
Lecture 1: Motivation and Prototypical Examples
“Essentially all models are wrong, but some are useful,”
George E.P. Box, Industrial Statistician



Predictive Science
Components: All involve uncertainty 

• Experiments
• Models
• Simulations

• Essentially, all models are wrong, but some are useful, George E.P. Box, Industrial 
Statistician.

• Computational results are believed by no one, except the person who wrote the code, 
source anonymous, quoted by Max Gunzburger, Florida State University.

• Experimental results are believed by everyone, except for the person who ran the 
experiment, source anonymous, quoted by Max Gunzburger, Florida State University.

• I have always done uncertainty quantification.  The difference now is that it is 
capitalized. Bill Browning, Applied Mathematics Incorporated.



Modeling Strategy
General Strategy: Conservation of stuff

Continuity Equation:

Density:

Rate of Flow:
More Generally:
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Example 1: Weather Models
Challenges:
• Coupling between temperature, pressure 
gradients, precipitation, aerosol, etc.;
• Models and inputs contain uncertainties;
• Numerical grids necessarily larger than 
many phenomena; e.g., clouds
• Sensors positions may be uncertain; 
e.g., weather balloons, ocean buoys.

Goal:
• Assimilate data to quantify uncertain 
initial conditions and parameters;
• Make predictions with quantified 
uncertainties.



Equations of Atmospheric Physics
Conservation Relations:

Constitutive Closure Relations: e.g., 
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Ensemble Predictions
Ensemble Predictions:

Cone of Uncertainty:
00 UTC on August 26, 2005 12 UTC on August 26, 2005



Ensemble Predictions
Ensemble Predictions:

Cone of Uncertainty:
00 UTC on August 26, 2005 12 UTC on August 26, 2005

General Questions:
• What is expected rainfall on January 19?
• What are high and low temperatures?
• What is predicted average snow fall?

• Note: Quantities are statistical in nature.



Example 2: Quantum-Informed Continuum Models

Lead Titanate Zirconate (PZT)

DFT Electronic Structure Simulation 

Helmholtz Energy

 (P) = ↵1P2 + ↵11P4 + ↵111P6

UQ and SA Issues:

• Is 6th order term required to accurately 
characterize material behavior?

• Note: Determines molecular structure

Objectives:

• Employ density function theory (DFT) to 
construct/calibrate continuum energy relations.

– e.g., Helmholtz energy
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Quantum-Informed Continuum Models

DFT Electronic Structure Simulation 

Broad Objective:

• Use UQ/SA to help bridge scales 
from quantum to system

Lead Titanate Zirconate (PZT)

 (P) = ↵1P2 + ↵11P4 + ↵111P6

UQ and SA Issues:

• Is 6th order term required to accurately 
characterize material behavior?

• Note: Determines molecular structure

Objectives:

• Employ density function theory (DFT) to 
construct/calibrate continuum energy relations.

– e.g., Helmholtz energy

Helmholtz Energy

Note:

• Linearly parameterized



Example 2: Pressurized Water Reactors (PWR)

Models:
•Involve neutron transport, thermal-hydraulics, chemistry.

•Inherently multi-scale, multi-physics.

CRUD Measurements: Consist of low resolution images at limited number of locations.



Example: Pressurized Water Reactors (PWR)
3-D Neutron Transport Equations: 

Challenges:
• Very large number of inputs; e.g., 100,000; 
Active subspace construction critical.

• ORNL Code SCALE: Can take hours to run.

• Time-dependent surrogate models must 
accommodate PDE structure.

• Numerical errors often difficult to quantify.

• Predicting future requires extrapolatory or out-
of-data predictions; one must address model 
discrepancy to construct validation intervals.
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Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid 

Notes:
• Similar relations for gas 

and bubbly phases

• Surrogate models must 
conserve mass, energy, 
and momentum
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Example: Pressurized Water Reactors (PWR)

Example: Shearon Harris outside Raleigh

UQ Questions:

• What is peak operating temperature?

• What is expected level of CRUD buildup?

• What is risk associated with operating 
regime?

• What is expected profit for new design?
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Example 4: SIR Model for Disease Dynamics
SIR Model:

Susceptible

Infectious

Recovered

Note:

Parameters: Response:

dS
dt

= �N - �S - �kIS , S(0) = S0

dI
dt

= �kIS - (r + �)I , I(0) = I0

dR
dt

= rI - �R , R(0) = R0

y =

Z 5

0
R(t , q)dt

• �: Infection coefficient
• k : Interaction coefficient
• r : Recovery rate
• �: Birth/death rate

Parameters q = [�, k , r , �] not uniquely determined by data

Note: Presently employed cholera models have similar form; example this 
afternoon.



SIR Disease Example
SIR Model:

Susceptible

Infectious

Recovered

dS
dt

= �N - �S - �kIS , S(0) = S0

dI
dt

= �kIS - (r + �)I , I(0) = I0

dR
dt

= rI - �R , R(0) = R0

Typical Realization:



SIR Disease Example
SIR Model:

dS
dt

= �N - �S - �kIS , S(0) = S0

dI
dt

= �kIS - (r + �)I , I(0) = I0

dR
dt

= rI - �R , R(0) = R0

UQ Goal: Predict I(t) with uncertainty 
intervals: 

Problem: Cannot uniquely infer 
parameters 

Solution:
• Active subspaces

• Identifiability analysis

• Sensitivity analysis

• Design of experiments 15



Example 5: HIV Model for Characterization and Control Regimes
HIV Model:

Compartments: 

Notes: 21 parameters 
[Adams, Banks et al., 2005, 
2007] 

Notation: 
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Example 3: HIV Model for Characterization and Control Regimes
HIV Model: Used for characterization and control treatment regimes.
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Parameters: Most are unknown and must be estimated from data 

�1 Target cell 1 production rate ⇢1 Ave. virions infecting type 1 cell
�2 Target cell 2 production rate ⇢2 Ave. virions infecting type 2 cell
d1 Target cell 1 death rate bE Max. birth rate immune effectors
d2 Target cell 2 death rate dE Max. death rate immune effectors
k1 Population 1 infection rate Kb Birth constant, immune effectors
k2 Population 2 infection rate Kd Death constant, immune effectors
c Virus natural death rate �E Immune effector production rate
� Infected cell death rate �E Natural death rate, immune effectors
" Population 1 treatment efficacy NT Virions produced per infected cell
m1 Population 1 clearance rate f Treatment efficacy reduction
m2 Population 2 clearance rate



Example: HIV Model for Characterization and Treatment Regimes
HIV Model: Several sources of uncertainty including viral measurement techniques
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Figure 2: Patient 6 CD4+ T-cell and viral load data, including censor points (lines at L̄1 =
400, L̄2 = 50) for viral load, and periods of on-therapy (solid lines on axis) and periods of oÆ-
therapy (dashed line on axis).

Of the 45 patients considered in this paper, sixteen (those numbered 2, 4, 5, 6, 9, 10, 13, 14, 15,
23, 24, 26, 27, 33, 46, and 47) spend 30–70% time oÆ treatment. Of these only patients 9, 15, and
47 do not spend appreciable time oÆ treatment during the early half of their observation period.

Due to the linear range limits described above, the clinical viral load assays eÆectively have
lower and upper limits of quantification. The upper limit is typically readily handled by repeatedly
diluting the sample until the resulting viral load measurement is in range and then scaling. The
lower limit, or left censoring point, however, directly influences the observed data. When a data
point is left-censored (below the lower limit of quantification), the only available knowledge is that
the true measurement is between zero and the limit of quantification L̄? for the assay. Those at
hand have two limits of quantification, L̄1 = 400 copies/ml for the standard and L̄2 = 50 copies/ml
for the ultra-sensitive assay. These are illustrated in sample data from patient 6 shown in Figure
2, where censored data points are those appearing identically on the horizontal censoring lines
L̄1 = 400, L̄2 = 50. A statistical methodology for handling this type of censored data is described
below in Section 3.2.

The observation times and intervals vary substantially between patients. The sample data in
Figure 2 also reveal that observations of viral load and CD4 may not have been made at the
same time points, so in general for patient number j we have CD4+ T-cell data pairs (tij1 , yij

1 ), i =
1, . . . , N j

1 and (potentially diÆerent) viral RNA data pairs (tij2 , yij
2 ), i = 1, . . . , N j

2 .

6

Example: Upper and lower limits to assay sensitivity 

UQ Questions: 
• What are the uncertainties in parameters that cannot be directly measured?

• What is optimal treatment regime that is “safe” for patient?

• What is expected viral load? Issue: very often requires high-dimensional 
integration!

• e.g., E[V (t)] =
Z

R21
V (t , q)⇢(q)dq

Experimental results are believed by everyone, except for the person who ran the 
experiment, source anonymous, quoted by Max Gunzburger, Florida State University. 



Example 4: Portfolio Model

Example: Portfolio model Take

Note:
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Q2 ⇠ N(0,�2
2) with �2 = 3

Q1 ⇠ N(0,�2
1) with �1 = 1

c1 = 2 , c2 = 1
Y = c1Q1 + c2Q2

UQ Questions: 
•What is expected investment return?
•What is impact of market uncertainty on investment return?

• Q1 and Q2 represent hedged portfolios



Example 5: Viscoelastic Material Models

Material Behavior: Significant rate dependence

Application: Adaptive materials for legged robotics

• Figure: Billy Oates



Example 5: Viscoelastic Material Models
Material Behavior: Significant rate dependence

Finite-Deformation Model: 

• Nonlinear non-affine

• Hyperelastic energy function
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Parameters:

Uncertainty Quantification Goals:

• Quantify measurement errors.

• Quantify uncertainty in parameters.

• Use statistics to quantify accuracy 
of considered models.

q = [Ge, Gc,�max, ⌘,�, �]

Gc: Crosslink network modulus

Ge: Plateau modulus

�max: Max stretch effective affine tube

q = [⌘,�, �]: Viscoelastic parameters



Example 6: X-Ray Crystallography
Properties:

• Reveal relative positions of atoms, their atomic 
number, types of chemical bonds, etc.

• Applications: determination of of DNA structure, 
design of pharmaceuticals, etc..

Uncertainty Quantification Goals:

• Use Bayesian analysis to quantify 
uncertainty associated with Rietveld 
model and background.

• Quantify heteroskedasticity and 
correlation of error structure.

Collaborators: Chris Fancher, Zhen Han, Igor Levin, Katherine Page, Brian Reich, 
Alyson Wilson, Jacob Jones



Experimental Uncertainties and Limitations
Examples: Experimental results are believed by everyone, except for the person 
who ran the experiment, Max Gunzburger, Florida State University. 

• Pharmaceutical and disease treatment strategies often too dangerous or 
expensive for human tests or large segments of the population.  

• Climate scenarios cannot be experimentally tested at the planet scale.  Instead, 
components such as volcanic forcing tested using measurements such as the 
1991 Mount Pinatubo data.

• Subsurface hydrology data very limited due to infeasibility of drilling large 
numbers of wells.  Result: significant uncertainty regarding subsurface structures.



Model Errors
Examples: Essentially, all models are wrong, but some are useful, George E.P. Box, 
Industrial Statistician

• Numerous components of weather and climate models --- e.g., aerosol-induced 
cloud formation, greenhouse gas processes --- occur on scales that are much smaller 
than numerical grids used to solve the atmospheric equations of physics.  These 
processes represent highly complex physics that is only partially understood. 

• Many biological applications are coupled, complex, highly nonlinear, and driven by 
poorly understood or stochastic processes.  



Input Uncertainties
Note: Essentially, all models are wrong, but some are useful, George E.P. Box, 
Industrial Statistician

• Phenomenological models used to represent processes such as turbulence in 
weather, climate and nuclear reactor models have nonphysical parameters whose 
values and uncertainties must be determined using measured data.

• Forcing and feedback mechanisms in climate models serve as boundary inputs.  
These parameterized phenomenological relations introduce both model and 
parameter uncertainties.



Numerical Errors
Note: Computational results are believed by no one, except the person who wrote 
the code, Max Gunzburger, Florida State University.

• Roundoff, discretization or approximation errors; e.g., mesh for nuclear subchannel 
code COBRA-TF is on the order of subchannel between rods.

• Bugs or coding errors;

• Bit-flipping, hardware failures and uncertainty associated with future exascale and 
quantum computing;

• Grids required for numerical solutions of field equations in applications such as 
weather or climate models (e.g., 50~km) are much larger than the scale of physics 
being modeled (e.g., turbulence or greenhouse gases).



Steps in Uncertainty Quantification

Note: Uncertainty quantification requires synergy between statistics, mathematics 
and application area. 



Modeling Issues

Computer Model

Conceptual ModelComputer 
Simulation

Programming

Analysis

Model Verification

Model 
Validation

Model Qualification
Reality



Verification Process

Verification Test

Conceptual Model

Computational 
Model

Computational 
Solution

`Correct’ Answer

•Analytic solutions

•Highly resolved 
numerical 
solutions

•Benchmark 
solutions

Verification: The process of determining that a model implementation 
accurately represents the developer’s conceptual description of the 
model and the solution to the model.

Note: Verification deals with mathematics



Validation Process

Validation 
Process

Real World

Conceptual 
Model

Computational 
Model

Computational 
Solution

`Correct’ Answer 
Provided by 
Experimental Data

•Benchmark cases

•System analysis

•Statistical analysis

Validation: The process of determining the degree to which a model is an 
accurate representation of the real world from the perspective of the intended 
model users.

Note: Validation deals with physics and statistics



Validation Metrics
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