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Chapter 8

Numerical Techniques

The rod, beam, plate and shell models developed in Chapter 7 generally preclude
analytic solution due to the boundary conditions and piecewise nature of material
parameters and exogenous inputs. This necessitates the development of approxima-
tion techniques appropriate not only for simulations and transducer characterization
but also for optimization and control design. Whereas we focus primarily on the first
objective in this chapter, the use of these numerical models for subsequent trans-
ducer optimization and control design dictates that attention be paid to additional
criteria, such as adjoint convergence, that arise in the context of constrained opti-
mization — the reader is referred to [67] and references therein for details regarding
approximation techniques pertaining to optimization and control formulations.

For all of the models, we first employ Galerkin approximations in space to
obtain semi-discrete, vector-valued ODE that evolve in time — see pages 417–419
of Appendix A for a general discussion regarding the relation between Galerkin and
finite element methods. This provides a natural setting for linear and nonlinear
finite-dimensional control design and direct simulations. Since Galerkin or finite
element approximation in space typically yield moderately stiff ODE systems, A-
stable or stiff algorithms are advised when approximating solutions in time; this
includes trapezoidal-based approximations or routines such as ode15s.m in MAT-
LAB.

In all cases, we consider approximation in the context of the weak model
formulations since this reduces smoothness requirements and accommodates in a
natural manner discontinuous material parameters and inputs. This necessarily
involves the integration of polynomial or trigonometric basis elements which we
accomplish using Gaussian quadrature routines chosen to ensure exact integration
for linear and cubic basis functions. We summarize these numerical integration
algorithms in Section 8.1. Approximation techniques for rods, beams, plates and
shells are subsequently described in Section 8.2–8.5.

Numerical approximation of distributed structural models is an extremely
broad topic and includes issues such as shear locking and approximation techniques
for control design which constitute active research areas. Rather than attempt to
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374 Chapter 8. Numerical Techniques

provide a comprehensive description of numerical techniques, we instead summa-
rize certain fundamental methods appropriate for smart structures and indicate
pitfalls and directions required to extend the algorithms to more complex settings.
The reader is referred to [54, 479] for finite element theory, [390, 462, 527] for finite
element implementation techniques, and [163, 383, 406] for the theory of splines,
variational methods and Galerkin techniques. A detailed discussion illustrating
finite element implementation in MATLAB is provided in [276] and m-files for im-
plementing various models discussed in this chapter are provided at the website
http://www.siam.org/books/fr32. Additional references specific to the various
structures will be indicated in relevant sections.

8.1 Quadrature Techniques

Consider integrals of the form I =
∫ b

a f(x)dx where (a, b) is either finite or infinite
and the value I is finite. The goal in numerical integration or quadrature is to
approximate I by finite sums of the form

In =

n∑

i=0

wif(xi)

where wi and xi respectively denote quadrature weights and nodes. Various ap-
proximation theories — e.g., based on Taylor expansions or the theory of orthogo-
nal polynomials — yield choices for wi and xi that determine the rate at which In

converges to I as n → ∞.

8.1.1 Newton–Cotes Formulae

To illustrate issues associated with the choice of weights and nodes, we consider
first closed and open Newton–Cotes formulae for finite [a, b]. The nodes for the two
cases are xi = x0 + ih where i = 0, . . . , n and

h =
b − a

n
, x0 = a, closed Newton–Cotes formulae

h =
b − a

n + 2
, x0 = a + h, open Newton–Cotes formulae.

Hence nodes lie in the closed interval [a, b] in the first case and the open interval (a, b)
in the second. In all of the following formulae, ξ is a point in (a, b) and f is assumed
sufficiently smooth so that requisite derivatives exist and are continuous. Details
regarding the derivation of these relations can be found in [19]. The trapezoid and
midpoint rules are illustrated in Figure 8.1.

Closed Newton–Cotes Formulae

1. (n = 1) Trapezoidal rule

∫ b

a

f(x)dx =
h

2
[f(x0) + f(x1)] −

h3

12
f ′′(ξ) (8.1)
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ba
(a)

a b
(b)

Figure 8.1. (a) Trapezoidal rule and (b) midpoint rule for the interval [a, b].

2. (n = 2) Simpson’s rule

∫ b

a

f(x)dx =
h

3
[f(x0) + 4f(x1) + f(x2)] −

h5

90
f (4)(ξ) (8.2)

3. (n = 3) Simpson’s three-eighths rule

∫ b

a

f(x)dx =
3h

8
[f(x0) + 3f(x1) + 3f(x2) + f(x3)] −

3h5

80
f (4)(ξ) (8.3)

4. (n = 4) Milne’s rule

∫ b

a

f(x)dx =
2h

45
[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]−

8h7

945
f (6)(ξ) (8.4)

Open Newton–Cotes Formulae

1. (n = 0) Midpoint rule

∫ b

a

f(x)dx = 2hf(x0) +
h3

3
f ′′(ξ) (8.5)

2. (n = 1) ∫ b

a

f(x)dx =
3h

2
[f(x0) + f(x1)] +

3h3

4
f ′′(ξ) (8.6)

3. (n = 2)

∫ b

a

f(x)dx =
4h

3
[2f(x0) − f(x1) + 2f(x2)] +

14h5

45
f (4)(ξ) (8.7)

4. (n = 3)

∫ b

a

f(x)dx =
5h

24
[11f(x0) + f(x1) + f(x2) + 11f(x3)] +

95h5

144
f (4)(ξ) (8.8)
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Accuracy of the Newton–Cotes Formulae

A numerical quadrature formula In is said to have degree of precision m if In =
I for all polynomials f such that deg(f) ≤ m and In 6= I for deg(f) = m+1. Hence
the trapezoid rule has degree of precision 1 which corroborates the observation
that it integrates linear polynomials exactly. It is observed that formulae with
an even index gain an extra degree of precision when compared with odd formulae
which often makes them preferable. For later comparison with Gaussian quadrature
routines, we note that the errors En and degrees of precision DPn for the Newton–
Cotes formulae are

|En| =

{
K1nhn+2f (n+1)(ξ) , n odd

K2nhn+3f (n+2)(ξ) , n even

and

DPn =

{
n , n odd

n + 1 , n even

where K1n and K2n are constants and it is assumed that f ∈ Cn+2[a, b] if n is even
and f ∈ Cn+1[a, b] for odd n.

Whereas increasing n leads to improved accuracy, Newton–Cotes formulae are
typically restricted to n ≤ 8 to avoid stability issues. To achieve the requisite accu-
racy on large intervals [a, b], including infinite intervals, alternatives are required.
These include Romberg integration techniques which improve accuracy through
Richardson extrapolation, composite rules, and Gaussian quadrature techniques.
We summarize next the latter two options.

Composite Quadrature Techniques

An obvious technique to improve accuracy is to partition finite domains [a, b]
into subintervals and then apply the quadrature rules on each subinterval. The
manner through which partitions are constructed depends on the choice of open
versus closed Newton–Cotes formulae as illustrated in Figure 8.2 for the composite
trapezoid and midpoint formulae. In both cases, is is assumed that f ∈ C2[a, b] and
ξ is a point in (a, b).

Composite Trapezoidal Rule

The composite trapezoid rule for n subintervals is

∫ b

a

f(x)dx =
h

2

[
f(a) +

n−1∑

i=1

f(xi) + f(b)

]
− b − a

12
h2f ′′(ξ)

where h = b−a
n and xi = a + ih for i = 0, . . . , n. It is observed from Figure 8.2

that if n is doubled, present values of f(xi) are re-used, thus contributing to the
efficiency of the method.
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ba
(a)

a b
(b)

Figure 8.2. (a) Composite trapezoidal rule and (b) composite midpoint rule with
three subintervals.

Composite Midpoint Rule

The composite midpoint formula for even n and n
2 + 1 subintervals is

∫ b

a

f(x)dx = 2h

n/2∑

i=0

f(xi) +
b − a

6
h2f ′′(ξ).

Here h = b−a
n+2 and xi = a + (2i + 1)h for i = 0, . . . , n. The approximation obtained

with n = 4, and hence 3 subintervals is illustrated in Figure 8.2(b).

8.1.2 Gaussian Quadrature Techniques

It is observed that for the open and closed Newton–Cotes formulae, and correspond-
ing composite rules, the quadrature points xi are fixed a priori and quadrature
weights wi are determined to achieve a specified level of accuracy. Hence both the
accuracy and degree of precision for the methods are roughly equivalent to the de-
grees of freedom associated with the weights. Alternatively, one can let both xi and
wi be free parameters to achieve a maximal order of accuracy. This is the basis for
Gaussian quadrature routines which provides the capability for exactly integrating
polynomials up to degree 2n− 1 using n-point expansions.

To provide intuition, we initially consider the expansion

∫ 1

−1

f(x)dx ≈
n∑

i=1

f(xi)wi

with n = 1 and n = 2. Defining the error as

En(f) =

∫ 1

−1

f(x)dx −
n∑

i=1

f(xi)wi,

we note that for polynomials pm = a0 + a1x + · · · + amxm,

En(pm) = a0En(1) + a1En(x) + · · · + amEn(xm).

It thus follows that the integration rule has degree of precision m if

En(xi) = 0 , i = 0, . . . , m.
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1-Point Gaussian Quadrature

To determine the two parameters x1 and w1, we consider the constraints

E1(1) = 0 , E1(x) = 0

or ∫ 1

−1

1dx − w1 = 0 ,

∫ 1

−1

xdx − w1x1 = 0.

This yields x1 = 0 and w1 = 2 and the general quadrature rule

∫ 1

−1

f(x)dx ≈ 2f(0).

Note that this is simply the midpoint formula (8.5) which is illustrated for the
interval [a, b] in Figure 8.1(b).

2-Point Gaussian Quadrature

Here there are four parameters x1, x2, w1, w2 and four constraints

E2(x
i) =

∫ 1

−1

xidx − (w1x
i
1 + w2x

i
2) = 0 , i = 0, 1, 2, 3.

This yields the nonlinear system of equations

w1 + w2 = 2

w1x1 + w2x2 = 0

w1x
2
1 + w2x

2
2 =

2

3

w1x
3
1 + w2x

3
2 = 0

which has the unique solution

x1 = − 1√
3

, w1 = 1

x2 = 1√
3

, w2 = 1.

It is noted that the general quadrature rule

∫ 1

−1

f(x)dx ≈ f

(−1√
3

)
+ f

(
1√
3

)
(8.9)

has the same degree of precision as Simpson’s rule (8.2) which required three nodes.

n-Point Gaussian Quadrature

For n > 2, solving the nonlinear systems of equations becomes prohibitive and
Gaussian quadrature rules are typically formulated using interpolation theory for
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8.1. Quadrature Techniques 379

orthogonal polynomials. By considering families of orthogonal polynomials defined
on the intervals [−1, 1], [0,∞) and (−∞,∞), in addition to weighted integrands,
this provides substantial flexibility for approximating a broad range of integrals. A
complete discussion of this theory is beyond the scope of this chapter and we refer
the reader to [19, 125, 528] for details regarding Gaussian quadrature routines for
both single and multivariate approximation.

Gauss–Legendre Quadrature

Gauss–Legendre quadrature formulae are typically defined in terms of degree n
Legendre polynomials

Pn(x) =
1

2nn!
· dn

dxn

(
x2 − 1

)n
, n = 0, 1, 2, . . .

on the interval [−1, 1] — see [123,465] for a derivation of the Legendre polynomials
through application of the Gram–Schmidt process to the sequence 1, x, x2, · · · . Note
that the first five Legendre polynomials are

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3).

The quadrature relation is

∫ 1

−1

f(x)dx ≈
n∑

i=1

wif(xi) (8.10)

where the nodes xi are zeroes of Pn(x) and the weights are

wi =
−2

(n + 1)P ′
n(xi)Pn+1(xi)

, i = 1, . . . , n,

as summarized in Table 8.1. For f ∈ C2n[−1, 1], the errors are given by

En(f) = en
f (2n)(ξ)

(2n)!

where ξ is a point in [−1, 1] and en ≈ π
4n as n → ∞ [19]. As noted previously, this

implies that the quadrature formula (8.10) is exact for polynomials having degree
less than or equal to 2n − 1. Hence when approximating the solution to weak
formulations for structural models, the degree n is chosen to be commensurate with
finite element or spline basis and test functions.
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n Nodes xi Weights wi

1 0 2

2 ± 1√
3

1

3 0 8
9

±
√

3
5

5
9

4 ±
√

15+2
√

30√
35

49
6(18+

√
30)

±
√

15−2
√

30√
35

49
6(18−

√
30)

Table 8.1. Nodes and weights for Gauss–Legendre quadrature on [−1, 1].

Gauss–Laguerre and Gauss–Hermite Quadrature

The integrals in the polarization model (2.114) involve the domains [0,∞)
and (−∞,∞). One technique for approximating the integrals is to exploit decay
exhibited by the integrand to truncate to finite domains. Alternatively, one can
directly approximate the integrals using orthogonal polynomials defined on the half
line and real line. This yields the Gauss–Laguerre quadrature relation

∫ ∞

0

e−xf(x)dx ≈
n∑

i=1

wif(xi)

and Gauss–Hermite relation

∫ ∞

−∞
e−x2

f(x)dx ≈
n∑

i=1

wif(xi).

The weights and nodes for these formulae can be found in [528].

Gauss–Legendre Quadrature on [a, b] and Composite Quadrature

To evaluate integrals on arbitrary domains using the Gauss–Legendre quadra-
ture relation (8.10), one can employ the linear change of variables

∫ b

a

f(x)dx =
b − a

2

∫ 1

−1

f

(
a + b + ξ(b − a)

2

)
dξ (8.11)

to map to the interval [−1, 1]. It follows that the nodes and weights xi and wi for
[a, b] are related to ξi and ηi for [−1, 1] by the relations

xi =
a + b

2
+

b − a

2
ξi , wi =

b − a

2
ηi.
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8.1. Quadrature Techniques 381

This mapping can also be used to construct composite Gaussian quadrature
routines and formulae appropriate for finite element and spline meshes. To illus-
trate, consider the partition of [a, b] given by xj = a + jh, h = b−a

n , for j = 0, . . . , n
as illustrated in Figure 8.3. The nodes and weights for the 4-point Gauss–Legendre
rule on the subinterval [xj−1, xj ] are then

x1 = xj−1 + h

[
1
2 −

√
15+2

√
30

2
√

35

]
, w1 = 49h

12(18+
√

30)

x2 = xj−1 + h

[
1
2 −

√
15−2

√
30

2
√

35

]
, w2 = 49h

12(18−
√

30)

x3 = xj−1 + h

[
1
2 +

√
15−2

√
30

2
√

35

]
, w3 = 49h

12(18−
√

30)

x4 = xj−1 + h

[
1
2 +

√
15+2

√
30

2
√

35

]
, w4 = 49h

12(18+
√

30)
.

(8.12)

We note that this will integrate exactly piecewise polynomials of order up to 7.

x jx j−1 ba
xx x x

Figure 8.3. Partition of [a, b] into n subintervals and position of quadrature points
for the 4-point Gauss–Legendre rule on [xj−1, xj ].

8.1.3 2-D Quadrature Formulae

Approximation of weak formulations for plate and shell models requires the numer-
ical evaluation of double integrals using quadrature rules of the form

∫ b

a

∫ d

c

f(x, y)dydx ≈
nx∑

i=1

ny∑

j=1

f(xi, yj)wiwj .

Through the change of variables

∫ b

a

∫ d

c

f(x, y)dydx

=

(
b − a

2

)(
d − c

2

)∫ 1

−1

∫ 1

−1

f

(
a + b + ξ(b − a)

2
,
c + d + υ(d − c)

2

)
dυdξ,
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these integrals can be mapped to the rectangular domain [−1, 1] × [−1, 1] so we
consider first this case. This also provides the framework necessary for numerical
integration using rectangular elements. Finally, we summarize formulae for trian-
gular elements as required for general finite element analysis.

Rectangular Domains

The formulae for rectangular domains are obtained by tensoring 1-D relations.
For Gaussian formulae, this yields the nodal placement depicted in Figure 8.4.

4-Point Gauss–Legendre Quadrature

The tensor product of the 1-D formula (8.9) yields the 4-point quadrature
relation ∫ 1

−1

∫ 1

−1

f(ξ, υ)dυdξ ≈ f(a, a) + f(a, b) + f(b, a) + f(b, b)

where a = b = 1√
3
. This relation is exact for polynomials of degree 2. Hence this

algorithm would be employed when integrating linear quadrilateral elements.

9-Point Gauss–Legendre Quadrature

The tensor product of the 3-point formula from Table 8.1 yields

∫ 1

−1

∫ 1

−1

f(ξ, υ)dυdξ ≈ 25

81
[f(a, a), f(a, c) + f(c, a) + f(c, c)]

+
40

81
[f(a, b) + f(c, b) + f(b, a) + f(b, c)] +

64

81
f(b, b)

where a = −
√

3
5 , b = 0 and c =

√
3
5 . This relation is exact for degree 4 polynomials

so it would be used to integrate quadratic elements [390].

−1

−1 1

1

−1

−1 1

1

−1

−1 1

1

(b)(a) (c)

Figure 8.4. Quadrature points in a 2-D rectangular domain: (a) 1-point rule,
(b) 4-point rule, and (c) 9-point rule.

Triangular Domains

For general finite element analysis, it is also necessary to consider quadra-
ture formulae for triangular domains. This is often accomplished by considering
transformations between physical space (x, y–coordinates) and computational space
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(0,1)
υ

ξ
(1,0)

(a)

T

y

x
(b)

T
~

Figure 8.5. (a) Master triangular element and (b) global element in physical space.

(ξ, υ–coordinates), as shown in Figure 8.5, so we summarize first the construction
of local coordinates that are independent of orientation.

The local coordinates L1, L2 and L3 are defined as the ratio between the
perpendicular distance s to a side and the altitude h of the side as depicted in
Figure 8.6(a). This implies that 0 ≤ Li ≤ 1. To elucidate a second property of the
elements, consider the triangle T1, delineated by L1 as shown in Figure 8.6(b), and
the complete triangle T . From the area relations

AT1
=

sb

2
, AT =

hb

2
,

it follows that L1 =
AT1

AT
. This motivates the designation of L1, L2, L3 as area

coordinates and establishes the relation

L1 + L2 + L3 = 1.

From the definition of the local coordinate L1, it follows that it satisfies the
property

L1 =

{
1 at node i

0 at nodes i and k

with similar properties for L2 and L3. When combined with the linearity of the def-
inition, this implies that local coordinates also provide the simplex linear elements
Ni, Nj , Nk depicted in Figure 8.7; that is,

Ni = L1 , Nj = L2 , Nk = L3.

This proves crucial when defining quadrature properties for the finite element method.

T3

T2
T1

L1
L2

L3

(b)(a)

i

j

k

b

Figure 8.6. (a) Local coordinates L1, L2, L3 and (b) triangles T1, T2, T3 having the
areas AT1

, AT2
, AT3

.
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i NkNjN(1,0,0)

(0,1,0)

z

x

y

(0,0,1)

(1,0,0)

x

z

(0,1,0)
y

(1,0,1)

x

(1,0,0)

z (0,1,1)

(0,1,0)
y

Figure 8.7. Linear elements Ni, Nj and Nk.

Letting J denote the Jacobian for the transformation between physical and
master triangular elements, it follows that

∫

T

f(x, y)dxdy =

∫

eT

f(L1, L2, L3) |J | dL1dL2

≈ 1

2

n∑

i=1

wif(L1i
, L2i

, L3i
)|Ji|.

The quadrature points, weights, and degrees of precision for n = 1, 2, 3 are summa-
rized in Table 8.2 and higher-order formulae can be found in [205,462].

To illustrate, the 1-point quadrature relation
∫

eT

f(ξ, υ)dξdυ ≈ 1

2
f(1/3, 1/3)

integrates linear functions exactly whereas quadratic polynomials are integrated
exactly by the formula

∫

eT

f(ξ, υ)dξdυ ≈ 1

6
[f(1/2, 0) + f(0, 1/2) + f(1/2, 1/2)] .

Note that all of the formulae yield the triangle area A = 1
2 with f(ξ, υ) = 1.

n Degree of Local Coordinates Weights Geometric
Precision L1 L2 L3 w Location

1 1 1
3

1
3

1
3 1 a

a

3 2 1
2 0 1

2
1
3 a

1
2

1
2 0 1

3 b

0 1
2

1
2

1
3 c

4 3 1
3

1
3

1
3 − 27

48 a
2
15

2
15

11
15

25
48 b

11
15

2
15

2
15

25
48 c

2
15

11
15

2
15

25
48 d

Table 8.2. Quadrature points and weights for triangular elements.

b

a c

a d
b

c
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8.2 Numerical Approximation of the Rod Model

In this section, we illustrate approximation techniques for the distributed rod models
developed in Section 7.3. For the general model (7.18), we first consider a direct
Galerkin discretization in space followed by a finite difference discretization in time.
This yields global mass, stiffness and damping matrices, a semi-discrete system
appropriate for control design, and a fully discrete system feasible for simulations.
Secondly, we consider an elemental analysis to demonstrate aspects of finite element
assembly often employed for 2-D and 3-D characterization.

8.2.1 Global Discretization in Space

Consider the weak model formulation (7.18),
∫ ℓ

0

ρA
∂2u

∂t2
φdx +

∫ ℓ

0

[
Y A

∂u

∂x
+ cA

∂2u

∂x∂t

]
dφ

dx
dx =

∫ ℓ

0

fφdx

+A
[
a1P̃ + a2P̃

2
]∫ ℓ

0

dφ

dx
dx −

[
kℓu(t, ℓ) + cℓ

∂u

∂t
(t, ℓ) + mℓ

∂2u

∂t2
(t, ℓ)

]
φ(ℓ),

(8.13)

where P̃ = P − PR, which must hold for φ in the space of test functions

V =
{
Φ = (φ, ϕ) ∈ L2(0, ℓ) × R |φ ∈ H1(0, ℓ), φ(0) = 0, φ(ℓ) = ϕ

}
.

The goal when constructing Galerkin solutions to (8.13) is to determine approximate
solutions in finite dimensional subspaces V N of V .

To construct V N , we consider a uniform partition of the interval [0, ℓ] with
points xj = jh, j = 0, . . . , N and a uniform stepsize h = ℓ

N where N denotes
the number of subintervals. The spatial basis {φj}N

j=1 used to construct V N is
comprised of linear splines

φj(x) =
1

h





x − xj−1 , xj−1 ≤ x < xj

xj+1 − x , xj ≤ x ≤ xj+1

0 , otherwise

, j = 1, . . . , N − 1

φN (x) =
1

h

{
x − xN−1 , xN−1 ≤ x ≤ xN

0 , otherwise

(8.14)

as depicted in Figure 8.8. It is observed that the basis functions satisfy the essential
boundary condition φj(0) = 0 for j = 1, . . . , N . Furthermore, {φj}N

j=1 are differen-
tiable throughout (0, ℓ), except at the countable set of gridpoints, and hence they

oj(x)

o (x)N

x x x xN−1 xNj−1 j j+1

Figure 8.8. Piecewise linear basis functions (a) φj(x) and (b) φN (x).
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are elements in H1(0, ℓ). Letting ϕj = φj(ℓ) and Φj = (φj , ϕj), the approximating
subspace is defined to be

V N = span {Φj} .

The solution to (8.13) is approximated by the expansion

uN(t, x) =

N∑

j=1

uj(t)φj(x) (8.15)

which satisfies uN(t, 0) = 0 and can achieve arbitrary displacements at x = ℓ.
A semi-discrete second-order matrix system is obtained by considering the

approximate solution uN(t, x) in (8.13) with the basis functions {φi}N
i=1 employed

as test functions — this is equivalent to projecting the system (8.13) onto the finite-
dimensional subspace V N . The interchange of integration and summation yields the
system

N∑

j=1

üj(t)

∫ ℓ

0

ρAφiφjdx +

N∑

j=1

u̇j(t)

∫ ℓ

0

cAφ′
iφ

′
jdx +

N∑

j=1

uj(t)

∫ ℓ

0

Y Aφ′
iφ

′
jdx

=

∫ ℓ

0

fφidx + A
[
a1(P − PR) + a2(P − PR)2

] ∫ ℓ

0

φ′
idx

−
(
kℓuN(t)φN (ℓ) + cℓu̇N(t)φN (ℓ) + mℓüN(t)φN (ℓ)

)
φN (ℓ)

which holds for i = 1, . . . , N . This can be written as the second-order vector-valued
system

M ü(t)+Q u̇+Ku(t) = f(t)+A
[
a1(P (E(t)) − PR) + a2(P (E(t)) − PR)2

]
b (8.16)

where
u(t) = [u1(t), . . . , uN(t)]

T
.

The global mass, stiffness and damping matrices have the components

[M ]ij =





∫ ℓ

0

ρAφiφj dx , i 6= N or j 6= N

∫ ℓ

0

ρAφiφj dx + mℓ , i = N and j = N

[K ]ij =





∫ ℓ

0

Y Aφ′
iφ

′
j dx , i 6= N or j 6= N

∫ ℓ

0

Y Aφ′
iφ

′
j dx + kℓ , i = N and j = N

[Q ]ij =





∫ ℓ

0

cAφ′
iφ

′
j dx , i 6= N or j 6= N

∫ ℓ

0

cAφ′
iφ

′
j dx + cℓ , i = N and j = N

(8.17)
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whereas the force vectors are defined by

[f ]i =

∫ ℓ

0

fφidx , [b ]i =

∫ ℓ

0

φ′
idx. (8.18)

To evaluate the integrals, it is observed that when ρ and Y are constant,
the maximal degree occurs in the mass matrix which is comprised of quadratic
polynomials on each subinterval [xj−1, xj ]. In this case, 2-point composite Gaussian
quadrature with nodes and weights

x1 = xj−1 +
h

2

(
1 − 1/

√
3
)

, w1 =
h

2

x2 = xj−1 +
h

2

(
1 + 1/

√
3
)

, w2 =
h

2

will provide exact integration on [xj−1, xj ] which yields the tridiagonal matrices

M = ρAh




2
3

1
6 0 · · · 0

1
6

2
3

1
6

. . .
. . .

. . .
1
6

2
3

1
6

0 · · · 0 1
6

1
3 + mℓ

h




, K = Y A
h




2 −1 0 · · · 0

−1 2 −1

. . .
. . .

. . .

−1 2 −1

0 · · · 0 −1 1 + hkℓ




(8.19)

and vector
b = [0 , . . . , 1]T .

The damping matrix has the representation Q = c
Y K when c is constant.

To formulate a first-order semi-discrete system appropriate for finite-dimen-
sional control design, we let z = [u, u̇ ]T and define the system matrix A and vectors
F(t) and B by

A =

[
0 I

−M−1K −M−1Q

]
,

F(t) =

[
0

M−1f(t)

]
, B =

[
0

M−1b

]
.

(8.20)

The second-order system (8.16) can subsequently be reformulated as

ż(t) = Az(t) + F(t) + A
[
a1(P (E(t)) − PR) + a2(P (E(t)) − PR)2

]
B

z(0) = z0

(8.21)

where the 2N × 1 vector z0 denotes the projection of the initial conditions into the
approximating subspace.

Temporal Discretization

The system (8.21) must be discretized in time to permit numerical or ex-
perimental implementation. The choice of approximation method is dictated by
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accuracy and stability requirements, storage capabilities, and sample rates. This can
be accomplished using MATLAB routines such as ode15s.m which accommodate
the moderate stiffness inherent to Galerkin approximation in space. Alternatively,
a trapezoidal method can be advantageous for experimental implementation since
it is moderately accurate, is A-stable, and requires minimal storage when imple-
mented as a single step method. For temporal stepsizes ∆t, a standard trapezoidal
discretization yields the iteration

zk+1 = Wzk +
1

2
V [F(tk) + F(tk+1)]

+
1

2

[
a1P̃ (E(tk)) + a1P̃ (E(tk+1)) + a2P̃

2(E(tk)) + a2P̃
2(E(tk+1))

]
VB

z0 = z(0)

where P̃ (E) = P (E) − PR, tk = k∆t, and zk approximates z(tk). The matrices

W =

(
I − ∆t

2
A

)−1(
I +

∆t

2
A

)
, V = ∆t

(
I − ∆t

2
A

)−1

need only be created once when numerically or experimentally implementing the
method. This yields approximate solutions having O(h2, (∆t)2) accuracy. For ap-
plications in which data at future times tk+1 is unavailable, the modified trapezoidal
algorithm

zk+1 = Wzk + VF(tk) +
[
a1(P (E(tk)) − PR) + a2(P (E(tk)) − PR)2

]
VB

z0 = z(0)

can be employed. Whereas this decreases slightly the temporal accuracy, for large
sample rates with correspondingly small stepsizes ∆t, the accuracy is still commen-
surate with that of the data.

Remark 8.2.1. The approximation of the eigenvalue problem associated with the
undamped rod model yields the generalized eigenvalue problem

Kζ = ω2Mζ (8.22)

where the stiffness matrix K and mass matrix M are defined in (8.19). Hence (8.22)
can be used to approximate the natural frequencies and modes for the undamped rod.

Remark 8.2.2. Due to the presence of both internal damping and damping in
the boundary condition at x = ℓ, the eigenvalues of the system matrix A defined
in (8.20) will all have negative real part. This property can be used to check the
validity of the signs in the boundary condition (7.13) and weak formulation (8.13).
For example, an incorrect formulation which added rather than subtracted the final
boundary contribution will produce eigenvalues of A having positive real part which
is inconsistent with the damping in the model.
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8.2.2 Elemental Analysis

The spatial discretization technique detailed in Section 8.2.1 illustrates the gen-
eral philosophy of Galerkin approximation including the definition of global basis
functions and their use for defining an approximating subspace V N ⊂ V . In this
section, we summarize a local, elemental approach to the problem. Whereas the two
techniques yield equivalent mass, stiffness and damping matrices, the latter is sig-
nificantly more efficient for general 2-D and 3-D geometries and hence is employed
for general finite element analysis of complex structures.

To simplify the discussion and facilitate energy analysis, we consider the
regime employed in Section 7.3.2 and take c = f = P = mℓ = cℓ = kℓ = 0 in
the weak formulation (8.13). Additionally, we assume that ρ and Y are constant.
This model quantifies the dynamics of an undamped and unforced rod that is fixed
at x = 0 and free at x = ℓ. The space of test functions in this case is

V = H1
0 (0, ℓ) =

{
φ ∈ H1(0, ℓ) |φ(0) = 0

}
.

Local Basis Elements

To illustrate the construction of local mass and stiffness matrices, we initially
consider the approximation of rod dynamics on a local interval [0, h] as depicted in
Figure 8.9(a). In accordance with the assumption that u is differentiable in x at all
but a countable number of points, we express displacements as

u(t, x) = a0(t) + a1(t)x

= ϕT (x)a(t)

where a(t) = [a0(t) , a1(t)]
T and ϕ(x) = [1 , x]T . To formulate u in terms of the

nodal values uℓ(t) and ur(t) at x = 0 and x = ℓ, we note that
[

uℓ(t)

ur(t)

]
=

[
1 0

1 h

][
a0(t)

a1(t)

]

or
u(t) = Ta(t)

where

T =

[
1 0

1 h

]
, u(t) =

[
uℓ(t)

ur(t)

]
.

1(x)o~

(x)o2
~

ur (t)u
l
(t)

x=h
(a) (b)

h

1

x=0

Figure 8.9. (a) Rod displacements uℓ(t) and ur(t) at the left and right endpoints

of the local interval [0, h]. (b) Local linear basis functions φ̃1(x) and φ̃2(x).
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By observing that a(t) = Su(t), where

S = T−1 =

[
1 0

− 1
h

1
h

]
,

it follows that displacements can be represented as

u(t, x) = φT (x)u(t). (8.23)

Here φ(x) =
[
φ̃1(x), φ̃2(x)

]T

contains the local basis elements

φ̃1(x) = 1 − x

h
, φ̃2(x) =

x

h

depicted in Figure 8.9(b).
Note that (8.23) is a local version of the expansion (8.15) employed when

constructing approximate solutions using the global basis functions {φj}N
j=1 defined

in (8.14). The local region [0, h] and global interval [xj−1, xj ] are analogous to the
master and physical triangles depicted in Figure 8.5 whereas the local basis set
{φ̃1, φ̃2} is the 1-D analogue of the 2-D elements {Ni, Nj , Nk} shown in Figure 8.7.

Hamiltonian Formulation

To specify a dynamic model quantifying the displacements u, we employ the
Hamiltonian framework detailed in Section 7.3.2 for the infinite dimensional prob-
lem. Here we consider displacements u ∈ V N = span{φ̃1, φ̃2} as dictated by our
approximation framework.

We first note that for this class of displacements, the squared strains and
velocities can be expressed as

u2
x(t, x) = uT (t)ST D(x)Su(t)

u2
t (t, x) = u̇T (t)ST F(x)Su̇(t)

where

D(x) = ϕx(x)ϕT
x (x)T =

[
0 0

0 1

]
, F(x) = ϕ(x)ϕT (x) =

[
1 x

x x2

]
.

The potential and kinetic energies (7.20) can thus be expressed as

U =
Y A

2
uT (t)ST ·

∫ h

0

D(x)dx · Su(t)

K =
ρA

2
u̇T (t)ST ·

∫ h

0

F(x)dx · Su̇(t).

Application of Hamilton’s principle in the manner detailed in Section 7.3.2
yields the relation

ρAST ·
∫ h

0

F(x)dx · Sü(t) + Y AST ·
∫ h

0

D(x)dx · Su(t) = 0. (8.24)
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Local Mass and Stiffness Matrices

The weak formulation (8.24) can be written as

Meü(t) + Keu = 0

where

Me = ρAST ·
∫ h

0

F(x)dx · S , Ke = Y AST ·
∫ h

0

D(x)dx · S

are the local mass and stiffness matrices. Evaluation of the integrals yields the
analytic formulations

Me = ρAh

[
1
3

1
6

1
6

1
3

]
, Ke = Y A

h

[
1 −1

−1 1

]
.

Global Mass and Stiffness Matrices

To motivate the techniques used to construct global mass and stiffness ma-
trices, we first partition the rod interval [0, ℓ] into two subregions as shown in
Figure 8.10(a) — hence h = ℓ

2 . With the requirement that u1r(t) = u2ℓ(t), the
nodal unknowns in this case are u(t) = [u1ℓ(t), u2ℓ(t), u2r(t)]

T . Combination of the
local relations subsequently yields the global system

M ü + Ku = 0

where the global mass and stiffness matrices are given by

M = ρAh




1
3

1
6 0

1
6

2
3

1
6

0 1
6

1
3


 , K = Y A

h




1 −1 0

−1 2 −1

0 −1 1


 .

We note that the second row in the mass matrix is obtained by summing the element
relations

ρAℓ

2

(
1

6
ü1ℓ +

1

3
ü2ℓ

)
= 0

ρAℓ

2

(
1

3
ü2ℓ +

1

6
ü2r

)
= 0

after enforcing ü1r = ü2ℓ. A similar strategy is employed when constructing the
stiffness matrix and the general procedure is illustrated in Figure 8.11(a).

xj−1 xj0 l 0 l

(b)(a)

Figure 8.10. Partition of the rod domain [0, ℓ] into (a) 2 subregions and (b) n sub-
regions.
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(b)

(a)

Figure 8.11. Combination of elemental mass and stiffness matrices Me and Ke to
construct global matrices M and K : (a) 2 subregions, and (b) n subregions.

The process for general partitions xj = jh, j = 0, 1, . . . , N with h = ℓ
N is

identical and leads to a similar summation process as shown in Figure 8.11(b).
Enforcing the boundary condition u1ℓ = 0 subsequently yields the global mass and
stiffness matrices

M = ρAh




2
3

1
6 0 · · · 0

1
6

2
3

1
6

. . .
. . .

. . .
1
6

2
3

1
6

0 · · · 0 1
6

1
3




, K = Y A
h




2 −1 0 · · · 0

−1 2 −1

. . .
. . .

. . .

−1 2 −1

0 · · · 0 −1 1




. (8.25)

A comparison between (8.25) and (8.19) obtained through global analysis illustrates
that the matrices are identical when one takes mℓ = kℓ = 0 in the latter set.

The technique can be extended to incorporate linear and nonlinear inputs
by employing the augmented action integral (7.25) and an extended Hamilton’s
principle. Internal and boundary damping is incorporated by employing extended
constitutive relations as detailed in the previous section.

Whereas the global discretization techniques and elemental analysis provide
the same semi-discrete systems, the latter technique facilitates implementation for
general 2-D and 3-D geometries discretized using triangular meshes. Additional
details regarding finite element techniques for rod models can be found in [36,276].

8.2.3 Examples and Software

The performance of the discretized rod model is illustrated in Section 7.3.3 in the
context of characterizing displacements generated by a stacked PZT actuator from
an AFM stage. This example illustrates the effects of variable drive levels and
the incorporation of frequency-dependent hysteresis mechanisms via the nonlinear
constitutive relations developed in Chapter 2.

The performance of the approximation techniques when used to characterize
the hysteretic dynamics of a Terfenol-D transducer is reported in [119,120]. In this
case, the domain wall model was used to provide the constitutive relations which
provide the basis for constructing the distributed rod model. In both cases, the
mass, stiffness and damping matrices have the general representations (8.17) —
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M and K have the specific representations (8.19) when ρ and Y are constant — and
the input vectors are given by (8.18). The only differences in the models occur in
the scalar-valued input relations used to characterize the nonlinear hysteresis.

MATLAB m-files for implementing both the rod model and the model for the
stacked PZT actuator employed in the AFM stage can be found at the website
http://www.siam.org/books/fr32.

8.3 Numerical Approximation of the Beam Model

The strategy for approximating the beam models developed in Section 7.4 is analo-
gous to that employed for the rod models — spline or finite element discretizations
in space are used to construct semi-discrete systems appropriate for control design
or subsequent temporal discretization for simulations. Unlike rod models, quan-
tification of the bending moments or strain energy associated with bending yields
second derivatives in weak beam formulations which must be accommodated by
basis functions. In Section 8.3.1 we summarize the use of cubic B-splines to con-
struct approximating subspaces whereas a cubic Hermite basis is constructed in
Section 8.3.2 through techniques analogous to those of Section 8.2.2.

8.3.1 Cubic Spline Basis

We illustrate beam approximation in the context of a cantilever beam, having a
fixed-end at x = 0 and free-end at x = ℓ, with surface-mounted patches. For test
functions φ in the space

V = H2
0 (0, ℓ) =

{
φ ∈ H2(0, ℓ) |φ(0) = φ′(0) = 0

}
,

the weak formulation of the model for linear inputs is
∫ ℓ

0

ρ
∂2w

∂t2
φdx + γ

∫ ℓ

0

∂w

∂t
φdx +

∫ ℓ

0

Y I
∂2w

∂x2

d2φ

dx2
dx

+

∫ ℓ

0

cI
∂3w

∂x2∂t

d2φ

dx2
dx =

∫ ℓ

0

fφdx + V (t)

∫ ℓ

0

kp
d2φ

dx2
dx

(8.26)

where the piecewise constants ρ, Y I, cI and kp are defined in (7.42) and (7.44).
To formulate approximate solutions based on cubic B-Splines, consider the

partition xj = jh, where h = ℓ
N and j = 0, . . . , N . For j = −1, 0, 1, . . . , N + 1, it is

shown in [383] that standard cubic B-splines are defined by

φ̂j(x) =
1

h3





(x − xj−2)
3 , x ∈ [xj−2, xj−1)

h3 + 3h2(x − xj−1) + 3h(x − xj−1)
2 − 3(x − xj−1)

3 , x ∈ [xj−1, xj)

h3 + 3h2(xj+1 − x) + 3h(xj+1 − x)2 − 3(xj+1 − x)3 , x ∈ [xj , xj+1)

(xj+2 − x)3 , x ∈ [xj+1, xj+2)

0 , otherwise
(8.27)
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as illustrated in Figure 8.12. To accommodate the essential boundary conditions
w(t, 0) = ∂w

∂x (t, 0) = 0 and corresponding restrictions φ(0) = φ′(0) = 0 required of
functions in V , we employ the basis functions

φj(x) =

{
φ̂0(x) − 2φ̂−1(x) − 2φ̂1(x) , j = 1

φ̂j(x) , j = 2, . . . , N + 1
(8.28)

which are modified to ensure that φj ∈ V for j = 1, . . . , N + 1. Finally, we consider
approximate solutions

wN (t, x) =

N+1∑

j=1

wj(t)φj(x)

in the space V N = span{φj} ⊂ V .
In a manner similar to that detailed in Section 8.2.1, consideration of wN

in (8.26) with basis functions employed as test functions yields the semi-discrete
system

M ẅ + Q ẇ + Kw = f + V (t)b (8.29)

where

w(t) = [w1(t) , . . . , wN+1(t)]
T . (8.30)

The global mass, damping and stiffness matrices are defined by

[M ]ij =

∫ ℓ

0

ρφiφjdx

[Q ]ij =

∫ ℓ

0

[
γφiφj + cIφ′′

i φ′′
j

]
dx

[K ]ij =

∫ ℓ

0

Y Iφ′′
i φ′′

j dx

(8.31)

whereas the force vectors have the components

[f ]i =

∫ ℓ

0

fφidx , [b]i =

∫ ℓ

0

φ′′
i dx. (8.32)

xjxj−1xj−2 xj+2xj+1

1

4

Figure 8.12. Cubic B-spline φj(x).
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The second-order vector-value system (8.29) has the same form as (8.16) which
was developed for the rod model and the techniques of Section 8.2.1 can be used to
construct a first-order system appropriate for design and control.

Properties of Cubic Spline Approximates

We summarize here properties of the cubic spline approximates — additional
comparison between this class of approximate solutions and the cubic Hermite ap-
proximates developed in Section 8.3.2 can be found in Section 8.3.3.

Integral Evaluation

From (8.31) it is observed that the construction of the mass, damping and
stiffness matrices requires the evaluation of integrals whose integrands are piece-
wise polynomials of order 2 or 6 when ρ, c and Y are constant. To ensure exact
integration, we employ the composite 4-point Gauss–Legendre rule (8.12), which
exhibits degree of precision 7 accuracy, on each subinterval [xj−1, xj ]. For the
fixed-free end boundary conditions considered here, and constant Young’s modulus,
this yields the stiffness matrix

K = Y I
h3




648 96 6 −12

96 96 −54 0 6

6 −54 96 −54 0 6

−12 0 −54 96 −54 0 6

6 0 −54 96 −54 0 6
. . .

. . .
. . .

. . .
. . .

. . .
. . .

6 0 −54 96 −54 0 6

6 0 −54 84 −36 0

6 0 −36 48 −18

6 0 −18 12




.

For the beam with surface-mounted patches, the parameters will be piecewise
constant with discontinuities at the gridpoints aligned with patch ends.

Partition Construction and Accuracy of the Method

For constant parameters ρ, Y I and cI, the accuracy of the cubic spline approx-
imate is O(h4). This implies that errors will diminish by a factor of approximately
16 when stepsizes h are halved. The same asymptotic accuracy is achieved for
piecewise constant parameters associated with the surface-mounted patches if the
partition is aligned with the patch edges; that is, gridpoints xj must correspond
with the patch endpoints x1 and x2. The accuracy degradation which occurs if
this condition is neglected depends in part on the magnitude of the discontinuity of
ρ, Y I, cI and kp at x1 and x2.

Alignment of the partition with the patch ends is easily addressed in simu-
lation and control designs for which patches are bonded at predefined locations.
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A more pertinent issue arises when addressing the problem of optimal patch loca-
tion for which x1 and x2 are parameters determined through an optimization rou-
tine [132, 155, 202]. This necessitates consideration of variable or adaptive meshes
and constitutes an active research area.

Projection Method

It is important to note that approximation using the modified B-spline basis
(8.28) constitutes a projection rather than interpolation method as is the case for the
cubic Hermite methods summarized in Section 8.3.2. Hence the coefficients (8.30)
do not approximate nodal values of the true solution and modified basis functions
are required to accommodate essential boundary conditions. In this sense, B-spline
approximation shares a projective kinship with globally defined spectral methods
— e.g., Legendre or Fourier — while retaining the sparsity associated with locally
defined polynomial elements. As will be detailed in Section 8.3.3, the advantage of
cubic B-splines over cubic Hermite elements lies in the fact that half as many coef-
ficients are required in the former case. The non-interpolatory nature of B-splines
constitutes the primary disadvantage which is especially pertinent when accommo-
dating boundary or interface conditions between components of the structure —
e.g., curved and flat portions of THUNDER transducers.

8.3.2 Cubic Hermite Basis

To illustrate the construction of a finite element basis which interpolates displace-
ments and slopes at the partition points, we initially consider the model (8.26) in the
absence of internal or air damping and external forces — hence c = γ = f = V = 0.
Additionally, we take ρ and Y to be constant to highlight the structure of con-
stituent matrices.

Local Mass and Stiffness Matrices

It was detailed in Section 7.4 that thin beam models quantify both the trans-
verse displacement and rotation of the neutral line so we begin the elemental analysis
by quantifying the displacements wℓ, wr and slopes θℓ, θr on an arbitrary interval
[0, h] as depicted in Figure 8.13. Once we have constructed local mass and stiffness
matrices, we will extend the analysis to partitions of the full beam interval [0, ℓ] to
construct global system matrices.

w
l

θl

θr

wr

x=0 x=h

Figure 8.13. Displacements wℓ, wr and slopes θℓ, θr at the ends of a cubic element
on the interval [0, h].
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Because the characterization of w(t) = [wℓ(t), θℓ(t), wr(t), θr(t)]
T involves 4

degrees of freedom , we consider cubic representations

w(t, x) = a0(t) + a1(t)x + a2(t)x
2 + a3(t)x

3

= ϕT (x)a(t)
(8.33)

where a(t) = [a0(t), a1(t), a2(t), a3(t)]
T and ϕ(x) = [1, x, x2, x3]T . By noting that

θ(t, x) = ∂w
∂x (t, x) and enforcing the interpolation conditions at x = 0 and h, the

nodal coefficients can be represented as

w(t) = Ta(t)

where

T =




1 0 0 0

0 1 0 0

1 h h2 h3

0 1 2h 3h2


 .

Substitution of a(t) = T−1w(t) into (8.33) yields the expansion

w(t, x) = φ T (x)w(t)

where φ = [φ̃1, φ̃2, φ̃3, φ̃4]
T comprises the local cubic Hermite basis functions

φ̃1(x) =
1

h3
(h − x)2[2x + h] , φ̃3(x) =

1

h3
x2[2(h − x) + h]

φ̃2(x) =
1

h2
x(x − h)2 , φ̃4(x) =

1

h2
x2(x − h).

(8.34)

As shown in Figure 8.14, the elements φ̃j(x) have displacement or slope values of 0
or 1 at x = 0, h. This ensures that the coefficients w(t) = [wℓ(t), θℓ(t), wr(t), θr(t)]

T

interpolate the beam displacements and slopes at x = 0, h.
From the relations

U =
1

2
Y I

∫ h

0

(
∂2w

∂x2

)2

dx , K =
1

2
ρ

∫ h

0

(
∂2w

∂t2

)2

dx

o4(x)~

h

h

1

1

h

h

o3(x)

1(x) (x)o2o~

~

~

Figure 8.14. Cubic Hermite basis functions φ̃1, . . . , φ̃4.
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for the potential energy due to bending and kinetic energy, it follows that for the
class of approximate displacements (8.33),

U =
Y I

2
wT (t)ST ·

∫ h

0

D(x)dx · Sw(t)

K =
ρ

2
ẇT (t)ST ·

∫ h

0

F(x)dx · Sẇ(t)

where S = T−1 and

D(x) = ϕxx(x)ϕxx
T (x) =




0 0 0 0

0 0 0 0

0 0 4 12x

0 0 12x 36x2




F(x) = ϕ(x)ϕT (x) =




1 x x2 x3

x x2 x3 x5

x2 x3 x4 x5

x3 x4 x5 x6


 .

Application of Hamilton’s principle in the manner detailed in Section 7.3.2
yields the second-order vector system

Meẅ + Kew = 0

where the local mass and stiffness matrices are

Me =
ρh

420




156 22h 54 −13h

22h 4h2 13h −3h2

54 13h 156 −22h

−13h −3h2 −22h 4h2


 , Ke =

Y I

h3




12 6h −12 6h

6h 4h2 −6h 2h2

−12 −6h 12 −6h

6h 2h2 −6h 4h2


 .

Global Mass and Stiffness Matrices

Global mass and stiffness matrices are constructed by combining local relations
subject to the constraint that displacements and slopes match at the interfaces. To
illustrate, we first subdivide the beam support [0, ℓ] into two subregions as depicted
in Figure 8.10(a). By enforcing the interface conditions

w1r(t) = w2ℓ(t) , θ1r(t) = θ2ℓ(t),
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we obtain the global matrices

M =
ρh

420




156 22h 54 −13h 0 0

22h 4h2 13h −3h2 0 0

54 13h 312 0 54 −13h

−13h −3h2 0 8h2 13h −3h2

0 0 54 13h 156 −22h

0 0 −13h −3h2 −22h 4h2




and

K =
Y I

h3




12 6h −12 6h 0 0

6h 4h2 −6h 2h2 0 0

−12 −6h 24 0 −12 6h

6h 2h2 0 8h2 −6h 2h2

0 0 −12 −6h 12 −6h

0 0 6h 2h2 −6h 4h2




where h = ℓ
2 .

Due to the fixed-end conditions at x = 0, it follows that w1ℓ = θ1ℓ = 0. After
re-ordering the vector of nodal values as

w(t) = [w1r(t), w2r(t), θ1r(t), θ2r(t)]
T

,

the dynamics are quantified by the system

Mẅ + Kw = 0

where

M = ρh
420




312 54 0 −13h

54 156 13h −22h

0 13h 8h2 −3h2

−13h −22h −3h2 4h2


 , K = Y I

h3




24 −12 0 6h

−12 12 −6h −6h

0 −6h 8h2 2h2

6h −6h 2h2 4h2


 . (8.35)

The process for general partitions xj = jh with h = ℓ
N is analogous and leads

to a similar summation process when constructing global system matrices — see
Figure 8.15. As detailed in previous sections, internal damping can be incorporated
by employing more general constitutive relations based on the assumption that
stress is proportional to a linear combination of strain and strain rate.

Global Discretization

We illustrated in Section 8.2 that either global Galerkin techniques or lo-
cal elemental analysis could be employed when implementing linear finite element
methods. The same is true with cubic Hermite elements. Whereas the local ele-
mental analysis illustrates the implementation philosophy for general 2-D and 3-D
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Figure 8.15. Combination of elemental mass and stiffness matrices Me and Ke to
construct global matrices M and K.

structures, global Galerkin techniques analogous to those in Section 8.2 can be
more efficient to implement for beam discretization. The global discretization also
demonstrates similarities and differences between the interpolatory cubic Hermite
approximates and the projective cubic spline technique discussed in Section 8.3.1.

For the partition xj = jh, h = ℓ
N , j = 0, . . . , N , the global Hermite basis

functions are taken to be

φwj
(x) =

1

h3





(x − xj−1)
2[2(xj − x) + h] , x ∈ [xj−1, xj ]

(xj+1 − x)2[2(x − xj) + h] , x ∈ (xj , xj+1]

0 , otherwise

φθj
(x) =

1

h2





(x − xj−1)
2(x − xj) , x ∈ [xj−1, xj ]

(xj+1 − x)2(x − xj) , x ∈ (xj , xj+1]

0 , otherwise

for j = 1, . . . , N−1. The definitions of φwN
and φθN

are analogous but involves only
the interval [xN−1, xN ]. As illustrated in Figure 8.16, the global basis functions φwj

and φθj
are the concatenation of the local displacement elements φ̃3, φ̃1 and slope

elements φ̃4, φ̃2 defined in (8.34) and shown in Figure 8.12.
The approximating subspace is taken to be

V N = span
{
φwj

, φθj

}N

j=1

and the approximate solution is

wN (t, x) =

N∑

j=1

wj(t)φwj
(x) +

N∑

j=1

θj(t)φθj
(x). (8.36)

We note that by omitting φw0
and φθ0

, elements v ∈ V N are guaranteed to satisfy
v(0) = v′(0) = 0 which ensures that V N ⊂ V = H2

0 (0, ℓ). The ordering of nodal co-
efficients provided by (8.36) yields banded, tridiagonal mass, damping and stiffness
matrices that are Toeplitz along all but the last row and column.
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xj−1 xj xj+1

xjxj−1 xj+1

oθjowj

1

Figure 8.16. Global Hermite basis functions φwj
and φθj

.

The projection of (8.26) onto V N and use of basis functions as test functions
yields the second-order system

M ẅ + Q ẇ + Kw = f + V (t)b

where the 2N × 1 vector w(t) has the nodal ordering

w(t) = [w1(t), . . . , wN (t), θ1(t), . . . , θN (t)]T .

The global system matrices M, Q, K and vectors f ,b have definitions analogous to
(8.31) and (8.32) where φi and φj now represent the combined basis {φwi

, φθi
}

and {φwj
, φθj

}. As with the matrices arising from the cubic B-spline discretization
discussed in Section 8.3.1, the integrals involve piecewise polynomials of degree less
than or equal to 6 so exact integration is achieved using the composite 4-point
Gauss–Legendre rule (8.12) on each subinterval [xj−1, xj ].

For constant stiffness Y I, this yields the stiffness matrix

K = Y I
h3




24 −12 0 6h

−12 24 −12 −6h 0 6h

. . .
. . .

. . .
. . .

. . .
. . .

−12 24 −12 −6h 0 6h

12 12 −6h −6h

0 −6h 8h2 2h2

6h 0 −6h 2h2 8h2 2h2

. . .
. . .

. . .
. . .

. . .
. . .

6h 0 −6h 2h2 8h2 2h2

6h −6h 2h2 4h2




. (8.37)

It is observed that the stiffness matrix K in (8.35), which was derived through
elemental analysis, is a special case of (8.37) when N = 2. For the beam with
surface-mounted patches, the differing values of Y I in the patch region are simply
incorporated in those regions of the partition which coincide with the patch. The
mass and damping matrices are constructed in an analogous manner.

We note that the parameter ordering w(t) = [w1(t), θ1(t), . . . , wN (t), θN (t)]T

eliminates the block tridiagonal structure and yields block diagonal matrices where
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each block has a support of 6 diagonals. The disadvantage of this ordering scheme is
that the Toeplitz nature of the matrices is destroyed which complicates matrix con-
struction. Additional details regarding elemental and global approximation using
cubic Hermite elements can be found in [36, 203,422].

8.3.3 Comparison between Cubic Spline and Cubic Hermite

Approximates

The cubic B-spline and cubic Hermite techniques detailed in Sections 8.3.1 and 8.3.2
illustrate two commonly employed Galerkin techniques for approximating beam
models. Both provide O(h4) spatial convergence rates as long as partitions are
aligned with patches to accommodate discontinuities in mass, damping, stiffness
and input parameters. As noted in Section 8.3.1, the cubic spline discretization is a
projection method whereas the cubic Hermite method is interpolatory in the sense
that the coefficients w(t) are nodal values of the displacement and slope at the
partition points. Hence the cubic spline technique is more closely related to general
Galerkin expansions — e.g., employing Legendre or Fourier bases — whereas the
cubic Hermite expansion employs the finite element philosophy which, as detailed
on pages 417–419 of Appendix A, is subsumed in the Galerkin framework.

The primary advantage of the cubic Hermite method lies in its interpolatory
nature. This simplifies the enforcement of essential boundary conditions and facil-
itates characterization of complex structures which require nodal matching at the
junction of differing geometries. For example, the transition from flat tabs to the
curved patch region in THUNDER transducers — see the models (7.103), (7.106),
or (7.107) in Section 7.9 — is easily accommodated by matching nodal values with
Hermite elements whereas it is difficult to implement with cubic splines.

The disadvantage of the Hermite approximate is that it requires roughly twice
as many coefficients as the spline expansion since both displacements and slopes
are discretized. The increased dimensionality of system matrices must be accom-
modated when employing the model for control designs which require real-time
implementation.

8.3.4 Examples and Software

Attributes of the discretized beam model, when used to characterize the PVDF–
polyimide unimorph depicted in Figure 7.13, are illustrated in Section 7.4.1. Ex-
perimental validation of the discretized model for a beam with surface-mounted
piezoceramic patches is addressed in Chapter 5 of [33].

MATLAB m-files for implementing the unimorph and beam models are located
at the website http://www.siam.org/books/fr32.

8.4 Numerical Approximation of the Plate Model

In this section, we summarize approximation techniques for the rectangular and
circular plate models developed in Section 7.5. We consider regimes in which trans-
verse and longitudinal displacements can be decoupled and focus on approximating
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the former using Galerkin expansions employing spline or Fourier bases in space. As
illustrated in Section 8.5 when discussing thin shell approximation, linear elements
can be employed to discretize longitudinal displacements if warranted by the appli-
cation. A full discussion regarding finite element methods for plates is beyond the
scope of this discussion and the reader is referred to [276, 390, 422, 527] for details
about this topic.

8.4.1 Rectangular Plate Approximation

We consider a rectangular plate with x ∈ [0, ℓ] and y ∈ [0, a] as depicted in Fig-
ure 7.17. As in Section 7.5.1, we assume that the plate has thickness h and has
NA surface-mounted piezoceramic patches of thickness hI whose edges are parallel
with the x and y-axes. The plate is assumed to have fixed-edge conditions at x = 0,
y = 0 and free boundary conditions for the remaining two edges. To simplify no-
tation, we let Ω = [0, ℓ] × [0, a] denote the plate region. Finally, we consider linear
input regimes with voltages Vi(t) = V1i(t) = −V2i(t). Extension to nonlinear in-
put regimes follows immediately when voltage inputs are replaced by the nonlinear
polarization relations.

From (7.65), the transverse displacements are quantified by the weak model
formulation

∫

Ω

{
ρ
∂2w

∂t2
φ − Mx

∂2φ

∂x2
− 2Mxy

∂2φ

∂x∂y
− My

∂2φ

∂y2
− fnφ

}
dω = 0 (8.38)

for φ in the space of test functions

V = H2
0 (Ω) =

{
φ ∈ H2(Ω) |φ(0, y) = φx(0, y) = 0 for 0 ≤ y ≤ a,

φ(x, 0) = φy(x, 0) = 0 for 0 ≤ x ≤ ℓ}.

The density ρ is specified by (7.48) and the moments are defined in (7.57) with
components specified in (7.58)–(7.63). We consider the case of linear patch inputs
but note that nonlinear inputs are accommodated in an identical manner.

The philosophy when approximating the dynamics of (8.38) is identical to
that employed in Sections 8.2 and 8.3 for the rod and beam models. The relation is
projected onto a spline-based finite-dimensional subspace V N ⊂ V to obtain a semi-
discrete system appropriate for finite-dimensional control design. This vector-valued
system can subsequently be simulated by employing finite difference discretizations
in time or standard software for moderately stiff systems.

Consider a partition {(xm, yn)} of Ω where xm = mhx, yn = nhy, with hx =
ℓ

Nx
, hy = a

Ny
and m = 0, . . . , Nx, n = 0, . . . , Ny. Using the definition (8.28), we

define modified cubic spline basis functions φm(x) and φn(y) on the intervals [0, ℓ]
and [0, a]. The product space basis is then taken to be

Φk(x, y) = φm(x)φn(y) (8.39)

and the approximating subspace is

V N = span {Φk}Nw

k=1
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where Nw = (Nx +1)(Ny +1). Approximate displacements have the representation

wN (t, x, y) =

Nw∑

k=1

wk(t)Φk(x, y)

=

Nx+1∑

m=1

Ny+1∑

n=1

wmn(t)φm(x)φn(y).

The restriction of the infinite-dimensional model (8.38) to the finite-dimensional
subspace V N ⊂ V yields the vector-valued system

M ẅ + Q ẇ + Kw = f +
2YAd31c2

hA(1 − νA)

NA∑

i=1

Vi(t)bi (8.40)

where w(t) = [w1(t), . . . , wNw
(t)]T . The mass and stiffness matrices are defined

componentwise by

[M ]jk =

∫

Ω

ρΦjΦkdω

[K ]jk = [K1]jk + [K2]jk + [K3]jk + [K4]jk + [K5]jk

where

[K1]jk =

∫

Ω

(
YIh

3
I

12(1 − ν2
I )

+
2YAc3

1 − ν2
A

NA∑

i=1

χpei
(x, y)

)
∂2Φj

∂x2

∂2Φk

∂x2
dω

[K2]jk =

∫

Ω

(
YIh

3
IνI

12(1 − ν2
I )

+
2YAc3νA

1 − ν2
A

NA∑

i=1

χpei
(x, y)

)
∂2Φj

∂x2

∂2Φk

∂y2
dω

[K3]jk =

∫

Ω

(
YIh

3
I

12(1 − ν2
I )

+
2YAc3

1 − ν2
A

NA∑

i=1

χpei
(x, y)

)
∂2Φj

∂y2

∂2Φk

∂y2
dω

[K4]jk =

∫

Ω

(
YIh

3
IνI

12(1 − ν2
I )

+
2YAc3νA

1 − ν2
A

NA∑

i=1

χpei
(x, y)

)
∂2Φj

∂y2

∂2Φk

∂x2
dω

[K5]jk =

∫

Ω

(
YIh

3
I

12(1 + νI)
+

YAc3

1 + νA

NA∑

i=1

χpei
(x, y)

)
∂2Φj

∂x∂y

∂2Φk

∂x∂y
dω.

The damping matrix Q is constructed in a manner analogous to K. Finally, the
vectors are defined by

[f ]j =

∫

Ω

fnΦjdω

[bi]j =

∫

Ω

χpei
(x, y)

(
∂2Φj

∂x2
+

∂2Φj

∂y2

)
dω.
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The second-order system (8.40) has the same form as (8.16) which was de-
veloped for the rod in Section 8.2.1. Hence the techniques in that section can be
used to construct a corresponding first-order system appropriate for control design
or simulation.

8.4.2 Circular Plate Approximation

The circular plate model (7.71) with space of test functions (7.70) represents a set-
ting in which the geometry and differential operator are not the tensor product of
1-D components. When combined with the inherent periodicity in θ, this motivates
consideration of basis elements comprised of cubic B-splines in r and Fourier com-
ponents in θ. We provide here an outline of the approximate system construction
and refer the reader to [430] for details regarding this development.

The circumferential component of the basis is taken to be φm(θ) = eimθ where
m = −M, . . . , M . The form of the radial component is motivated by the analytic
Bessel behavior of the undamped plate that is devoid of patches. Let φm

n (r) denote

the nth cubic spline modified to satisfy φm
n (a) =

dφm
n (a)
dr = 0 — e.g., see (8.28) —

along with the condition
dφm

n (0)
dr = 0 which is required to ensure differentiability at

the origin.
The plate basis is then taken to be

Φk(r, θ) = r| bm|φm
n (r)eimθ

where

m̂ =

{
0 , m = 0

1 , m 6= 0.

As detailed in [430], the inclusion of the weighting term r| bm| is motivated by the
asymptotic behavior of the Bessel functions as r → 0 and ensures the uniqueness of
the solution at the origin. The approximating subspace is

V N = span{Φk}
and approximate solutions have the representation

wN (t, r, θ) =

Nw∑

k=1

wk(t)Φk(r, θ)

=

M∑

m=−M

Nm∑

n=1

wmn(t)r| bm|φm
n (r)eimθ .

Here

Nm =

{
N , m = 0

N + 1 , m 6= 0.

where N denotes the number of modified cubic splines.
Details regarding the construction of component matrices and vectors are pro-

vided in [430]. The performance of the discretized model when characterizing the
dynamics of a circular plate is summarized in Section 7.5 and detailed in [430].
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8.4.3 Examples and Software

The accuracy and limitations of the discretized circular plate model for charac-
terizing both axisymmetric and nonaxisymmetric plate vibrations are illustrated
in Section 7.5.2. In the axisymmetric case, the model accurately quantifies low
to moderate frequency dynamics but overdamps high frequency modes which is
characteristic of the Kelvin–Voigt damping model. It is illustrated that in the non-
axisymmetric regime, which is truly 2-D, the model accurately characterizes the
dynamics associated with 8 of the 11 measured modes.

The reader can obtain MATLAB m-files for the approximation of the rectan-
gular plate model at the website http://www.siam.org/books/fr32.

8.5 Numerical Approximation of the Shell Model

The final structure under consideration is the cylindrical shell model (7.92) devel-
oped in Section 7.7. To simplify the discussion, we consider fixed-edge conditions
u = v = w = ∂w

∂x = 0 at x = 0, ℓ and hence the space of test functions is

V = H1
0 (Ω) × H1

0 (Ω) × H2
0 (Ω)

where Ω = [0, ℓ] × [0, 2π] denotes the shell region and

H1
0 (Ω) =

{
φ ∈ H1(Ω) |φ(0, θ) = φ(ℓ, θ) = 0

}

H2
0 (Ω) =

{
φ ∈ H2(Ω) |φ(0, θ) = φ(ℓ, θ) = φx(0, θ) = φx(ℓ, θ) = 0

}
.

We summarize here the cubic spline–Fourier approximation method developed
in [130] and illustrated for control design in [131]. As noted in the first citation, two
phenomena which plague the approximation of shell models are shear locking and
membrane or shear-membrane locking. Shear locking, which has also been studied
extensively in the context of Reissner-Mindlin plate models, is due to element in-
compatibility when enforcing the Kirchhoff-Love constraint of vanishing transverse
shear strains as the shell thickness h tends to zero [14]. Membrane locking occurs
when the total deformation energy is bending-dominated and is due to smoothness
and asymptotic constraints in the shell model which are not appropriately repre-
sented by the approximation method — e.g., [21, 22, 290, 380]. If these constraints
are not satisfied by approximating elements, the numerical solution is often overly
stiff in the sense that the model exhibits bending dynamics which the approximate
solution cannot match. As detailed in [290], mesh sizes must be chosen significantly
smaller than the shell thickness to ensure accurate approximations with high-order
finite elements in such bending-dominated regimes. It is noted that even with such
mesh size restrictions, low-order finite element methods often fail in such regimes.

The discussion in this section is meant to provide the reader with an overview
of issues associated with shell approximation and a brief summary of one discretiza-
tion technique. Details and subtleties associated with this topic can found in [39,192]
and previously cited references.
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Basis Construction and Approximating Subspaces

To approximate the longitudinal, circumferential and transverse displacements
u, v and w, it is necessary to construct bases for finite-dimensional subspaces of
H1

0 (Ω) and H2
0 (Ω). This is accomplished using linear and cubic splines modified to

accommodate the fixed boundary conditions.
We consider a uniform partition along the x-axis with gridpoints xn = nh,

h = ℓ
N and n = 0, . . . , N . For n = 1, . . . , N − 1, we employ the linear splines

φun
(x) = φvn

(x) =
1

h





x − xn−1 , xn−1 ≤ x < xn

xn+1 − x , xn ≤ x ≤ xn+1

0 , otherwise

and modified cubic splines

φwn
(x) =





φ̂0(x) − 2φ̂−1(x) − 2φ̂1(x) , n = 1

φ̂n(x) , n = 2, . . . , N − 2

φ̂N (x) − 2φ̂N−1(x) − 2φ̂N+1(x) , n = N − 1

where the standard B-splines are defined in (8.27). For n = 1, . . . , N − 1 and
m = −M, . . . , M , the product space bases, in complex form, are taken to be

Φuk
(θ, x) = eimθφun

(x)

Φvk
(θ, x) = eimθφvn

(x)

Φwk
(θ, x) = eimθφwn

(x).

To provide an equivalent real form, one can employ the representation

Φuk
(θ, x) =





cos(mθ)
1

sin(mθ)



φun

(x) , m = 1, . . . , M

with similar definitions for Φvk
and Φwk

. The approximating subspaces are

V N
u = span {Φuk

}Nu

k=1

V N
v = span {Φvk

}Nv

k=1

V N
w = span {Φwk

}Nw

k=1

and the approximate displacements are represented by the expansions

uN (t, θ, x) =

Nu∑

k=1

uk(t)Φuk
(θ, x)

vN (t, θ, x) =

Nv∑

k=1

vk(t)Φvk
(θ, x)

wN (t, θ, x) =

Nw∑

k=1

wk(t)Φwk
(θ, x).

(8.41)
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For a single partition, it follows that Nu = Nv = Nw = (2N −1)(2M +1). Through
the construction of φun

, φvn
and φwn

, the approximate displacements uN , vN and
wN satisfy the fixed-end conditions and V N = V N

u × V N
v × V N

w ⊂ V . We note that
consideration of real components yields the equivalent representation

uN (t, θ, x) =

N−1∑

n=1

u0n(t)φun
(x)

+

M∑

m=1

N−1∑

n=1

umn(t) cos(mθ)φun
(x) +

M∑

m=1

N−1∑

n=1

ũmn(t) sin(mθ)φun
(x)

with similar expressions for vN (t, θ, x) and wN (t, θ, x).

System Matrices

To determine the generalized Fourier coefficients uk(t), vk(t) and wk(t), we
employ the same approach as in previous sections and orthogonalize the residual
with respect to the linearly independent test functions used to construct the approx-
imating subspaces. To construct the resulting vector-valued system, we consolidate
the coefficients in the vectors

u(t) =




u1(t)
...

uNu
(t)


 , v(t) =




v1(t)
...

vNv
(t)


 , w(t) =




w1(t)
...

wNw
(t)


 .

The full set of coefficients is then represented as ϑ(t) = [u(t),v(t),w(t)]T where
N = Nu + Nv + Nw.

The mass, stiffness and damping matrices have the form

M =




Um

Vm

Wm


 ,

K =




U11 + U12 V11 + V12 W11

U21 + U22 V21 + V22 W21

U31 V31

∑6
k=1 W3k


 ,

Q =




Ũ11 + Ũ12 Ṽ11 + Ṽ12 W̃11

Ũ21 + Ũ22 Ṽ21 + Ṽ22 W̃21

Ũ31 Ṽ31

∑6
k=1 W̃3k




and the exogenous vectors are

f(t) = [fu , fv , fw]T , b = [bu , bv , , 0]T .
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The various submatrices contain individual components which arise when the weak
formulation (7.92) is restricted to V N . For example, the approximation of the mass
and stiffness components in the longitudinal equation of (7.92) yields

[Um]jk =

∫

Ω

ρhRΦuk
Φuj

dω,

[U11]jk =

∫

Ω

Y hR

1 − ν2

∂Φuk

∂x

∂Φuj

∂x
dω,

[V11]jk =

∫

Ω

Y hν

1 − ν2

∂Φvk

∂θ

∂Φuj

∂x
dω,

[W11]jk =

∫

Ω

Y hν

1 − ν2
Φwk

∂Φuj

∂x
dω,

[V12]jk =

∫

Ω

Y h

2(1 + ν)

∂Φvk

∂x

∂Φuj

∂θ
dω,

[U12]jk =

∫

Ω

Y h

2R(1 + ν)

∂Φuk

∂θ

∂Φuj

∂θ
dω,

[fu]j =

∫

Ω

RfxΦuj
dω,

[bu]j =

∫

Ω

Rh

1 − ν

∂Φuj

∂x
dω

with similar expressions for the remaining submatrices.
In the usual manner, the second-order system

M ϑ̈(t) + Qϑ̇(t) + Kϑ(t) = f(t) +
[
a1(P (E(t)) − PR) + a2(P (E(t)) − PR)2

]
b

ϑ(0) = ϑ0 , ϑ̇(0) = ϑ1

can be reformulated as the first-order Cauchy equation

żN (t) = Az(t) + F(t) +
[
a1(P (E(t)) − PR) + a2(P (E(t)) − PR)2

)
B

z(0) = z0 ,

where z = [ϑ(t), ϑ̇(t)]T and

A =

[
0 I

−M−1K −M−1Q

]
, F(t) =

[
0

M−1(t)

]
, B =

[
0

M−1b

]
.

The system in this form is anemable to simulation, parameter estimation and control
design. Note that the system can be adapted to alternative boundary conditions
through modifications of the first and last basis functions. Flexibility in this regard
is also a hallmark of the method.


