
Ralph C. Smith
Department of Mathematics

North Carolina State University

Introduction to Numerical Integration, Optimization,
Differentiation and Ordinary Differential Equations

Overview: Elements of Numerical Analysis
• Numerical integration
• Optimization
• Numerical differentiation
• Ordinary Differential equations (ODE)

Motivation

What does an integral represent?

Basic definition of an integral:
ò =
b

a
dxxf area)(ò ò =

d

c

b

a
dxdyxf volume)(

åò
=

¥®
D=

n

k
k

b

a n
xxfdxxf

1

)(lim)(

sum of height ´ width

f(x)

Dx

n
abx -

=D
where

Numerical Quadrature
Motivation: Computation of expected values requires approximation of integrals

E[u(t , x)] =
Z

Rp
u(t , x , q)⇢(q)dq

Numerical Quadrature:

Questions:

• How do we choose the quadrature points and weights?

– E.g., Newton-Cotes; e.g., trapezoid rule

Z

Rp
f (q)⇢(q)dq ⇡

RX

r=1

f (qr)wr

a b

Z b

a
f (q)dq ⇡ h

2

"

f (a) + f (b) + 2
R-2X

r=1

f (qr)

#

qr = a + hr , h =
b - a
R - 1

E[V (t)] =
Z

R6
V (t , q)⇢(q)dq

Error:

Example: HIV model

O‘ (h2)

Numerical Quadrature
Motivation: Computation of expected values requires approximation of integrals

E[u(t , x)] =
Z

Rp
u(t , x , q)⇢(q)dq

Numerical Quadrature:

Questions:

• How do we choose the quadrature points and weights?

– E.g., Newton-Cotes, Gaussian algorithms

Z

Rp
f (q)⇢(q)dq ⇡

RX

r=1

f (qr)wr

x
jxj−1 ba

xx x
xa b

Error: Exact for
polynomials up to
cubic!

Numerical Quadrature
Numerical Quadrature:

Questions:

• Can we construct nested algorithms to improve efficiency?

– E.g., employ Clenshaw-Curtis points

Z

Rp
f (q)⇢(q)dq ⇡

RX

r=1

f (qr)wr

0 0.25 0.5 0.75 1
0

1

2

3

4

5

6

Le
ve
l

Numerical Quadrature
Questions:

• How do we reduce required number of points while maintaining accuracy?

Tensored Grids: Exponential growth Sparse Grids: Same accuracy

p R` Sparse Grid R Tensored Grid R = (R`)p

2 9 29 81
5 9 241 59,049

10 9 1581 > 3⇥ 109

50 9 171,901 > 5⇥ 1047

100 9 1,353,801 > 2⇥ 1095

Numerical Quadrature
Problem:

• Accuracy of methods diminishes as parameter dimension p increases

• Suppose

• Tensor products:

• Quadrature errors:

Take R` points in each dimension so R = (R`)p total points

Newton-Cotes: E ⇠ O‘ (R-↵
`) = O‘ (R-↵/p)

Gaussian: E ⇠ O‘ (e-�R`) = O‘
⇣

e
-� p

p
R

⌘

Sparse Grid: E ⇠ O‘
⇣
R-↵ log (R)(p-1)(↵+1)

⌘

f 2 C↵([0, 1]p)

Numerical Quadrature
Problem:

• Accuracy of methods diminishes as parameter dimension p increases

• Suppose

• Tensor products:

• Quadrature errors:

• Alternative: Monte Carlo quadrature

Take R` points in each dimension so R = (R`)p total points

Newton-Cotes: E ⇠ O‘ (R-↵
`) = O‘ (R-↵/p)

Gaussian: E ⇠ O‘ (e-�R`) = O‘
⇣

e
-� p

p
R

⌘

Sparse Grid: E ⇠ O‘
⇣
R-↵ log (R)(p-1)(↵+1)

⌘

f 2 C↵([0, 1]p)

Z

Rp
f (q)⇢(q)dq ⇡ 1

R

RX

r=1

f (qr) , E ⇠

✓
1p
R

◆

• Advantage: Errors independent of dimension p

• Disadvantage: Convergence is very slow!

Conclusion: For high enough
dimension p, monkeys
throwing darts will beat
Gaussian and sparse grid
techniques!

Monte Carlo Sampling Techniques
Issues:

• Very low accuracy and slow convergence

• Random sampling may not “randomly” cover space …

Samples from Uniform Distribution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Monte Carlo Sampling Techniques
Issues:

• Very low accuracy and slow convergence

• Random sampling may not “randomly” cover space …

Samples from Uniform Distribution Sobol’ Points

Sobol’ Sequence: Use a base of two to form successively finer uniform partitions
of unit interval and reorder coordinates in each dimension.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Monte Carlo Sampling Techniques
Example: Use Monte Carlo sampling to approximate area of circle

Strategy:

Ac

As
=

⇡r 2

4r 2 =
⇡

4

• Count M points in circle

• Randomly sample N points in square) approximately N
⇡

4
in circle

) Ac =
⇡

4
As

) ⇡ ⇡ 4M
N

Numerical Integration: Example

• Integration of cosine from 0 to π/2.

• Use mid-point rule for simplicity.

hhiadxxdxx
m

i

m

i

iha

hia

b

a
))(cos()cos()cos(2

1

11
)1(

-+»= ååòò
==

+

-+

mid-point of increment

cos(x)

h

a = 0; b = pi/2; % range
m = 8; % # of increments
h = (b-a)/m; % increment

Numerical Integration

% integration with for-loop

tic

m = 100;

a = 0; % lower limit of integration

b = pi/2; % upper limit of integration

h = (b-a)/m; % increment length

integral = 0; % initialize integral

for i=1:m

x = a+(i-0.5)*h; % mid-point of increment i

integral = integral + cos(x)*h;

end

toc

X(1) = a + h/2 X(m) = b - h/2

a

h

b

Numerical Integration

% integration with vector form

tic

m = 100;

a = 0; % lower limit of integration

b = pi/2; % upper limit of integration

h = (b-a)/m; % increment length

x = a+h/2:h:b-h/2; % mid-point of m increments

integral = sum(cos(x))*h;

toc

X(1) = a + h/2 X(m) = b - h/2

a

h

b

Optimization

Example: Helmholtz energy

Point Estimates: Ordinary least squares

Statistical Model: Describes
observation process

0 0.2 0.4 0.6 0.8
Polarization P

-60

-40

-20

0

20

40

60

80

H
el

m
ho

ltz
 E

ne
rg

y

Model ψ
Data υ

�i = (Pi , q) + "i , i = 1, ... , n
n = 81

q0 = arg min
q

1
2

nX

j=1

[�i - (Pi , q)]2

Note: Optimization is critical for model calibration and design

 (P, q) = ↵1P2 + ↵11P4 + ↵111P6

q = [↵1,↵11,↵111]

Optimization

Issues: Nonconvex problems having numerous local minima

What is Optimization

But generally speaking...

We’re screwed.
! Local (non global) minima of f0

! All kinds of constraints (even restricting to continuous functions):

h(x) = sin(2πx) = 0

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−50

0

50

100

150

200

250

Duchi (UC Berkeley) Convex Optimization for Machine Learning Fall 2009 7 / 53

Tie between Optimization and Root Finding

Problem 1:

Problem 2:

Note:

Optimization

Method 1: Gradient descent

Goal: min
x

f (x)

Strategy: Employ iteration

Optimization Algorithms Gradient Methods

Single Step Illustration

f(xt) - η∇f(xt)T (x - xt)

f(x)

(xt, f(xt))

Duchi (UC Berkeley) Convex Optimization for Machine Learning Fall 2009 40 / 53

xt+1 = xt - ⌘trf (xt)

where ⌘t is a stepsize

Strategy: Employ iteration

Note: Stochastic gradient
descent employed in
machine learning including
artificial neural nets.

Optimization

Method 1: Gradient descent

Potential issue:

Newton’s Method

Problem 1:

Problem 2:

Note:

Newton’s Method (n=1):

Note: Quadratic convergence if function is sufficiently smooth and ‘reasonable’
initial value

Newton’s Method

Newton’s Method (n>1): Consider

Hessian:

Note: Hessian computation is expensive so several techniques to approximate
its action; e.g., Limited-memory Broyden –Fletcher-Goldfarb-Shanno (L-BFGS)
employed in machine learning.

MATLAB Optimization Routines
Note: There is significant documentation for the Optimization Toolbox

Minimization:
• fmincon: Constrained nonlinear minimization

• fminsearch: Unconstrained nonlinear minimization (Nelder-Mead)

• fminunc: Unconstrained nonlinear minimization (gradient-based trust region)

• quadprog: Quadratic programming

Equation Solving:
• fsolve: Nonlinear equation solving

• fzero: scalar nonlinear equation solving

Least Squares:
• lsqlin: Constrained linear least squares

• lsqnonlin: Nonlinear least squares

• lsqnonneg: Nonnegative linear least squares

Kelley’s Routines: Available at the webpage http://www4.ncsu.edu/~ctk/

Numerical Differentiation

Derivative:

f 0(x) = lim
h!0

(x + h)- f (x)
h

x x+h
Note:

f (x + h) = f (x) + f 0(x)h + f 00(⇠)
h2

2!

) f 0(x) = f(x+h)-f(x)
h - f 00(⇠) h

2!

Forward Difference:

x x+h

f
0(x) =

f (x + h)- f (x)

h
+ O‘ (h)

Numerical Differentiation

More Accuracy: Central differences

f
0(x) =

f (x + h)- f (x - h)

h
+ O‘ (h2)

Numerical Differentiation

Issue: Suppose we have the following “noisy” function or data
• What is the issue with doing finite-differences to approximate derivative?

Numerical Differentiation

Issue: Suppose we have the following “noisy” function or data
• What is the issue with doing finite-differences to approximate derivative?

• Derivatives can grow unboundedly due to noise.

Numerical Differentiation

Issue: Suppose we have the following “noisy” function or data
• What is the issue with doing finite-differences to approximate derivative?

• Derivatives can grow unboundedly due to noise.

Solution:
• Fit "smooth” function that is easy to

differentiate.

• Interpolation

Example: Quadratic polynomial

ys(q) = (q - 0.25)2 + 0.5

Note: Solve linear system

Numerical Differentiation

Issue: Suppose we have the following “noisy” function or data
• What is the issue with doing finite-differences to approximate derivative?

• Derivatives can grow unboundedly due to noise.

Solution:
• Fit "smooth” function that is easy to

differentiate.

• Regression

Example: Quadratic polynomial

ys(q) = (q - 0.25)2 + 0.5
M=7
k=2

Lagrange Polynomials

Strategy: Consider high fidelity model

with M model evaluations

Lagrange Polynomials:

Note: Result:

ym

Lm(q) =
MY

j=0
j 6=m

q - q j

q m - q j =
(q - q 1) · · · (q - q m-1)(q - q m+1) · · · (q - q M)

(q m - q 1) · · · (q m - q m-1)(q m - q m+1) · · · (q m - q M)

Lm(q j) = �jm =

�
0 , j 6= m
1 , j = m

y = f (q)

ym = f (qm) , m = 1, ... , M

where Lm(q) is a Lagrange polynomial, which in 1-D, is represented by

Y M(q) =
MX

m=1

ymLm(q)

Y M(qm) = ym

Numerical Methods for IVP: Euler’s Method
Initial Value Problem:

Notation:

Taylor Series:

Euler’s Method:

Accuracy: Local truncation error

Global truncation error

Euler and Implicit Euler Methods

Note:

Euler’s Method: Left Endpoint

Implicit Euler: Right Endpoint

Stability: Apply method to Forward Euler Implicit Euler

Runge-Kutta-Feylberg Methods

4th Order Runge-Kutta:

Accuracy: Local Truncation error is 4th-order if u(t) has five continuous derivatives.

Runge-Kutta-Feylberg: Use R-K method with 5th order truncation error to estimate
local error in 4th order R-K method to choose appropriate stepsize.

MATLAB ODE Routines

Algorithms: From the MATLAB ODE documentation

• ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is a one-step solver - in

computing y(tn), it needs only the solution at the immediately preceding time point, y(tn-1). In general, ode45 is

the best function to apply as a "first try" for most problems.

• ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine. It may be more

efficient than ode45 at crude tolerances and in the presence of moderate stiffness. Like ode45, ode23 is a one-

step solver.

• ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be more efficient than ode45 at

stringent tolerances and when the ODE file function is particularly expensive to evaluate. ode113 is a multistep

solver - it normally needs the solutions at several preceding time points to compute the current solution.

• The above algorithms are intended to solve nonstiff systems. If they appear to be unduly slow, try using one of

the stiff solvers below.

• ode15s is a variable order solver based on the numerical differentiation formulas (NDFs). Optionally, it uses

the backward differentiation formulas (BDFs, also known as Gear's method) that are usually less efficient. Like

ode113, ode15s is a multistep solver. Try ode15s when ode45 fails, or is very inefficient, and you suspect that

the problem is stiff, or when solving a differential-algebraic problem.

• ode23s is based on a modified Rosenbrock formula of order 2. Because it is a one-step solver, it may be more

efficient than ode15s at crude tolerances. It can solve some kinds of stiff problems for which ode15s is not

effective.

• ode23t is an implementation of the trapezoidal rule using a "free" interpolant. Use this solver if the problem is

only moderately stiff and you need a solution without numerical damping. ode23t can solve DAEs.

• ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula with a first stage that is a

trapezoidal rule step and a second stage that is a backward differentiation formula of order two. By construction,

the same iteration matrix is used in evaluating both stages. Like ode23s, this solver may be more efficient than

ode15s at crude tolerances.

MATLAB ODE Routines: From the Documentation

Solver Problem Type Order of
Accuracy

When to Use

ode45 Nonstiff Medium Most of the time. This should be the first
solver you try.

ode23 Nonstiff Low For problems with crude error tolerances
or for solving moderately stiff problems.

ode113 Nonstiff Low to High For problems with stringent error
tolerances or for solving computationally
intensive problems.

ode15s Stiff Low to
Medium

If ode45 is slow because the problem is
stiff

ode23s Stiff Low If using crude error tolerances to solve stiff
systems and the mass matrix is constant.

ode23t Moderately Stiff Low For moderately stiff problems if you need a
solution without numerical damping.

ode23tb Stiff Low If using crude error tolerances to solve stiff
systems.

Numerical Methods for BVP: Finite Differences

Problem:

Grid:

Centered Difference Formulas: (From Taylor expansions)

System:

Note: N interior grid points

Finite Difference Method for BVP

and consider Finite Difference System: Define

for

Matrix System:

