Lecture 1: Motivation and Prototypical Examples

“Essentially all models are wrong, but some are useful,”
George E.P. Box, Industrial Statistician
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Predictive Science

Components: All involve uncertainty

* Experiments

* Models Model Calibration

« Simulations (V \and valdation
Numerical
Simulations

Essentially, all models are wrong, but some are useful, George E.P. Box, Industrial
Statistician.

— Quantity of Interest (Qol)

\____/'

Verification

Computational results are believed by no one, except the person who wrote the code,
source anonymous, quoted by Max Gunzburger, Florida State University.

Experimental results are believed by everyone, except for the person who ran the
experiment, source anonymous, quoted by Max Gunzburger, Florida State University.

| have always done uncertainty quantification. The difference now is that it is
capitalized. Bill Browning, Applied Mathematics Incorporated.



Modeling Strategy

General Strategy: Conservation of stuff

Stuff —

X X+ Ax

dStuff
at

= Stuff in - Stuff out + Stuff created - Stuff destroyed

Continuity Equation:

(L, x) | OPAX) | ¢(t,x + Ax)
20X (4,00 — (b, x + Ax —— | " d —
ap d(t, x) — d(t, x + Ax) X X+ Ax

= |Iim — = I|im
Ax—0 Ot  Ax—0 AXx

= 1T 0 Density: p(f, x) - Stuff per unit length or volume

Rate of Flow: ¢ (¢, x) - Stuff per second
More Generally:

Jp 00 .
= Y + Vi Sources - Sinks




Example 1: Weather Models

Challenges:

Horizontal Grid

« Coupling between temperature, pressure ittt st
gradients, precipitation, aerosol, etc.;

. . T Vertical Grid
« Models and inputs contain uncertainties; | jmonor pressure) |
* Numerical grids necessarily larger than . % %E
many phenomena; e_g_, ClOUdS Physical Processes in a Model : EE

radiation radiation
q 'Y

« Sensors positions may be uncertain;
e.g., weather balloons, ocean buoys.

Goal:

 Assimilate data to quantify uncertain
initial conditions and parameters;

Assimilation Period Forecast Period

« Make predictions with quantified
uncertainties.

Observable Quantity

Time

=0 Present Future



Equations of Atmospheric Physics

Conservation Relations: 3 3
P Lo _4 Sink
dp — 4+ —— = Sources - SINKs
Mass a_t+v.(pv):o ot (1)’
ov 1 n
Momentum T —Vv-Vv— EVp—gk—ZQ X V
oT .
Energy povo- +PV v ==V -F+ V- (kVT)+pg(T,p.p)
p — pRT 20;?;2?1?2 Grigd) X
amj .
Water a—t = -V me —l_ Smj(T’ mj’Xj’ p) ’ ./ — 1725 35 Vertical Grid
(Height or Pressure) | T
Aerosol a—t_—v-ijJrSXj(T,Xj,p),1—1,---,J, fose .

EEEEEEEEEE

Constitutive Closure Relations: e.g.,
Sm, =S1+ So+ S35 — S4

where 1
. _
Si=p(mp—mj;)? [1.2 x107* + ( 1.569 x 10~ '? .
1 p(m2 m2) [ X —I_ ( X do(mg _ m;)




Ensemble Predictions

Ensemble Predictions:

25'N

00 UTC on August 26, 2005 12 UTC on August 26, 2005

Cone of Uncertainty:

Hurricane Katrina
August 26, 2005
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Ensemble Predictions

Ensemble Predictions:

25'N

00 UTC on August 26, 2005 12 UTC on August 26, 2005

Cone of Uncertainty:
General Questions:

* What is expected rainfall on January 197

OZOPZUDB T
CECZEEE
EREE £ 3

« What are high and low temperatures?

» What is predicted average snow fall?

* Note: Quantities are statistical in nature.




Example 2: Quantum-Informed Continuum Models
Objectives: PP
« Employ density function theory (DFT) to | )T]l ‘E'e°”'°f'e"’ e
construct/calibrate continuum energy relations. ) N @2/
— e.g., Helmholtz energy Lead Titanate Zirconate (PZT)

V(P) = o1 P? 4 11 P* 4 441 P°

95/% Prediction Interval
= 95% Credible Interval
= —Continuum Energy
> 100+ —DFT Energy
2

(0]

c

w

0 0.2 0.4 0.6 0.8
P, (C/m?)

Helmholtz Energy
UQ and SA Issues:

* Is 6" order term required to accurately
characterize material behavior?

 Note: Determines molecular structure




Quantum-Informed Continuum Models

Objectives:

« Employ density function theory (DFT) to
construct/calibrate continuum energy relations.

— e.g., Helmholtz energy

V(P) = o1 P? 4 11 P* 4 441 P°

300
95/% Prediction Interval

= 2001 1 95% Credible Interval
< —Continuum Energy
= 100 —DFT Energy
[9)] . .
o DFT Electronic Structure Simulation
L

100 0.2 0.4 0.6 0.8 : :

: - : : Broad Objective:

2
P, (C/m?)

* Use UQ/SA to help bridge scales

Helmholtz Energy
from quantum to system

UQ and SA Issues:

* |s 6" order term required to accurately Note:

characterize material behavior? . .
* Linearly parameterized

* Note: Determines molecular structure



Example 2: Pressurized Water Reactors (PWR)

Containment Structure

Pressurizer Steam
Gen

Condenser

Models:

*Involve neutron transport, thermal-hydraulics, chemistry.

*Inherently multi-scale, multi-physics.

CRUD Measurements: Consist of low resolution images at limited number of locations.



Example: Pressurized Water Reactors (PWR)

3-D Neutron Transport Equations:
dp  0¢

10 — + — = Sources - Sinks
ma—(l[‘)+QV(P+Zt(rsE)(P(rsE=Qst) at—l— ax - |

N J dQ/J dE'YS(E' — E,Q — Q)o(r,E',Q', 1)
47t 0

+@J dQ/J dE,\/(E/)Zf(E/)(P(r, E/,Q/,t)
47t A7t 0 ——— Rod cluster
Challenges:

control assembly N
) ~
7 > -

 Very large number of inputs; e.g., 100,000;
Active subspace construction critical.

* ORNL Code SCALE: Can take hours to run.

* Time-dependent surrogate models must
accommodate PDE structure.

* Numerical errors often difficult to quantify.

: ' Pellet
" Fuel tube

* Predicting future requires extrapolatory or out- B Fuel rod

of-data predictions; one must address model
discrepancy to construct validation intervals.



Example: Pressurized Water Reactors (PWR)

Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid

0
a_t(‘xfpf) + V- (opsvy) = —T dp 0 |
3y m + i Sources - Sinks
(xfpfa—tf‘i‘(xfpfvf‘vvf+v‘ G?—i—fva' 0 + oV ps X
= —FR — F + r(Vf — vg)/2 + xtprg
Notes:

0
—(oprer) + V- (rprerve + Th) = (Tg — T)H + Til\s

ot « Similar relations for gas
—Tg(H—0ogV -h)+h-VT —Tle; + Ti(s" — )] and bubbly phases
o <% LV (ogvy) + L) « Surrogate models must
ot Pr conserve mass, energy,
Example: Shearon Harris outside Raleigh and momentum

UQ Questions:
» What is peak operating temperature?
» What is expected level of CRUD buildup?

* What is risk associated with operating
regime?

» What is expected profit for new design?



Example 4: SIR Model for Disease Dynamics
SIR Model:

asS

i ON —dS—vkIS , S(0) = Sp Susceptible
al .
i YKIS — (r+8)1 , 1(0) =l Infectious
dR
ar rI—oR , R(0) = Ao Recovered
Parameters: Response:
e v: Infection coefficient >
Y . .. y :J R(t, q)dt
e K: Interaction coefficient 0

e r: Recovery rate
e ): Birth/death rate
Note: Parameters g = [y, k, r, 8] not uniquely determined by data

Note: Presently employed cholera models have similar form; example this
afternoon.



SIR Disease Example
SIR Model:
dS

i ON —dS—vkIS , S(0) = Sp Susceptible
dl .
i YKIS — (r+8)1 , 1(0) =l Infectious
dR
o rl—dR , R(0) = Ro Recovered
Typical Realization: 1000 —
— Susceptible
. - - =Infected
800 ','“ - -'Recovered |
% 600 Ik
§ 400 '\;'\x LTS
=
= |
200: . |
0 1 2 3 4 5



SIR Disease Example

SIR Model: Problem: Cannot uniquely infer
JS parameters
= SN —8S—vkIS , S(0) =S
al
S = YKIS—(r+8)1 , 1(0) =
dR
— =rl—08R , R(0) =R,
=T (0) = Ro

UQ Goal: Predict I(t) with uncertainty

intervals:

—
o
o
o

055 06 065 0.7

©

>

2

C &

= 800 _

2 ' Solution:

B 600| .

£ 0, - Active subspaces

©

C

a 00 - |dentifiability analysis

©

D " " L] [l

§ 200  Sensitivity analysis

S !

g ‘ , ‘ . .  Design of experiments 15
0 1 2 3 4 5 6




Example 5: HIV Model for Characterization and Control Regimes

HIV Model: Notes: 21 parameters

Ti =M —di Ty — (1— )k VTy [Adams, Banks et al., 2005,
L=N—0T—(1—fe)k VT 2007]

Iy =01 —¢ek VT — 8T — mET;
Ty =(1—fe)ko VT, — 8Ty — meET;
V=Nrd(Ty + T3)—cV—[(1—€)prtki Ts + (1 — fe)pako To] V

. be(T; + T;) de(T; + T3) : . dE
E=Ac+ E — E —b6cE . =
e T T T K Tr 4 T34 Ky E Notation: £ = -
Compartments:
M
Ao
Uninfected Infectious Infected Non-infectious Immune Effectors

Target Cells  Virus Target Cells Virus (CTLs)



Example 3: HIV Model for Characterization and Control Regimes

HIV Model: Used for characterization and control treatment regimes.
Ty =M —diTh — (1 — )kl VT
Ty =Xy — doTy — (1 — fe)ko VT
TF = (1 —e)k\VTy — 6T} — m,ET}
T3 = (1 — fe)ko VT — 6Ty — moETy
V = NpS§(TF +T5) — cV = [(1 = e)pika Ty + (1 — fe)pokoTo]V

be(Ty +13) . de(Ti +73)
Ty +T5 + K, Tr +T5 + Ky

EZ)\E—F E —4gE

Parameters: Most are unknown and must be estimated from data

A1 Target cell 1 production rate p1 Ave. virions infecting type 1 cell
Ao Target cell 2 production rate p2  Ave. virions infecting type 2 cell
d, Target cell 1 death rate bp  Max. birth rate immune effectors
d,  Target cell 2 death rate dr  Max. death rate immune effectors
k1  Population 1 infection rate K, Birth constant, immune effectors
ko  Population 2 infection rate K,; Death constant, immune effectors
¢ Virus natural death rate A Immune effector production rate
0  Infected cell death rate 0  Natural death rate, immune effectors
e  Population 1 treatment efficacy | Ny Virions produced per infected cell
my Population 1 clearance rate f  Treatment efficacy reduction
mo  Population 2 clearance rate




Example: HIV Model for Characterization and Treatment Regimes

HIV Model: Several sources of uncertainty including viral measurement techniques

Example: Upper and lower limits to assay sensitivity

E
)
Q -
o
3
o 400
2
S 50 -
! ! ] _I ] ! | =l _I
0 200 400 600 800 1000 1200 1400 1600 1800

time (days)
UQ Questions:

« What are the uncertainties in parameters that cannot be directly measured?
* What is optimal treatment regime that is “safe” for patient?

* What is expected viral load? Issue: very often requires high-dimensional
integration!

ce.g., E[V()] = JRZ V(t,q)p(q)dg

Experimental results are believed by everyone, except for the person who ran the
experiment, source anonymous, quoted by Max Gunzburger, Florida State University.



Example 4: Portfolio Model

Example: Portfolio model

Take
Y =c1Q1 + c2Q2 c1=2,c =1
=2, ¢y =
Note: Q1 ~ N(0,0%) withoy =1

e ()1 and @), represent hedged portfolios

: : . ~ N(0,05) with o9 = 3
e c; and c; amounts invested in each portfolio @ (0,02) 92

10 10 ‘ ‘ 5

UQ Questions:
‘What is expected investment return?

‘What is impact of market uncertainty on investment return?



Example 5: Viscoelastic Material Models

Application: Adaptive materials for legged robotics

° Figure: BI”y Oates VHB Membrane

-«—Inner Frame

\/LegWire
280 : :
o B 6.7x107° Hz
Material Behavior: Significant rate dependence — O 0A7 e 4

Nominal Stress (kPa)




Example 5: Viscoelastic Material Models

280 - -
Material Behavior: Significant rate dependence | - - 6.7x10°° Hz
240
= — — —0.047 Hz
L 200}  0.10Hz
w | - 0.335 Hz L7
8 160 0.50 Hz Lo
2 — 0.67 Hz N PN R
Finite-Deformation Model: 5 120 A Aol
E 80 A i e
« Nonlinear non-affine = Vo
« Hyperelastic energy function U . . -
| 1\
N 2 2
3 = £ Geli = GeAfya I (BMoax — 1) + Ge Y (Aj + T)
: J
J
Parameters:
q = |Ge, Gey Amax, 17, B, 7] Uncertainty Quantification Goals:
q = [n, 8,7]: Viscoelastic parameters « Quantify measurement errors.
G..: Crosslink network modulus * Quantify uncertainty in parameters.
G.: Plateau modulus « Use statistics to quantify accuracy

. . of considered models.
Amax. Max stretch effective affine tube



Example 6: X-Ray Crystallography

X-ray Photoelectron Spectroscopy

Cu?2p,,
CuZ2p,,
* Reveal relative positions of atoms, their atomic _J\\JL

number, types of chemical bonds, etc. o Beam| %0 950 5i0 " 530

Binding Energy (eV)

Properties:

Intensity (a.u)

X-ray Diffraction

» Applications: determination of of DNA structure,
design of pharmaceuticals, etc..

3D Crystal

350000 | ]
300000 X . Transmitted e
250000 | . —
= s 756 7.57 7581236 1237 1238 Scanning Transmission Electron Microscopy
©.200000 - T ' ' .
-*é 150000 - ﬂ Uncertainty Quantification Goals:
(O] 3 ]
< 100000 } — ~ T P s use Bayesian analysis to quantify

21.51 21.52 40.61 40.62 40.63 |

uncertainty associated with Rietveld
model and background.

N
o
o
o
o
T
1

I ————1 * Quantify heteroskedasticity and

10 2I0 3I0 40 50 .
20 (degrees) correlation of error structure.

-50000
0

Collaborators: Chris Fancher, Zhen Han, Igor Levin, Katherine Page, Brian Reich,
Alyson Wilson, Jacob Jones



Experimental Uncertainties and Limitations

Examples: Experimental results are believed by everyone, except for the person
who ran the experiment, Max Gunzburger, Florida State University.

* Pharmaceutical and disease treatment strategies often too dangerous or
expensive for human tests or large segments of the population.

 Climate scenarios cannot be experimentally tested at the planet scale. Instead,
components such as volcanic forcing tested using measurements such as the
1991 Mount Pinatubo data.

» Subsurface hydrology data very limited due to infeasibility of drilling large
numbers of wells. Result: significant uncertainty regarding subsurface structures.

FRACTURE - REPOSITORY B

Fraccin g
fluid Wi -
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>
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S
.'
= = : W / R
_Casir:g_ ___/ . ) B . N — %'
: \} ;/ — \ l A% i fault 7%7 ‘
(Gas-bearing == ,/,,
Formation Methand™ | \|7 ~_ \J~ || /) e W - TABLE ~“ | SATURATED
~- =" '\/,\\« AR A LA LI RAR Y ST %////\r*\' };?ii‘ \\ ZONE
VARSI STV Hydratiic 1\ W72t RN %I‘ﬂ“ e~ BACKFILLED \
U S = N < =\ M N
A AN L U AT TR AP INT  Tunnes \
1S S UV S VN NS NI 2 o iU S SME S V=N NN ASTE J
A DA AVCRA BN RS wa\ VAR Y LR A TN G i s S W T A = w REPOSITORY A




Model Errors

Examples: Essentially, all models are wrong, but some are useful, George E.P. Box,

Industrial Statistician

 Numerous components of weather and climate models --- e.g., aerosol-induced
cloud formation, greenhouse gas processes --- occur on scales that are much smaller
than numerical grids used to solve the atmospheric equations of physics. These
processes represent highly complex physics that is only partially understood.

« Many biological applications are coupled, complex, highly nonlinear, and driven by

poorly understood or stochastic processes.

| 55538 /  Incoming #d Oulgolng
o\ e | ") ey
342'W m"" 235Wm’

Emitted by /- 4

Atmosphere ow

Qreenhouse

\ Absorbed by Gases

(" 67 Atmosphere

5 ¥ B3

o

Horizontal Grid

(Latitude-Longitude) [~

Vertical Grid

(Height or Pressure) |~

=

solar  terrestrial
radiation radiation
4




Input Uncertainties

Note: Essentially, all models are wrong, but some are useful, George E.P. Box,

Industrial Statistician

* Phenomenological models used to represent processes such as turbulence in
weather, climate and nuclear reactor models have nonphysical parameters whose
values and uncertainties must be determined using measured data.

» Forcing and feedback mechanisms in climate models serve as boundary inputs.
These parameterized phenomenological relations introduce both model and

parameter uncertainties.

Concentrations of Greenhouse Gases from 0 to 2005

400 | — T T T T T T T T ]
Carbon Dioxode (CO,)
/‘-&\ Methane (CH,) i
Qo 350 —— Nitrous Oxide (N,0)
Q ]
z
€ ]
Q.
N~
s 300
o _
250 =

0.5

—

-

-

e
*Medieval Warm Period
”‘ - -4

Little Ice Age

Data from thermometers (red) and from tree rings,
corals, ice cores and historical records (blue),

1

Sl ENC
1200

A A A A 1 A A A 1 A A 1
1400 1600 1800 200t
Year



Numerical Errors

Note: Computational results are believed by no one, except the person who wrote
the code, Max Gunzburger, Florida State University.

» Roundoff, discretization or approximation errors; e.g., mesh for nuclear subchannel
code COBRA-TF is on the order of subchannel between rods.

* Bugs or coding errors;

« Bit-flipping, hardware failures and uncertainty associated with future exascale and
gquantum computing;

 Grids required for numerical solutions of field equations in applications such as
weather or climate models (e.g., 50~km) are much larger than the scale of physics
being modeled (e.qg., turbulence or greenhouse gases).

Horizontal Grid
(Latitude-Longitude) |~

e
sest

Vertical Grid )
(Height or Pressure) |~
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i
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Steps in Uncertainty Quantification

Note: Uncertainty quantification requires synergy between statistics, mathematics

and application area.

Input Representation

Local Sensitivity Analysis

Global Sensitivity Analysis

| I

Parameter Selection

—*| Model Discrepancy

T

Surrogate Models

Sparse Grids |—>

Model Calibration

|

|

Stochastic Spectral Methods

I

Uncertainty Propagation

Sparse Grids




Modeling Issues

Model Qualification

| Reality |

A A

Analysis

Model

\ 4
L Computer
Validation

Simulation Conceptual Model }

v Amming

[Computer Model }

Model Verification




Verification Process

Conceptual Model

/ ‘Correct’ Answer

Computational
Model *Analytic solutions
*Highly resolved
v numerical
Computational | . solutions
Solution Verification Test | "Benchmark
solutions

Verification: The process of determining that a model implementation
accurately represents the developer’ s conceptual description of the
model and the solution to the model.

Note: Verification deals with mathematics



Validation Process

Real World
Conceptual
Model "Correct’ Answer
l Provided by
Experimental Data
Computational
Model *Benchmark cases
*System analysis
\ 4
Computational |« | eStatistical analysis
Solution Validation
Process

Validation: The process of determining the degree to which a model is an
accurate representation of the real world from the perspective of the intended
model users.

Note: Validation deals with physics and statistics



Validation Metrics

Experiment Model

\

—/

Response

Response

"Viewgraph’ Norm

+ Experiment
—+$— Model

Input

Numerical Error

m  Experiment

—o— Model

Response

Input

Deterministic

m  Experiment
—— Model

Input

Nondeterministic
Computation

Response

$ Experiment
-o— Model

Input

Experimental
Uncertainty



