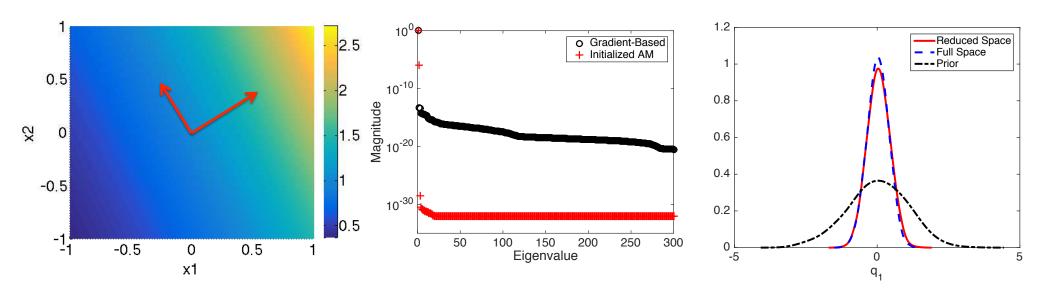
Active Subspace Techniques to Construct Surrogate Models for Complex Physical and Biological Models

Ralph C. Smith

Department of Mathematics
North Carolina State University



Support: DOE Consortium for Advanced Simulation of LWR (CASL)

NNSA Consortium for Nonproliferation Enabling Capabilities (CNEC)

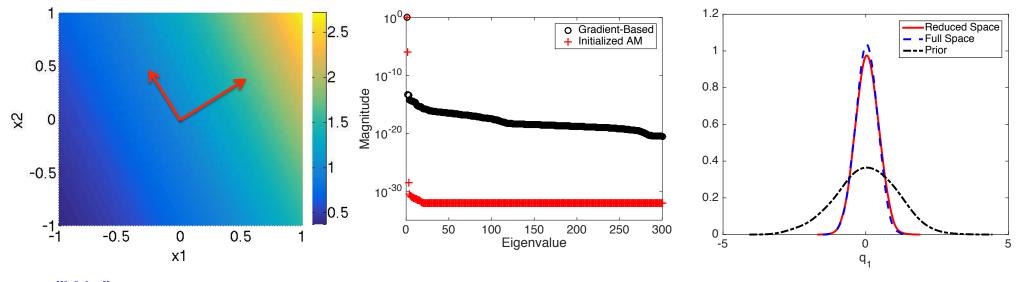
NSF Grant CMMI-1306290, Collaborative Research CDS&E

AFOSR Grant FA9550-15-1-0299

Sensitivity Analysis and Active Subspace Construction for Surrogate Models Employed for Bayesian Inference

Ralph C. Smith

Department of Mathematics
North Carolina State University



"We":

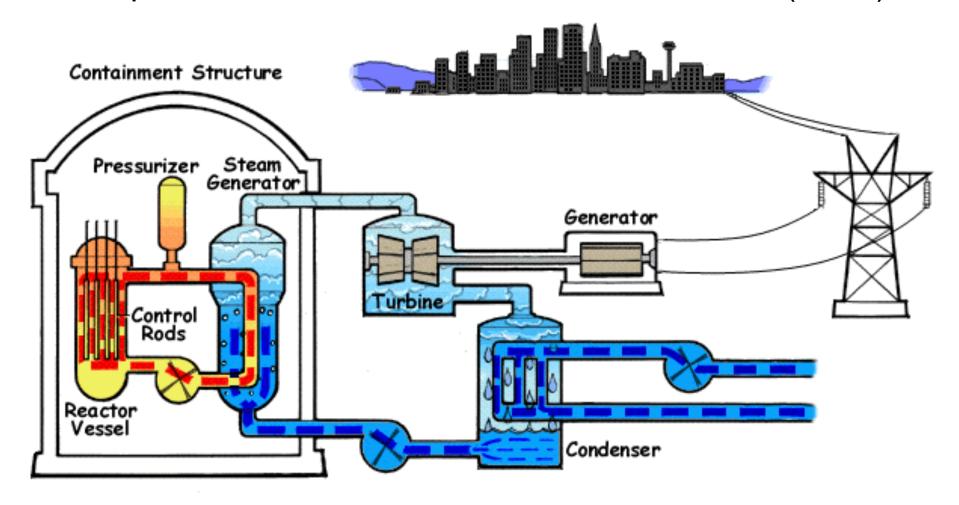
Kayla Coleman, Lider Leon, Allison Lewis, Paul Miles (NCSU)

Brian Williams (LANL), Max Morris (Iowa State University)

Billy Oates (Florida State University)

Natalie Gordan, Lindsay Gilkey (Sandia National Laboratory)

Example 1: Nuclear Pressurized Water Reactors (PWR)



Models:

- Involve neutron transport, thermal-hydraulics, chemistry, fuels
- Inherently multi-scale, multi-physics Must be incorporated in surrogate models

Objective: Develop Virtual Environment for Reactor Applications (VERA)

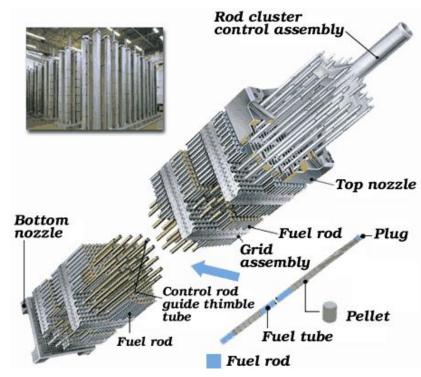
Motivation for Active Subspace Construction

3-D Neutron Transport Equations:

$$\frac{1}{|\nu|} \frac{\partial \varphi}{\partial t} + \Omega \cdot \nabla \varphi + \Sigma_{t}(r, E) \varphi(r, E, \Omega, t)
= \int_{4\pi} d\Omega' \int_{0}^{\infty} dE' \Sigma_{s}(E' \to E, \Omega' \to \Omega) \varphi(r, E', \Omega', t)
+ \frac{\chi(E)}{4\pi} \int_{4\pi} d\Omega' \int_{0}^{\infty} dE' \nu(E') \Sigma_{f}(E') \varphi(r, E', \Omega', t)$$

Challenges:

- Very large number of inputs; e.g., 100,000; Active subspace construction critical.
- One then constructs surrogate models on the active subspace.
- ORNL Code SCALE: can take minutes to hours to run.
- SCALE TRITON has adjoint capabilities via TSUNAMI-2D and NEWT.



Motivation for Inference on Active Subspaces

Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid

$$\begin{split} \frac{\partial}{\partial t}(\alpha_{f}\rho_{f}) + \nabla \cdot (\underline{\alpha_{f}}\rho_{f}v_{f}) &= -\Gamma \\ \alpha_{f}\rho_{f}\frac{\partial v_{f}}{\partial t} + \alpha_{f}\rho_{f}v_{f} \cdot \nabla v_{f} + \nabla \cdot \sigma_{f}^{R} + \alpha_{f}\nabla \cdot \sigma + \alpha_{f}\nabla \rho_{f} \\ &= -F^{R} - F + \Gamma(v_{f} - v_{g})/2 + \alpha_{f}\rho_{f}g \\ \frac{\partial}{\partial t}(\alpha_{f}\rho_{f}e_{f}) + \nabla \cdot (\underline{\alpha_{f}}\rho_{f}e_{f}v_{f} + Th) &= (T_{g} - T_{f})H + T_{f}\Delta_{f} \\ -T_{g}(H - \alpha_{g}\nabla \cdot h) + h \cdot \nabla T - \Gamma[e_{f} + T_{f}(s^{*} - s_{f})] \\ -\rho_{f}\left(\frac{\partial \alpha_{f}}{\partial t} + \nabla \cdot (\alpha_{f}v_{f}) + \frac{\Gamma}{\rho_{f}}\right) \end{split}$$

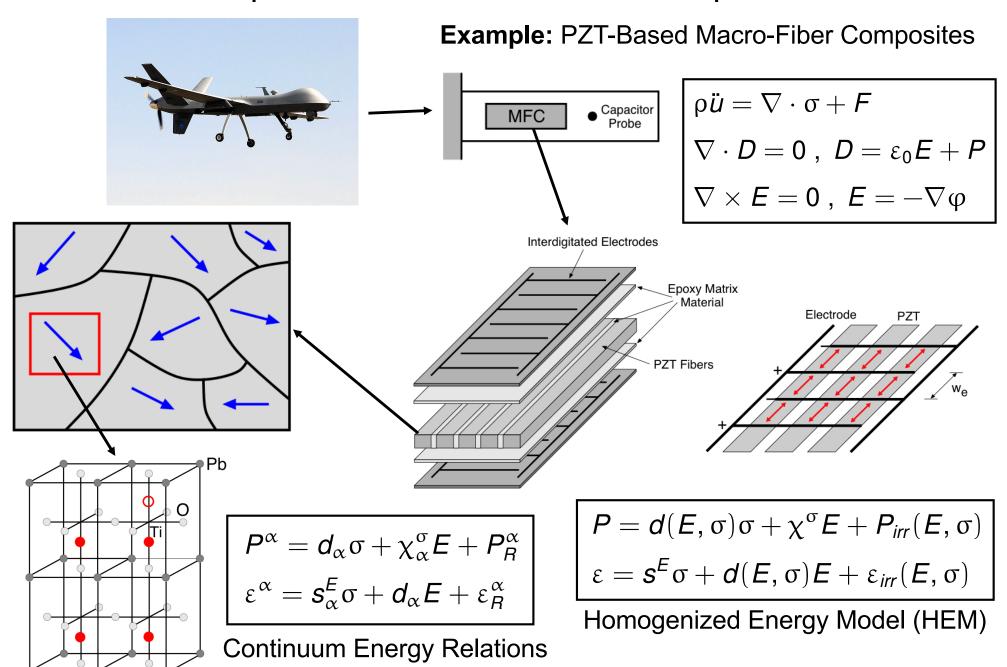
Notes:

- Similar relations for gas and bubbly phases
- Surrogate models must conserve mass, energy and momentum; e.g., subchannel codes

Note:

- Codes can have 15-30 closure relations and up to 75 parameters.
- Codes and closure relations often "borrowed" from other physical phenomena;
 e.g., single phase fluids, airflow over a car (CFD code STAR-CCM+)
- Calibration is necessary and closure relations can conflict.
- Codes do not have adjoint capabilities.

Example 2. Multiscale Model Development

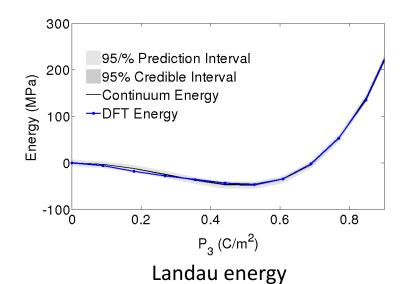


Quantum-Informed Continuum Models

Objectives:

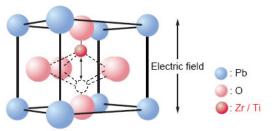
- Employ density function theory (DFT) to construct/calibrate continuum energy relations.
 - e.g., Landau energy

$$\psi(P) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6$$

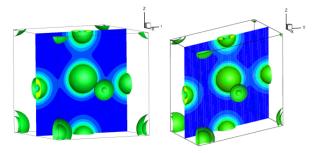


UQ and SA Issues:

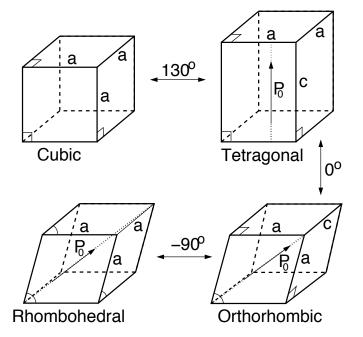
- Is 6th order term required to accurately characterize material behavior?
- Note: Determines molecular structure



Lead Titanate Zirconate (PZT)



DFT Electronic Structure Simulation

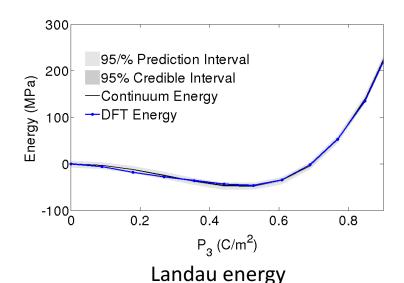


Quantum-Informed Continuum Models

Objectives:

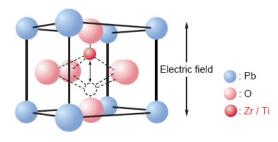
- Employ density function theory (DFT) to construct/calibrate continuum energy relations.
 - e.g., Landau energy

$$\psi(P) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6$$

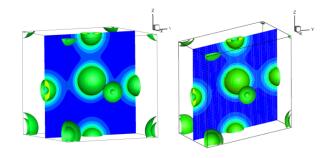


UQ and SA Issues:

- Is 6th order term required to accurately characterize material behavior?
- Note: Determines molecular structure



Lead Titanate Zirconate (PZT)



DFT Electronic Structure Simulation

Broad Objective:

 Use UQ/SA to help bridge scales from quantum to system

Global Sensitivity Analysis: Analysis of Variance

Sobol' Representation: Y = f(q)

$$f(q) = f_0 + \sum_{i=1}^{p} f_i(q_i) + \sum_{i \leq i < j \leq p} f_{ij}(q_i, q_j) + \dots + f_{12 \dots p}(q_1, \dots, q_p)$$

$$= f_0 + \sum_{i=1}^{p} \sum_{|u|=i} f_u(q_u)$$

where

$$f_0 = \int_{\Gamma} f(q) \rho(q) dq = \mathbb{E}[f(q)]$$

$$f_i(q_i) = \mathbb{E}[f(q)|q_i] - f_0$$

$$f_{ij}(q_i, q_j) = \mathbb{E}[f(q)|q_i, q_j] - f_i(q_i) - f_j(q_j) - f_0$$

Typical Assumption: $q_1, q_2, ..., q_p$ independent. Then

$$\int_{\Gamma} f_u(q_u) f_v(q_v) \rho(q) dq = 0 \quad \text{for } u \neq v$$

$$\Rightarrow \text{var}[f(q)] = \sum_{r=1}^{p} \sum_{r=1}^{r} \text{var}[f_u(q_u)]$$

$$\Rightarrow \operatorname{var}[f(q)] = \sum_{i=1}^{n} \sum_{|u|=i} \operatorname{var}[f_u(q_u)]$$

Sobol' Indices:

Γ

$$S_u = rac{ ext{var}[f_u(q_u)]}{ ext{var}[f(q)]}$$
 , $T_u = \sum_{v \subset u} S_v$

Note: Magnitude of S_i , T_i quantify contributions of q_i to var[f(q)]

Global Sensitivity Analysis

Example: Quantum-informed continuum model

Question: Do we use 4th or 6th-order Landau energy?

$$\psi(P,q) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6$$

Parameters:

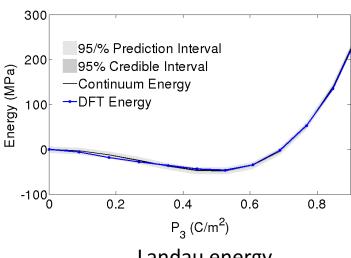
$$q = [\alpha_1, \alpha_{11}, \alpha_{111}]$$

Global Sensitivity Analysis:

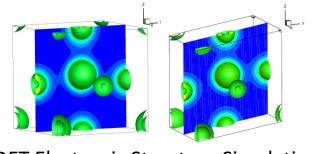
	α_1	α_{11}	α_{111}
S_k	0.62	0.39	0.01
$\overline{T_k}$	0.66	0.38	0.06
μ_k^*	0.17	0.07	0.03

Conclusion:

 α_{111} insignificant and can be fixed



Landau energy



DFT Electronic Structure Simulation

Global Sensitivity Analysis

Example: Quantum-informed continuum model

Question: Do we use 4th or 6th-order Landau energy?

$$\psi(P,q) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6$$

Parameters:

$$q = [\alpha_1, \alpha_{11}, \alpha_{111}]$$

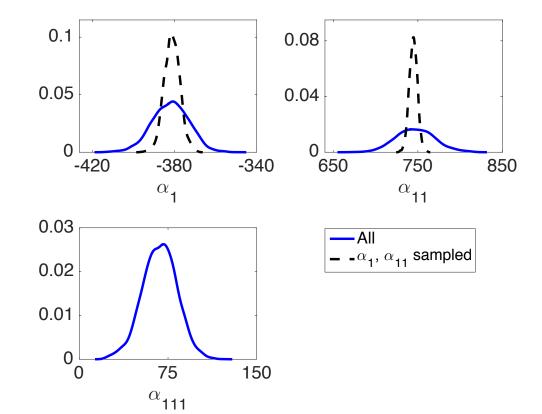
Global Sensitivity Analysis:

	α_1	α_{11}	α_{111}
S_k	0.62	0.39	0.01
$\overline{T_k}$	0.66	0.38	0.06
μ_k^*	0.17	0.07	0.03

Conclusion:

 α_{111} insignificant and can be fixed

Problem: We obtain different distributions when we perform Bayesian inference with fixed non-influential parameters



Global Sensitivity Analysis

Example: Quantum-informed continuum model

Question: Do we use 4th or 6th-order Landau energy?

$$\psi(P,q) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6$$

Parameters:

$$q = [\alpha_1, \alpha_{11}, \alpha_{111}]$$

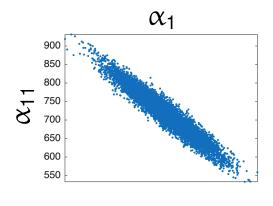
Global Sensitivity Analysis:

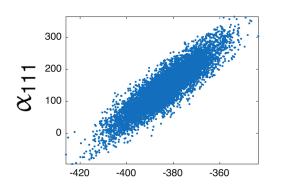
	α_1	α_{11}	α_{111}
S_k	0.62	0.39	0.01
$\overline{T_k}$	0.66	0.38	0.06
μ_k^*	0.17	0.07	0.03

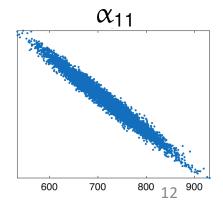
Note: Must accommodate correlation

Problem:

- Parameters correlated
- Cannot fix α_{111}







Global Sensitivity Analysis: Analysis of Variance

Sobol' Representation:

$$f(q) = f_0 + \sum_{i=1}^{p} \sum_{|u|=i} f_u(q_u)$$

One Solution: Take variance to obtain

$$var[f(q)] = \sum_{i=1}^{p} \sum_{|u|=i} cov[f_u(q_u), f(q)]$$

Sobol' Indices:

$$S_u = \frac{\text{cov}[f_u(q_u), f(q)]}{\text{var}[f(q)]}$$

Pros:

 Provides variance decomposition that is analogous to independent case

Cons:

- Indices can be negative and difficult to interpret
- Often difficult to determine underlying distribution
- Monte Carlo approximation often prohibitively expensive.

Global Sensitivity Analysis: Analysis of Variance

Sobol' Representation:

$$f(q) = f_0 + \sum_{i=1}^{p} \sum_{|u|=i} f_u(q_u)$$

One Solution: Take variance to obtain

$$var[f(q)] = \sum_{i=1}^{p} \sum_{|u|=i} cov[f_u(q_u), f(q)]$$

Sobol' Indices:

$$S_u = \frac{\text{cov}[f_u(q_u), f(q)]}{\text{var}[f(q)]}$$

Alternative: Construct active subspaces

- Can accommodate parameter correlation
- Often effective in high-dimensional space; e.g., p = 7700 for neutronics example

Additional Goal: Use Bayesian analysis on active subspace to construct posterior densities for physical parameters.

Pros:

 Provides variance decomposition that is analogous to independent case

Cons:

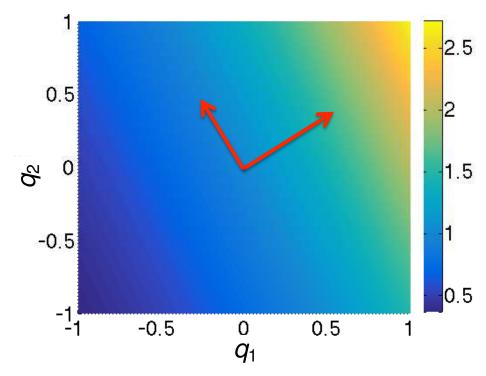
- Indices can be negative and difficult to interpret
- Often difficult to determine underlying distribution
- Monte Carlo approximation often prohibitively expensive.

Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y = \exp(0.7q_1 + 0.3q_2)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction



Note:

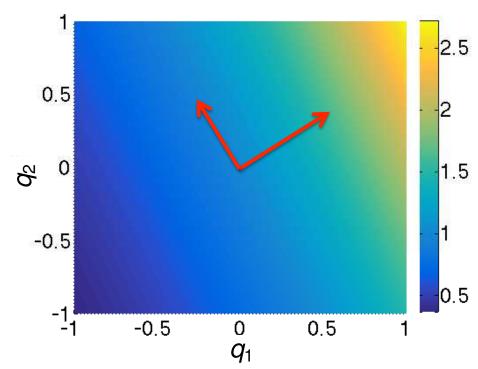
- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y = \exp(0.7q_1 + 0.3q_2)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

A Bit of History:

Often attributed to Russi (2010).



Note:

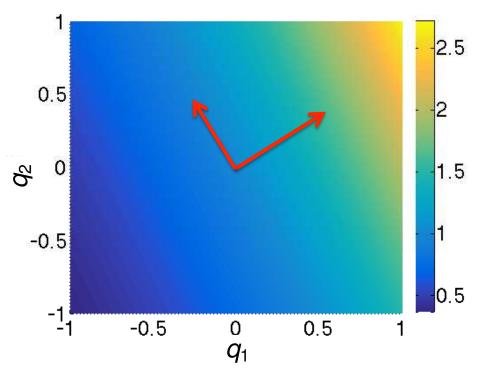
- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y = \exp(0.7q_1 + 0.3q_2)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

A Bit of History:

- Often attributed to Russi (2010).
- Concept same as *identifiable subspaces* from systems and control; e.g., Reid (1977).



Note:

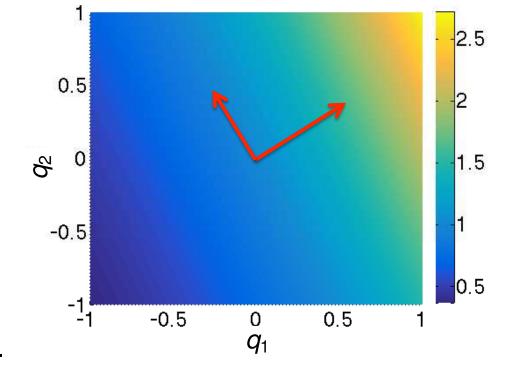
- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y = \exp(0.7q_1 + 0.3q_2)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

A Bit of History:

- Often attributed to Russi (2010).
- Concept same as *identifiable subspaces* from systems and control; e.g., Reid (1977).



• For linearly parameterized problems, active subspace given by SVD or QR; Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912). See 1993 *SIAM Review* paper by Stewart.

Gradient-Based Active Subspace Construction

Active Subspace: Consider

$$f = f(q)$$
 , $q \in \mathbb{Q} \subseteq \mathbb{R}^p$

and

• E.g., see [Constantine, SIAM, 2015; Stoyanov & Webster, IJUQ, 2015]

$$\nabla_{q} f(q) = \left[\frac{\partial f}{\partial q_{1}}, \cdots, \frac{\partial f}{\partial q_{p}}\right]^{T}$$

Construct outer product

 $C = \int (\nabla_q f) (\nabla_q f)^T \rho dq$ $\rho(q)$: Distribution of input parameters q

Partition eigenvalues: $C = W \wedge W^T$

$$\Lambda = \left[egin{array}{ccc} \Lambda_1 & & & \\ & \Lambda_2 & \end{array}
ight] \; , \; \textit{W} = \left[\textit{W}_1 & \textit{W}_2
ight]$$

Rotated Coordinates:

$$y = W_1^T q \in \mathbb{R}^n$$
 and $z = W_2^T q \in \mathbb{R}^{p-n}$

Active Variables

Active Subspace: Range of eigenvectors in W_1

Gradient-Based Active Subspace Construction

Active Subspace: Consider

$$f = f(q)$$
 , $q \in \mathbb{Q} \subseteq \mathbb{R}^p$

and

$$\nabla_q f(q) = \left[\frac{\partial f}{\partial q_1}, \cdots, \frac{\partial f}{\partial q_p}\right]^T$$

Construct outer product

$$C = \int (\nabla_q f) (\nabla_q f)^T \rho dq$$

Partition eigenvalues: $C = W \wedge W^T$

 $\rho(q)$: Distribution of input parameters q

Question: How sensitive are results to distribution, which is typically not known?

$$\Lambda = \left[\begin{array}{cc} \Lambda_1 & \\ & \Lambda_2 \end{array} \right] , W = \left[W_1 & W_2 \right]$$

Rotated Coordinates:

$$y = W_1^T q \in \mathbb{R}^n$$
 and $z = W_2^T q \in \mathbb{R}^{p-n}$

Active Variables

Active Subspace: Range of eigenvectors in W_1

Gradient-Based Active Subspace Construction

Active Subspace: Construction based on random sampling

- 1. Draw M independent samples $\{q^j\}$ from ρ
- 2. Evaluate $\nabla_q f_j = \nabla_q f(q^j)$
- 3. Approximate outer product

$$C pprox \widetilde{C} = \frac{1}{M} \sum_{j=1}^{M} (\nabla_q f_j) (\nabla_q f_j)^T$$

Note:
$$\widetilde{C} = GG^T$$
 where $G = \frac{1}{\sqrt{M}}[\nabla_q f_1, ..., \nabla_q f_M]$

- 4. Take SVD of $G = W\sqrt{\Lambda}V^T$
 - Active subspace of dimension n is first n columns of W

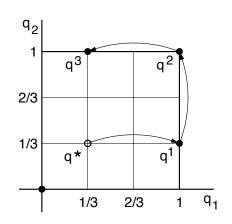
One Goal: Develop efficient algorithm for codes that do not have adjoint capabilities

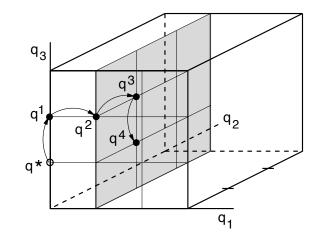
Note: Finite-difference approximations tempting but not effective for high-D

Strategy: Algorithm based on initialized adaptive Morris indices

Morris Screening: Random Sampling of Approximated Derivatives

Example: Consider uniformly distributed parameters on $\Gamma = [0, 1]^p$





Elementary Effect:

$$d_i = rac{f(q^j + \Delta e_i) - f(q^j)}{\Delta}$$

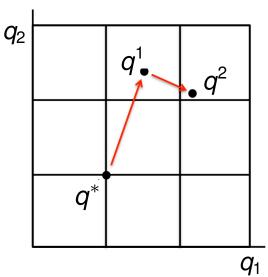
Global Sensitivity Measures: r samples

$$\mu_i^* = \frac{1}{r} \sum_{j=1}^r |d_i^j(q)|$$

$$\sigma_i^2 = \frac{1}{r-1} \sum_{j=1}^r \left(d_i^j(q) - \mu_i \right)^2 , \quad \mu_i = \frac{1}{r} \sum_{j=1}^r d_i^j(q)$$

Adaptive Algorithm:

- Use SVD to adapt stepsizes and directions to reflect active subspace.
- Reduce dimension of differencing as active subspace is discovered.



Note: Gets us to moderate-D but initialization required for high-D

Initialization Algorithm

- 1. Inputs: ℓ iterations, h function evaluations per iteration
- 2. Sample w^1 from surface of unit sphere where approximately linear

For
$$j = 1, \dots, \ell$$

 $S = R^T R$

- 3. Sample $\{\tilde{v}_1^j, \dots, \tilde{v}_h^j\}$ from surface of sphere
- 4. Use Lagrange multiplier to determine

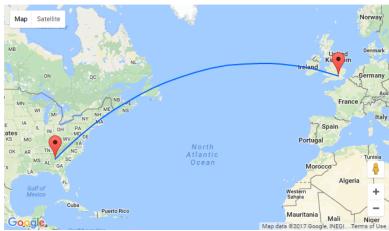
$$u_{\max}^{j} = a_{0}^{+} w^{j} + \sum_{i=1}^{n} a_{i}^{+} v_{i}^{j}, \ v_{i}^{1} = \tilde{v}_{i}^{1}$$

that maximizes $g(u) = f(q^0 + R^{-1}u)$.

 $f(q^{0} + R^{-1}u)$ $f(q^{0} + R^{-1}u)$ Transform $(z - q^{0})^{T}S(z - q^{0}) = 1$ Sphere

Note: For h=1, maximizing great circle through w^1 , v^1

Example: Let $w^1 = \text{Atlanta}$, $v^1 = \text{London}$, and g(u) = 'QUIETness' of seatmate on flight



Initialization Algorithm

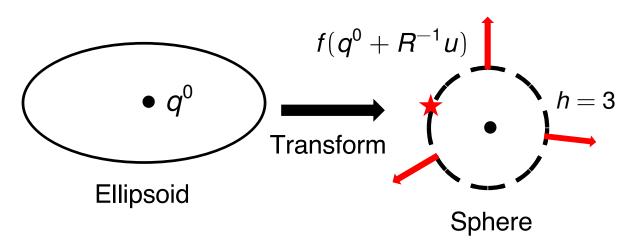
- 1. Inputs: ℓ iterations, h function evaluations per iteration
- 2. Sample w^1 from surface of unit sphere where approximately linear

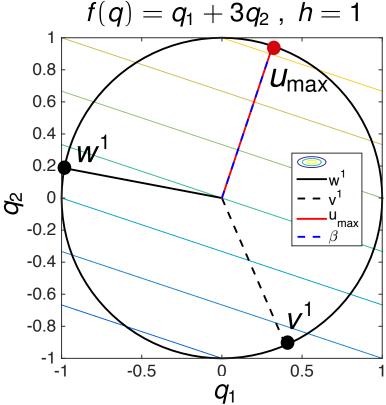
For
$$j = 1, \dots, \ell$$

- 3. Sample $\{\tilde{v}_1^j, \dots, \tilde{v}_h^j\}$ from surface of sphere
- 4. Use Lagrange multiplier to determine

$$u_{\max}^{j} = a_{0}^{+} w^{j} + \sum_{i=1}^{h} a_{i}^{+} v_{i}^{j}, \ v_{i}^{1} = \tilde{v}_{i}^{1}$$

that maximizes $g(u) = f(q^0 + R^{-1}u)$.





Initialization Algorithm

- 1. Inputs: ℓ iterations, h function evaluations per iteration
- 2. Sample w^1 from surface of unit sphere where approximately linear

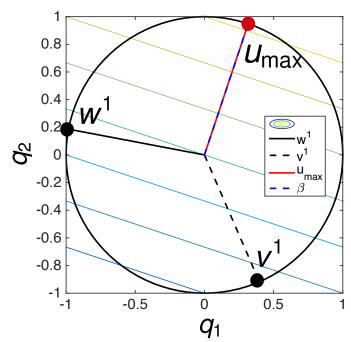
For
$$j = 1, ..., \ell$$

- 3. Sample $\{\tilde{v}_1^j, \dots, \tilde{v}_h^j\}$ from surface of sphere
- 4. Use Lagrange multiplier to determine

$$u_{\max}^{j} = a_{0}^{+} w^{j} + \sum_{i=1}^{h} a_{i}^{+} v_{i}^{j}, \ v_{i}^{1} = \tilde{v}_{i}^{1}$$

that maximizes $g(u) = f(q^0 + R^{-1}u)$.

Set $w^{j+1} = u_{\text{max}}^j$.



- 5. Take $C = [w^j, v_1^j, \dots, v_h^j]$ and set $P_{u_{\max}^j} = u_{\max}^j (u_{\max}^j)^T$
- 6. Let $C_{j\perp}=\left[\operatorname{span}\left(C_{(j-1)\perp},(I_m-P_{u_{\max}^j}C
 ight)
 ight]$ and set $P_{C_{j\perp}}=C_{j\perp}(C_{j\perp}^TC_{j\perp})^{-1}C_{j\perp}^T$
- 7. Take $v_i^j = \frac{(I_m P_{C_{j\perp}})\tilde{v}_i^j}{\|(I_m P_{C_{i\perp}})\tilde{v}_i^j\|}$, i = 1, ..., h and repeat Ortho-complement

of *u*_{max}

Example: Initialization Algorithm to Approximate Gradient

Example: Family of elliptic PDE's

$$-\nabla_{s} \cdot (a(q, s, \ell)\nabla_{s}u(s, a(q, s, \ell)) = 1, \ s = [0, 1]^{2}, \ \ell = 1, \dots, n$$

with the random field representations

$$a(q, s, \ell) = a_{\min} + e^{\overline{a}(s, \ell) + \sum_{i=1}^{p} q_k^{\ell} \gamma_i \Phi_i(s)}$$

Quantity of interest: e.g., strain along edge at n levels

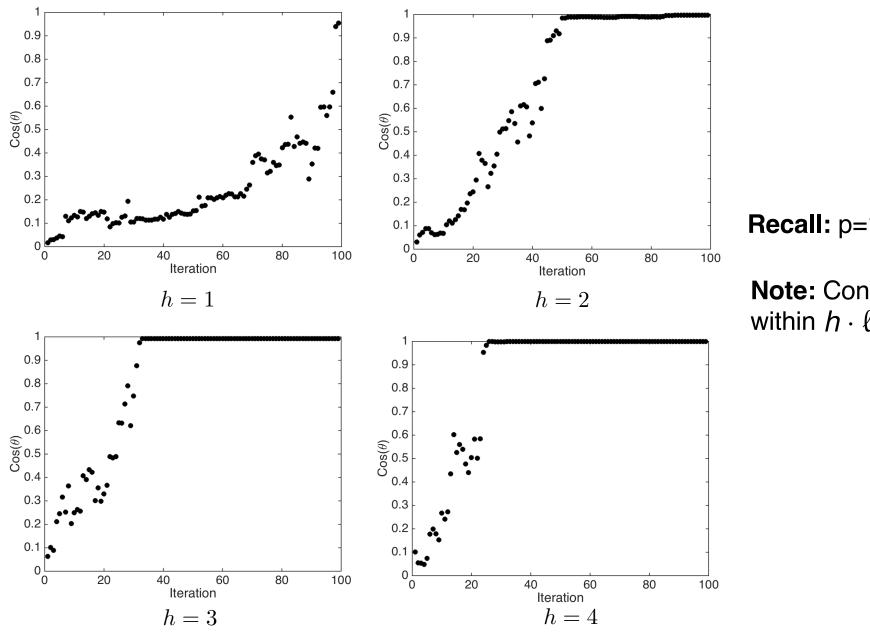
$$f\left(\mathbf{q}^{1},\ldots,\mathbf{q}^{n}\right)\approx\sum_{\ell=1}^{n}\frac{1}{|\Gamma_{2}|}\int_{\Gamma_{2}}u(q,s,\ell)ds$$

Problem Dimensions:

- Parameter dimension: p = 100
- Active subspace dimension: n = 1
- Finite element approximation

Example: Initialization Algorithm to Approximate Gradient

Results: Cosine of angle between 'analytic' and computed gradient



Recall: p=100

Note: Convergence within $h \cdot \ell$ iterations

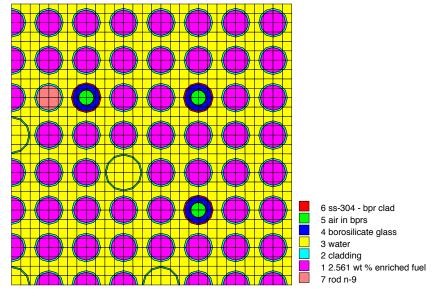
SCALE6.1: High-Dimensional Example

Setup: Cross-section computations SCALE6.1

• Input Dimension: 7700

• Output k_{eff} : Governs reactions

Λ	Iateria	als	Reactions			
$^{234}_{92}U$	$^{10}_{5}{ m B}$	$^{31}_{15}P$	\sum_t	$n \to \gamma$		
$^{235}_{92}U$	$^{11}_{5}{ m B}$	$_{25}^{55}\mathrm{Mn}$	\sum_{e}	$n \to p$		
$^{236}_{92}$ U	$^{14}_{7}{ m N}$	₂₆ Fe	\sum_f	$n \to d$		
$^{238}_{92}U$	$^{15}_{7}{ m N}$	$^{116}_{50}{ m Sn}$	\sum_{c}	$n \to t$		
¹ ₁ H	$^{23}_{11}$ Na	$^{120}_{50}{ m Sn}$	$ar{ u}$	$n \to {}^3{\rm He}$		
¹⁶ ₈ O	$^{27}_{13}$ Al	$_{40}\mathrm{Zr}$	χ	$n \to \alpha$		
$_{6}$ C	$_{14}\mathrm{Si}$	$_{19}\mathrm{K}$	$n \to n'$	$n \to 2n$		



PWR Quarter Fuel Lattice

Really Annoying Reality for Allie and Kayla: Cross-section libraries are binary and require conversion to floating point for perturbations.

SCALE6.1: High-Dimensional Example

Setup:

• Input Dimension: 7700

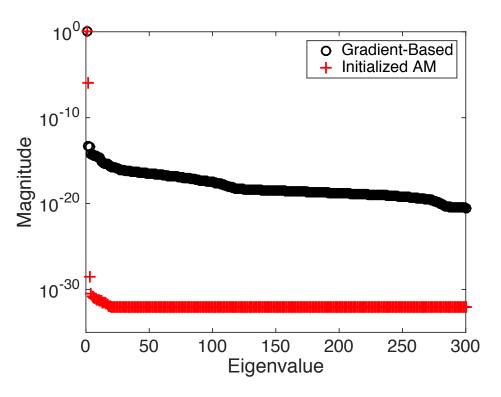
SCALE Evaluations:

Gradient-Based: 1000

Initialized Adaptive Morris: 18,392

Projected Finite-Difference: 7,701,000

Note: Analytic eigenvalues: 0, 1



Active Subspace Dimensions:

For surrogate sampled off space

	Gap	PCA				Error Tolerance			
Method		0.75	0.90	0.95	0.99	10^{-3}	10^{-4}	10^{-5}	10^{-6}
Gradient-Based	1	2	6	9	24	1	13	90	233
Initialized AM	1	1	1	1	2	1	2	2	2

Notes: Computing converged adjoint solution is expensive and often not achieved

SCALE6.1: High-Dimensional Example

Setup:

• Input Dimension: 7700

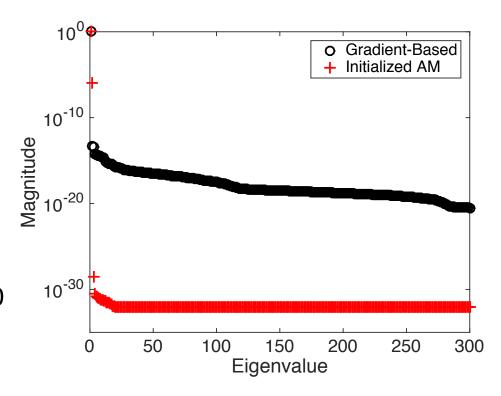
SCALE Evaluations:

Gradient-Based: 1000

Initialized Adaptive Morris: 18,392

Projected Finite-Difference: 7,701,000

Note: Analytic eigenvalues: 0, 1



Active Subspace Dimensions:

For surrogate sampled off space

	Gap	PCA				Error Tolerance			
Method		0.75	0.90	0.95	0.99	10^{-3}	10^{-4}	10^{-5}	10^{-6}
Gradient-Based	1	2	6	9	24	1	13	90	233
Initialized AM	1	1	1	1	2	1	2	2	2

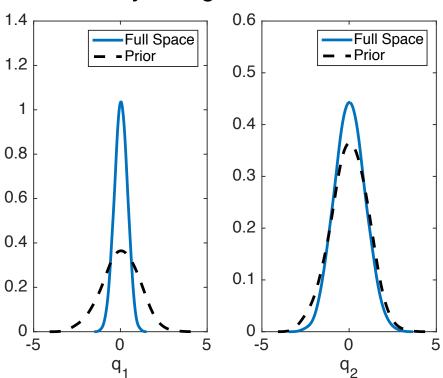
Notes: Computing converged adjoint solution is expensive and often not achieved

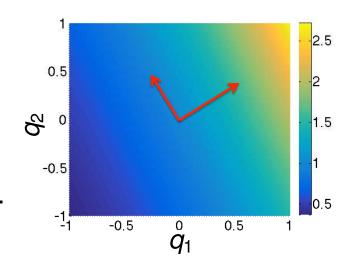
Surrogate construction now trivial!

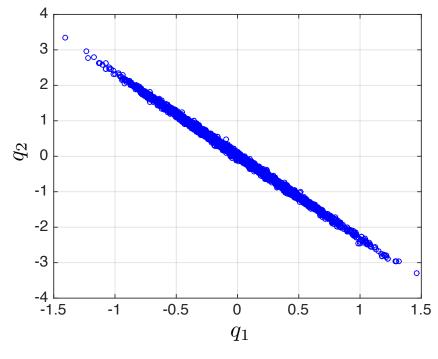
Example: $y = \exp(0.7q_1 + 0.3q_2)$

Full Space Inference:

- Parameters not jointly identifiable
- Result: Prior for 2nd parameter is minimally informed.
- Goal: Use active subspace to quantify parameter sensitivity and guide inference.







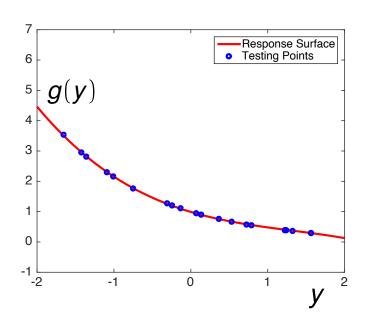
Example: $y = \exp(0.7q_1 + 0.3q_2)$

Active Subspace: For gradient matrix G, form SVD

$$G = U \Lambda V^T$$

Eigenvalue spectrum indicates 1-D active subspace with basis

$$U(:,1) = [0.91, 0.39]$$



Strategy: Inference based on active subspace

- For values $\{q^j\}_{j=1}^M$, compute $y^j = U(:,1)^T q^j$ and fit response surface g(y)
- Perform Bayesian inference for y
- Because model is "invariant" to $z = U(:, 2)^T q$, draw $\{z^j\} \sim N(0, 1)$
- Transform to $q^j = U(:,1)y^j + U(:,2)z^j$ to obtain posterior densities for physical parameters

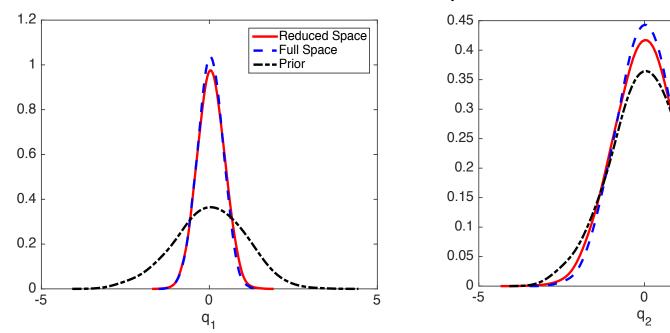
Reduced Space

5

Full Space

---Prior

Results: Inference based on active subspace



Global Sensitivity: For active subspace of dimension n, consider vector of activity scores

$$\alpha_i(n) = \sum_{j=1}^n \lambda_j w_{i,j}^2, i = 1, ..., p$$

Present Example: Here n = 1 and $W_1^2 = U(:, 1) \cdot *U(:, 1) = [0.91^2, 0.39^2]$

Conclusion: First parameter is more influential and better informed during Bayesian inference.

Example: Family of elliptic PDE's – Same as initialization example

$$-\nabla_{s} \cdot (a(q, s, \ell)\nabla_{s}u(s, a(q, s, \ell)) = 1, \ s = [0, 1]^{2}, \ \ell = 1, \dots, n$$

with the random field representations

$$a(q, s, \ell) = a_{\min} + e^{\overline{a}(s, \ell) + \sum_{i=1}^{p} q_k^{\ell} \gamma_i \Phi_i(s)}$$

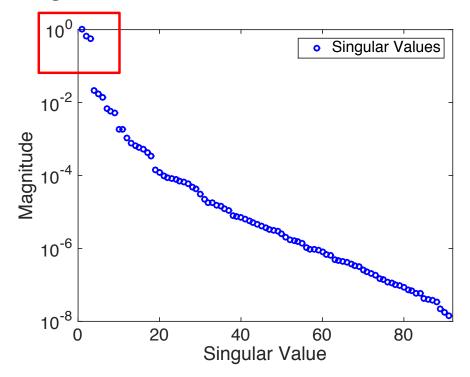
Quantity of interest: e.g., strain along edge at n levels

$$f\left(\mathbf{q}^{1},\ldots,\mathbf{q}^{n}\right)\approx\sum_{\ell=1}^{n}\frac{1}{|\Gamma_{2}|}\int_{\Gamma_{2}}u(q,s,\ell)ds$$

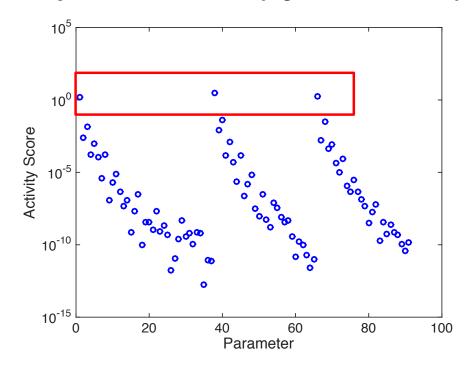
Problem Dimensions:

- Parameter dimension: p = 91
- Active subspace dimension: n = 3
- Finite element approximation

Singular Values: Recall n = 3

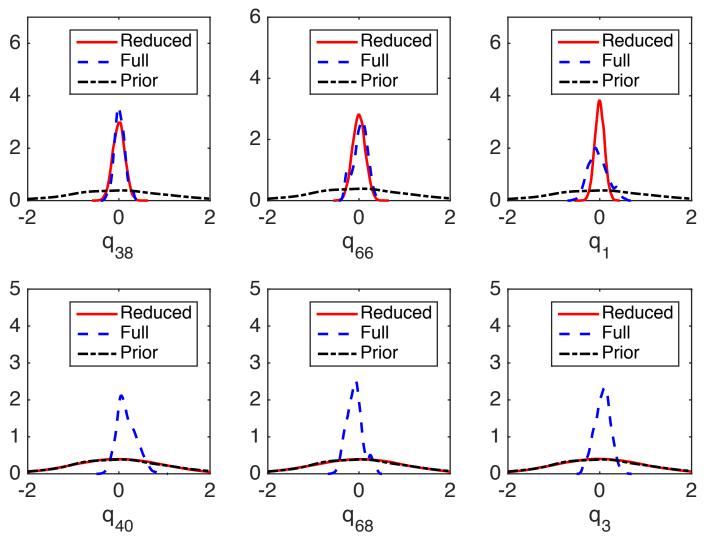


Activity Scores: Quantify global sensitivity



Conclusion: Parameters 1, 38, 66 are most influential and will be primarily informed during Bayesian inference

Recall: Parameters 1, 38, 66 are most influential and will be primarily informed during Bayesian inference



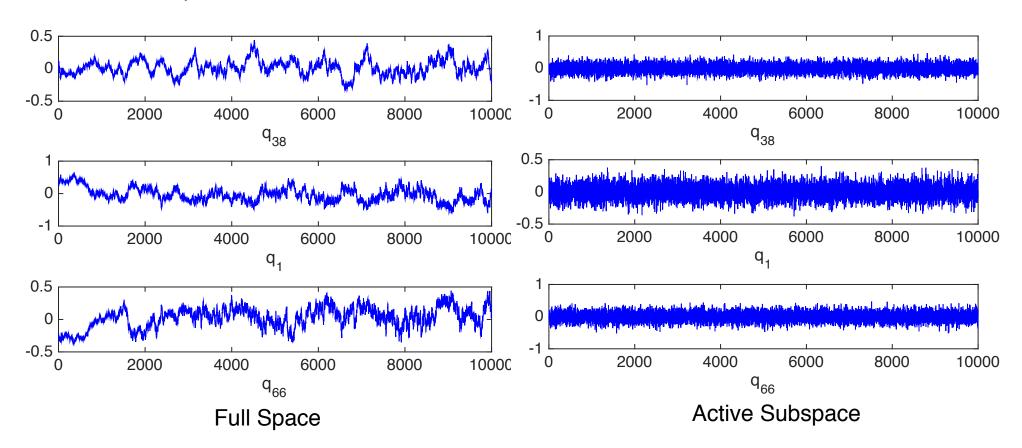
Note:

Full space: 18 hours

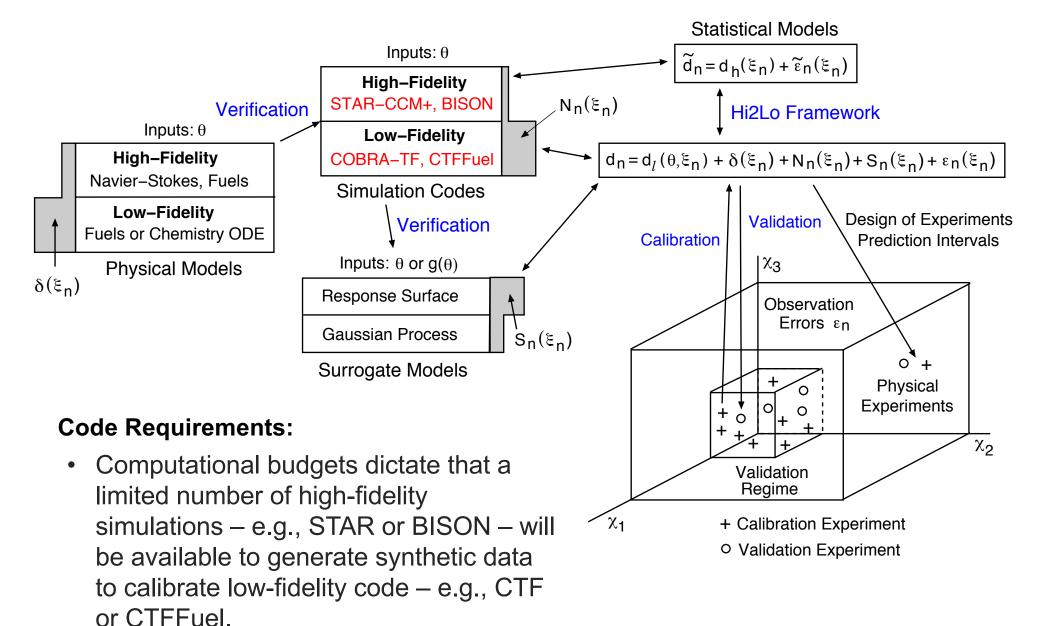
Reduced: 20 seconds

Note:

- Chains for full space not converging well due to parameter nonidentifiability
- Hence full space inference is less reliable



Experimental Design for Nuclear Power Plant Analysis



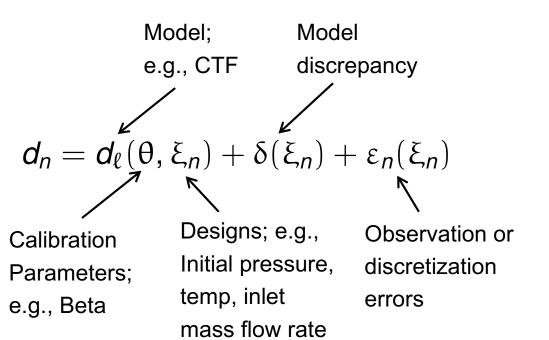
Necessitates efficient experimental design when calibrating surrogate models

Experimental Design-Based Hi2Lo Framework

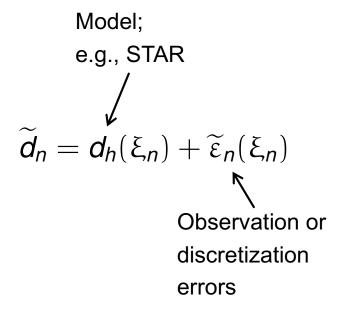
High-Fidelity: STAR-CCM+ or experimental data

Low-Fidelity: COBRA-TF (CTF) or statistical surrogate for code; e.g., GP

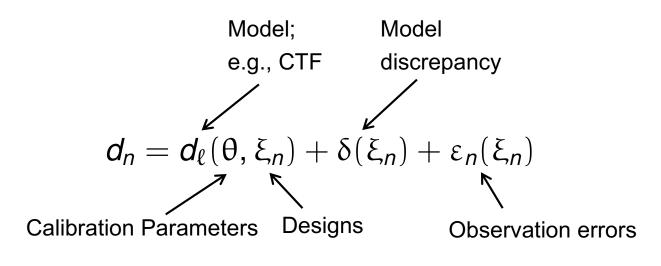
Low-Fidelity Stat Model

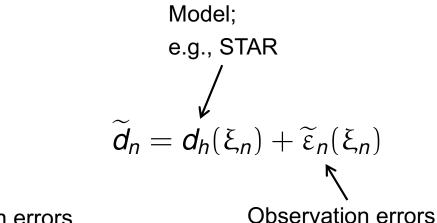


High-Fidelity Stat Model



Experimental Design-Based Hi2Lo Framework





4

Calibrate parameters of low-fidelity model: $d_\ell(\theta, \xi_n)$

Delayed Rejection Adaptive Metropolis (DRAM)

Choose new design ξ_n to reduce uncertainty in θ

kNN Estimate of Mutual Information

Evaluate high-fidelity model at $\xi_n:\widetilde{d}_n=d_h(\xi_n)+\widetilde{arepsilon}_n(\xi_n)$

Mutual Information

Bayesian Framework: Quantifies change in knowledge due to new data

$$p(\theta|D_n) = \frac{p(D_n|\theta)p(\theta)}{p(D_n)} = \frac{p(\widetilde{d}_n, D_{n-1}|\theta)p(\theta)}{p(\widetilde{d}_n, D_{n-1})} \qquad D_{n-1} = {\widetilde{d}_1, \widetilde{d}_2, \cdots, \widetilde{d}_{n-1}}$$

Goal: Provide framework to optimize information in d_n based on design ξ_n

Strategy:

• Marginalize over set of unknown future observations to compute average amount of information provided by design ξ_n :

$$I(\theta; d_n|D_{n-1}, \xi_n) = \int_{\mathcal{D}} U(d_n, \xi_n) p(d_n|D_{n-1}, \xi_n) dd_n$$

Choose design condition that yields largest mutual information

$$\xi_n^* = \arg\max_{\xi_n \in \Xi} I(\theta; d_n | D_{n-1}, \xi_n)$$

Implementation: kth nearest neighbor (kNN) algorithm [Kraskov et al., 2004]

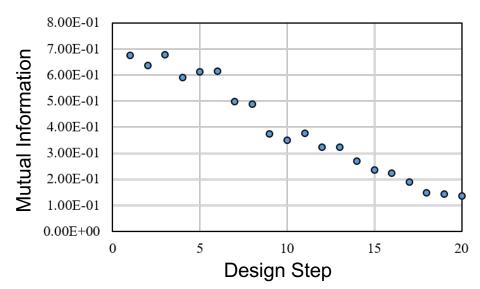
Example 2: Turbulent Mixing in (CTF)

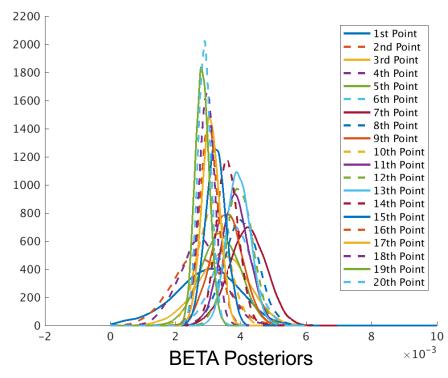
Problem Setup:

- Design Variables in STAR-CCM+
 - Initial pressure of fluid domain
 - Initial temperature in fluid domain
 - Inlet mass flow rate Design Step
 - Average linear heat rate per rod
 - Calibration Variable in COBRA-TF (CTF)
 - BETA: Turbulent mixing factor

Computational Requirements:

- MI requires 5000 independent samples
- MCMC required 18,750 iterations
- This necessitated construction and verification of fast surrogate for CTF
- Gaussian process (GP) surrogate trained and verified for all 36 subchannels





Concluding Remarks

Notes:

- Parameter selection critical to isolate identifiable and influential parameters.
- Active subspace construction necessary for models with high-dimensional parameter spaces; e.g., 7700.
- Due to complexity of physical models, surrogate models typically required. Algorithms utilizing mutual information can maximize information gain when calibrating.
- Future research directions:
 - Relax Gaussian constraints on priors when performing inference on active subspaces.
 - Construction of surrogate models that conserve;
 e.g., mass, momentum and energy.
 - Surrogate models for multi-physics problems.
- Prediction is very difficult, especially if it's about the future, Niels Bohr.

