁﬁﬁeklu

o If r<1= f(y|0*) < f(y|0k—1), accept with probability o = r
o If r > 1, accept with probability o = 1

Note: Narrower proposal distribution yields higher probability of acceptance.



Markov Chain Monte Carlo Methods

Note: Narrower proposal distribution yields higher probability of acceptance.

J(6*1 9k-1)
0* f(yle)
(@)
0l=0* e  ©03=02
° 2_Q*
600 6<=6
158
156!
g
3
>
5
Q
£
S
©
& 1.48/
1.46!
144 2000 4000 6000 8000

Chain lteration

10000

Parameter Value

J(0*19k-1)
0" g f(ylo)
(0}
01=p* p3=0
([ ([ ([
OGO 82:81
1.58
1,561
1,54}
1.52F f
15 j‘ 5
1.48! f
1.46"
4% 2000 4000 6000 8000 10000

Chain lteration
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Proposal Distribution

Proposal Distribution: Significantly affects mixing
» Too wide: Too many points rejected and chain stays still for long periods;

» Too narrow: Acceptance ratio is high but algorithm is slow to explore
parameter space

* |[deally, it should have similar “shape” to posterior distribution.

2 (e*10%) cely |2 JE1ek

T (6ly)

- ~
N
4 \
’ \
! 1
1 T
\ 1
\ ’
~ 7/
~ -

(@) (b)

01

Problem:
» Anisotropic posterior, isotropic Result:
proposal; - Recovers efficiency of

« Efficiency nonuniform for univariate case

33
different parameters



