Active Subspace Techniques to Construct Surrogate Models for Complex Physical and Biological Models

Ralph C. Smith
Department of Mathematics
North Carolina State University

Support: DOE Consortium for Advanced Simulation of LWR (CASL) NNSA Consortium for Nonproliferation Enabling Capabilities (CNEC) NSF Grant CMMI-1306290, Collaborative Research CDS\&E AFOSR Grant FA9550-15-1-0299

Sensitivity Analysis and Active Subspace Construction for Surrogate Models Employed for Bayesian Inference

Ralph C. Smith
Department of Mathematics
North Carolina State University

Example 1: Nuclear Pressurized Water Reactors (PWR)

Models:

- Involve neutron transport, thermal-hydraulics, chemistry, fuels
- Inherently multi-scale, multi-physics - Must be incorporated in surrogate models

Objective: Develop Virtual Environment for Reactor Applications (VERA)

Motivation for Active Subspace Construction

3-D Neutron Transport Equations:

$$
\begin{aligned}
& \frac{1}{|v|} \frac{\partial \varphi}{\partial t}+\Omega \cdot \nabla \varphi+\Sigma_{t}(r, E) \varphi(r, E, \Omega, t) \\
& \quad=\int_{4 \pi} d \Omega^{\prime} \int_{0}^{\infty} d E^{\prime} \Sigma_{s}\left(E^{\prime} \rightarrow E, \Omega^{\prime} \rightarrow \Omega\right) \varphi\left(r, E^{\prime}, \Omega^{\prime}, t\right) \\
& \quad+\frac{\chi(E)}{4 \pi} \int_{4 \pi} d \Omega^{\prime} \int_{0}^{\infty} d E^{\prime} \underline{v\left(E^{\prime}\right) \Sigma_{f}\left(E^{\prime}\right)} \varphi\left(r, E^{\prime}, \Omega^{\prime}, t\right)
\end{aligned}
$$

Challenges:

- Very large number of inputs; e.g., 100,000; Active subspace construction critical.
- One then constructs surrogate models on the active subspace.
- ORNL Code SCALE: can take minutes to hours to run.
- SCALE TRITON has adjoint capabilities via
 TSUNAMI-2D and NEWT.

Motivation for Inference on Active Subspaces

Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\alpha_{f} \rho_{f}\right)+\nabla \cdot \underline{\left(\alpha_{f} \rho_{f} v_{f}\right)}=-\Gamma \\
& \alpha_{f} \rho_{f} \frac{\partial v_{f}}{\partial t}+\alpha_{f} \rho_{f} v_{f} \cdot \nabla v_{f}+\nabla \cdot \sigma_{f}^{R}+\alpha_{f} \nabla \cdot \sigma+\alpha_{f} \nabla p_{f} \\
& \quad=-F^{R}-F+\Gamma\left(v_{f}-v_{g}\right) / 2+\alpha_{f} \rho_{f} g \\
& \frac{\partial}{\partial t}\left(\alpha_{f} \rho_{f} e_{f}\right)+\nabla \cdot\left(\alpha_{f} \rho_{f} e_{f} v_{f}+T h\right)=\left(T_{g}-T_{f}\right) H+T_{f} \Delta_{f} \\
& \quad-T_{g}\left(H-\alpha_{g} \nabla \cdot h\right)+h \cdot \nabla T-\Gamma\left[e_{f}+T_{f}\left(s^{*}-s_{f}\right)\right] \\
& \quad-p_{f}\left(\frac{\partial \alpha_{f}}{\partial t}+\nabla \cdot\left(\alpha_{f} v_{f}\right)+\frac{\Gamma}{\rho_{f}}\right)
\end{aligned}
$$

Notes:

- Similar relations for gas and bubbly phases
- Surrogate models must conserve mass, energy and momentum; e.g., subchannel codes

Note:

- Codes can have 15-30 closure relations and up to 75 parameters.
- Codes and closure relations often "borrowed" from other physical phenomena; e.g., single phase fluids, airflow over a car (CFD code STAR-CCM+)
- Calibration is necessary and closure relations can conflict.
- Codes do not have adjoint capabilities.

Example 2. Multiscale Model Development

Example: PZT-Based Macro-Fiber Composites

Quantum-Informed Continuum Models

Objectives:

- Employ density function theory (DFT) to construct/calibrate continuum energy relations.
- e.g., Landau energy

$$
\psi(P)=\alpha_{1} P^{2}+\alpha_{11} P^{4}+\alpha_{111} P^{6}
$$

Landau energy

UQ and SA Issues:

- Is $6^{\text {th }}$ order term required to accurately characterize material behavior?
- Note: Determines molecular structure

Lead Titanate Zirconate (PZT)

DFT Electronic Structure Simulation

Quantum-Informed Continuum Models

Objectives:

- Employ density function theory (DFT) to construct/calibrate continuum energy relations.
- e.g., Landau energy

$$
\psi(P)=\alpha_{1} P^{2}+\alpha_{11} P^{4}+\alpha_{111} P^{6}
$$

Landau energy
UQ and SA Issues:

- Is $6^{\text {th }}$ order term required to accurately characterize material behavior?
- Note: Determines molecular structure

Lead Titanate Zirconate (PZT)

DFT Electronic Structure Simulation

Broad Objective:

- Use UQ/SA to help bridge scales from quantum to system

Global Sensitivity Analysis: Analysis of Variance
Sobol' Representation: $Y=f(q)$

$$
\begin{aligned}
f(q) & =f_{0}+\sum_{i=1}^{p} f_{i}\left(q_{i}\right)+\sum_{i \leqslant i<j \leqslant p} f_{i j}\left(q_{i}, q_{j}\right)+\cdots+f_{12 \ldots p}\left(q_{1}, \ldots, q_{p}\right) \\
& =f_{0}+\sum_{i=1}^{p} \sum_{|u|=i} f_{u}\left(q_{u}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{0}=\int_{\Gamma} f(q) \rho(q) d q=\mathbb{E}[f(q)] \\
& f_{i}\left(q_{i}\right)=\mathbb{E}\left[f(q) \mid q_{i}\right]-f_{0}
\end{aligned}
$$

$$
f_{i j}\left(q_{i}, q_{j}\right)=\mathbb{E}\left[f(q) \mid q_{i}, q_{j}\right]-f_{i}\left(q_{i}\right)-f_{j}\left(q_{j}\right)-f_{0}
$$

Typical Assumption: $q_{1}, q_{2}, \ldots, q_{p}$ independent. Then

$$
\begin{aligned}
& \int_{\Gamma} f_{u}\left(q_{u}\right) f_{v}\left(q_{v}\right) \rho(q) d q=0 \quad \text { for } u \neq v \\
& \Rightarrow \operatorname{var}[f(q)]=\sum_{i=1}^{p} \sum_{|u|=i} \operatorname{var}\left[f_{u}\left(q_{u}\right)\right]
\end{aligned}
$$

Sobol' Indices:

$$
S_{u}=\frac{\operatorname{var}\left[f_{u}\left(q_{u}\right)\right]}{\operatorname{var}[f(q)]} \quad, \quad T_{u}=\sum_{v \subseteq u} S_{v}
$$

Note: Magnitude of S_{i}, T_{i} quantify contributions of q_{i} to $\operatorname{var}[f(q)]$

Global Sensitivity Analysis

Example: Quantum-informed continuum model
Question: Do we use $4^{\text {th }}$ or $6^{\text {th }}$-order Landau energy?

$$
\psi(P, q)=\alpha_{1} P^{2}+\alpha_{11} P^{4}+\alpha_{111} P^{6}
$$

Parameters:

$$
q=\left[\alpha_{1}, \alpha_{11}, \alpha_{111}\right]
$$

Landau energy

Global Sensitivity Analysis:

	α_{1}	α_{11}	α_{111}
S_{k}	0.62	0.39	0.01
T_{k}	0.66	0.38	0.06
μ_{k}^{*}	0.17	0.07	0.03

Conclusion:

α_{111} insignificant and can be fixed

Global Sensitivity Analysis

Example: Quantum-informed continuum model
Question: Do we use $4^{\text {th }}$ or $6^{\text {th }}$-order Landau energy?

$$
\psi(P, q)=\alpha_{1} P^{2}+\alpha_{11} P^{4}+\alpha_{111} P^{6}
$$

Parameters:

$$
q=\left[\alpha_{1}, \alpha_{11}, \alpha_{111}\right]
$$

Global Sensitivity Analysis:

	α_{1}	α_{11}	α_{111}
S_{k}	0.62	0.39	0.01
T_{k}	0.66	0.38	0.06
μ_{k}^{*}	0.17	0.07	0.03

Conclusion:

α_{111} insignificant and can be fixed

Problem: We obtain different distributions when we perform Bayesian inference with fixed non-influential parameters

Global Sensitivity Analysis

Example: Quantum-informed continuum model
Question: Do we use $4^{\text {th }}$ or $6^{\text {th }}$-order Landau energy?

$$
\psi(P, q)=\alpha_{1} P^{2}+\alpha_{11} P^{4}+\alpha_{111} P^{6} \quad \text { Problem: }
$$

Parameters:

$$
q=\left[\alpha_{1}, \alpha_{11}, \alpha_{111}\right]
$$

Global Sensitivity Analysis:

	α_{1}	α_{11}	α_{111}
S_{k}	0.62	0.39	0.01
T_{k}	0.66	0.38	0.06
μ_{k}^{*}	0.17	0.07	0.03

Note: Must accommodate correlation

Global Sensitivity Analysis: Analysis of Variance

Sobol' Representation:

$$
f(q)=f_{0}+\sum_{i=1}^{p} \sum_{|u|=i} f_{u}\left(q_{u}\right)
$$

One Solution: Take variance to obtain

$$
\operatorname{var}[f(q)]=\sum_{i=1}^{p} \sum_{|u|=i} \operatorname{cov}\left[f_{u}\left(q_{u}\right), f(q)\right]
$$

Sobol' Indices:

$$
S_{u}=\frac{\operatorname{cov}\left[f_{u}\left(q_{u}\right), f(q)\right]}{\operatorname{var}[f(q)]}
$$

Pros:

- Provides variance decomposition that is analogous to independent case

Cons:

- Indices can be negative and difficult to interpret
- Often difficult to determine underlying distribution
- Monte Carlo approximation often prohibitively expensive.

Global Sensitivity Analysis: Analysis of Variance

Sobol' Representation:

$$
f(q)=f_{0}+\sum_{i=1}^{p} \sum_{|u|=i} f_{u}\left(q_{u}\right)
$$

One Solution: Take variance to obtain

$$
\operatorname{var}[f(q)]=\sum_{i=1}^{p} \sum_{|u|=i} \operatorname{cov}\left[f_{u}\left(q_{u}\right), f(q)\right]
$$

Sobol' Indices:

$$
S_{u}=\frac{\operatorname{cov}\left[f_{u}\left(q_{u}\right), f(q)\right]}{\operatorname{var}[f(q)]}
$$

Alternative: Construct active subspaces

- Can accommodate parameter correlation
- Often effective in high-dimensional space; e.g., $p=7700$ for neutronics example

Additional Goal: Use Bayesian analysis on active subspace to construct posterior densities for physical parameters.

Active Subspaces

Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y=\exp \left(0.7 q_{1}+0.3 q_{2}\right)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

Active Subspaces

Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y=\exp \left(0.7 q_{1}+0.3 q_{2}\right)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

A Bit of History:

- Often attributed to Russi (2010).

Active Subspaces

Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y=\exp \left(0.7 q_{1}+0.3 q_{2}\right)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

A Bit of History:

- Often attributed to Russi (2010).
- Concept same as identifiable subspaces from systems and control; e.g., Reid (1977).

Active Subspaces

Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y=\exp \left(0.7 q_{1}+0.3 q_{2}\right)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

A Bit of History:

- Often attributed to Russi (2010).
- Concept same as identifiable subspaces from systems and control; e.g., Reid (1977).

- For linearly parameterized problems, active subspace given by SVD or QR; Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912). See 1993 SIAM Review paper by Stewart.

Gradient-Based Active Subspace Construction

Active Subspace: Consider

$$
f=f(q), q \in \mathcal{Q} \subseteq \mathbb{R}^{p}
$$

and

- E.g., see [Constantine, SIAM, 2015; Stoyanov \& Webster, IJUQ, 2015]

$$
\nabla_{q} f(q)=\left[\frac{\partial f}{\partial q_{1}}, \cdots, \frac{\partial f}{\partial q_{p}}\right]^{T}
$$

Construct outer product

$$
\left.C=\int\left(\nabla_{q} f\right)\left(\nabla_{q} f\right)^{T} \rho d q\right)^{\rho(q): \text { Distribution of input parameters } q}
$$

Partition eigenvalues: $C=W \wedge W^{T}$

$$
\Lambda=\left[\begin{array}{ll}
\Lambda_{1} & \\
& \Lambda_{2}
\end{array}\right], W=\left[\begin{array}{ll}
W_{1} & W_{2}
\end{array}\right]
$$

Rotated Coordinates:

$$
y_{r}=W_{1}^{T} q \in \mathbb{R}^{n} \quad \text { and } \quad z=W_{2}^{T} q \in \mathbb{R}^{p-n}
$$

Active Variables
Active Subspace: Range of eigenvectors in W_{1}

Gradient-Based Active Subspace Construction

Active Subspace: Consider

$$
f=f(q), q \in \mathcal{Q} \subseteq \mathbb{R}^{p}
$$

and

- E.g., see [Constantine, SIAM, 2015; Stoyanov \& Webster, IJUQ, 2015]

$$
\nabla_{q} f(q)=\left[\frac{\partial f}{\partial q_{1}}, \cdots, \frac{\partial f}{\partial q_{p}}\right]^{T}
$$

Construct outer product

$$
C=\int\left(\nabla_{q} f\right)\left(\nabla_{q} f\right)^{T} \rho d q
$$

Partition eigenvalues: $C=W \wedge W^{\top}$

Question: How sensitive are results to distribution, which is typically not known?

$$
\Lambda=\left[\begin{array}{ll}
\Lambda_{1} & \\
& \Lambda_{2}
\end{array}\right], W=\left[\begin{array}{ll}
W_{1} & W_{2}
\end{array}\right]
$$

Rotated Coordinates:

$$
y_{\bar{\prime}}=W_{1}^{T} q \in \mathbb{R}^{n} \quad \text { and } \quad z=W_{2}^{T} q \in \mathbb{R}^{p-n}
$$

Active Variables \quad Active Subspace: Range of eigenvectors in W_{1}

Gradient-Based Active Subspace Construction

Active Subspace: Construction based on random sampling

1. Draw M independent samples $\left\{q^{j}\right\}$ from ρ
2. Evaluate $\nabla_{q} f_{j}=\nabla_{q} f\left(q^{j}\right)$
3. Approximate outer product

$$
C \approx \widetilde{C}=\frac{1}{M} \sum_{j=1}^{M}\left(\nabla_{q} f_{j}\right)\left(\nabla_{q} f_{j}\right)^{T}
$$

Note: $\widetilde{C}=G G^{T}$ where $G=\frac{1}{\sqrt{M}}\left[\nabla_{q} f_{1}, \ldots, \nabla_{q} f_{M}\right]$
4. Take SVD of $G=W \sqrt{\Lambda} V^{T}$

- Active subspace of dimension n is first n columns of W

One Goal: Develop efficient algorithm for codes that do not have adjoint capabilities
Note: Finite-difference approximations tempting but not effective for high-D
Strategy: Algorithm based on initialized adaptive Morris indices

Morris Screening: Random Sampling of Approximated Derivatives

Example: Consider uniformly distributed parameters on $\Gamma=[0,1]^{p}$

Elementary Effect:

$$
d_{i}=\frac{f\left(q^{j}+\Delta e_{i}\right)-f\left(q^{j}\right)}{\Delta}
$$

Global Sensitivity Measures: r samples

$$
\begin{aligned}
& \mu_{i}^{*}=\frac{1}{r} \sum_{j=1}^{r}\left|d_{i}^{j}(q)\right| \\
& \sigma_{i}^{2}=\frac{1}{r-1} \sum_{j=1}^{r}\left(d_{i}^{j}(q)-\mu_{i}\right)^{2} \quad, \quad \mu_{i}=\frac{1}{r} \sum_{j=1}^{r} d_{i}^{j}(q)
\end{aligned}
$$

Note: Gets us to moderate-D but initialization required for high-D

Adaptive Algorithm:

- Use SVD to adapt stepsizes and directions to reflect active subspace.
- Reduce dimension of differencing as active subspace is discovered.

Initialization Algorithm

1. Inputs: ℓ iterations, h function evaluations per iteration
2. Sample w^{1} from surface of unit sphere where approximately linear

For $j=1, \ldots, \ell$
3. Sample $\left\{\tilde{v}_{1}^{j}, \ldots, \tilde{v}_{h}^{j}\right\}$ from surface of sphere
4. Use Lagrange multiplier to determine

$$
u_{\max }^{j}=a_{0}^{+} w^{j}+\sum_{i=1}^{h} a_{i}^{+} v_{i}^{j}, v_{i}^{1}=\tilde{v}_{i}^{1}
$$

that maximizes $g(u)=f\left(q^{0}+R^{-1} u\right)$.

Note: For $\mathrm{h}=1$, maximizing great circle through w^{1}, v^{1}

Example: Let $w^{1}=$ Atlanta,

$$
v^{1}=\text { London, and }
$$

$$
g(u)=\text { 'QUIETness' of }
$$ seatmate on flight

Initialization Algorithm

1. Inputs: ℓ iterations, h function evaluations per iteration
2. Sample w^{1} from surface of unit sphere where approximately linear

For $j=1, \ldots, \ell$
3. Sample $\left\{\tilde{v}_{1}^{j}, \ldots, \tilde{v}_{h}^{j}\right\}$ from surface of sphere
4. Use Lagrange multiplier to determine

$$
u_{\max }^{j}=a_{0}^{+} w^{j}+\sum_{i=1}^{h} a_{i}^{+} v_{i}^{j}, v_{i}^{1}=\tilde{v}_{i}^{1}
$$

that maximizes $g(u)=f\left(q^{0}+R^{-1} u\right)$.

Initialization Algorithm

1. Inputs: ℓ iterations, h function evaluations per iteration
2. Sample w^{1} from surface of unit sphere where approximately linear

For $j=1, \ldots, \ell$
3. Sample $\left\{\tilde{v}_{1}^{j}, \ldots, \tilde{v}_{h}^{j}\right\}$ from surface of sphere
4. Use Lagrange multiplier to determine

$$
u_{\max }^{j}=a_{0}^{+} w^{j}+\sum_{i=1}^{h} a_{i}^{+} v_{i}^{j}, v_{i}^{1}=\tilde{v}_{i}^{1}
$$

that maximizes $g(u)=f\left(q^{0}+R^{-1} u\right)$.
Set $w^{j+1}=u_{\text {max }}^{j}$.

5. Take $C=\left[w^{j}, v_{1}^{j}, \ldots, v_{h}^{j}\right]$ and set $P_{u_{\text {max }}^{j}}=u_{\text {max }}^{j}\left(u_{\max }^{j}\right)^{T}$
6. Let $C_{j \perp}=\left[\operatorname{span}\left(C_{(j-1) \perp},\left(I_{m}-P_{u_{\text {max }}^{j}} C\right)\right]\right.$ and set $P_{C_{j \perp}}=C_{j \perp}\left(C_{j \perp}^{\top} C_{j \perp}\right)^{-1} C_{j \perp}^{T}$
7. Take $v_{i}^{j}=\frac{\left(I_{m}-P_{C_{j \perp}}\right) \tilde{v}_{i}^{j}}{\left\|\left(I_{m}-P_{c_{j \perp}}\right) \tilde{v}_{i}^{j}\right\|}, i=1, \ldots, h$ and repeat

Ortho-complement of $u_{\text {max }}$

Example: Initialization Algorithm to Approximate Gradient

Example: Family of elliptic PDE's

$$
-\nabla_{s} \cdot\left(a(q, s, \ell) \nabla_{s} u(s, a(q, s, \ell))=1, s=[0,1]^{2}, \ell=1, \cdots, n\right.
$$

with the random field representations

$$
a(q, s, \ell)=a_{\text {min }}+e^{\bar{a}(s, \ell)+\sum_{i=1}^{p} q_{k}^{\ell} \gamma_{i} \phi_{i}(s)}
$$

Quantity of interest: e.g., strain along edge at n levels

$$
f\left(\mathbf{q}^{1}, \ldots, \mathbf{q}^{n}\right) \approx \sum_{\ell=1}^{n} \frac{1}{\left|\Gamma_{2}\right|} \int_{\Gamma_{2}} u(q, s, \ell) d s
$$

Problem Dimensions:

- Parameter dimension: $p=100$
- Active subspace dimension: $\mathrm{n}=1$
- Finite element approximation

Example: Initialization Algorithm to Approximate Gradient

Results: Cosine of angle between 'analytic' and computed gradient

Recall: $p=100$

Note: Convergence within $h \cdot \ell$ iterations

SCALE6.1: High-Dimensional Example

Setup: Cross-section computations SCALE6.1

- Input Dimension: 7700
- Output $k_{\text {eff }}$: Governs reactions

Materials			Reactions	
${ }_{92}^{234} \mathrm{U}$	${ }_{5}^{10} \mathrm{~B}$	${ }_{15}^{31} \mathrm{P}$	Σ_{t}	$n \rightarrow \gamma$
${ }_{92}^{235} \mathrm{U}$	${ }_{5}^{11} \mathrm{~B}$	${ }_{25}^{55} \mathrm{Mn}$	Σ_{e}	$n \rightarrow p$
${ }_{25}^{236} \mathrm{U}$	${ }_{7}^{14} \mathrm{~N}$	${ }_{26} \mathrm{Fe}$	Σ_{f}	$n \rightarrow d$
${ }_{92}^{238} \mathrm{U}$	${ }_{7}^{15} \mathrm{~N}$	${ }_{9}^{116} \mathrm{Sn}$	Σ_{c}	$n \rightarrow t$
${ }_{92}^{1} \mathrm{H}$	${ }_{11}^{23} \mathrm{Na}$	${ }_{12}^{120} \mathrm{Sn}$	$\bar{\nu}$	$n \rightarrow{ }^{3} \mathrm{He}$
${ }_{8}^{16} \mathrm{O}$	${ }_{13}^{27} \mathrm{Al}$	${ }_{40} \mathrm{Zr}$	χ	$n \rightarrow \alpha$
${ }_{6} \mathrm{C}$	${ }_{14} \mathrm{Si}$	${ }_{19} \mathrm{~K}$	$n \rightarrow n^{\prime}$	$n \rightarrow 2 n$

PWR Quarter Fuel Lattice

Really Annoying Reality for Allie and Kayla: Cross-section libraries are binary and require conversion to floating point for perturbations.

SCALE6.1: High-Dimensional Example

Setup:

- Input Dimension: 7700

SCALE Evaluations:

- Gradient-Based: 1000
- Initialized Adaptive Morris: 18,392
- Projected Finite-Difference: 7,701,000

Note: Analytic eigenvalues: 0,1
Active Subspace Dimensions:

For surrogate sampled off space

	Gap	PCA				Error Tolerance			
Method		0.75	0.90	0.95	0.99	10^{-3}	10^{-4}	10^{-5}	10^{-6}
Gradient-Based	1	2	6	9	24	1	13	90	233
Initialized AM	1	1	1	1	2	1	2	2	2

Notes: Computing converged adjoint solution is expensive and often not achieved

SCALE6.1: High-Dimensional Example

Setup:

- Input Dimension: 7700

SCALE Evaluations:

- Gradient-Based: 1000
- Initialized Adaptive Morris: 18,392
- Projected Finite-Difference: 7,701,000

Note: Analytic eigenvalues: 0,1
Active Subspace Dimensions:

For surrogate sampled off space

	Gap	PCA				Error Tolerance			
Method		0.75	0.90	0.95	0.99	10^{-3}	10^{-4}	10^{-5}	10^{-6}
Gradient-Based	1	2	6	9	24	1	13	90	233
Initialized AM	1	1	1	1	2	1	2	2	2

Notes: Computing converged adjoint solution is expensive and often not achieved

- Surrogate construction now trivial!

Bayesian Inference on Active Subspaces

Example: $y=\exp \left(0.7 q_{1}+0.3 q_{2}\right)$

Full Space Inference:

- Parameters not jointly identifiable
- Result: Prior for $2^{\text {nd }}$ parameter is minimally informed.
- Goal: Use active subspace to quantify parameter
 sensitivity and guide inference.

Bayesian Inference on Active Subspaces

Example: $y=\exp \left(0.7 q_{1}+0.3 q_{2}\right)$
Active Subspace: For gradient matrix G, form SVD

$$
G=U \wedge V^{\top}
$$

Eigenvalue spectrum indicates 1-D active subspace with basis

$$
U(:, 1)=[0.91,0.39]
$$

Strategy: Inference based on active subspace

- For values $\left\{q^{j}\right\}_{j=1}^{M}$, compute $y^{j}=U(:, 1)^{T} q^{j}$ and fit response surface $g(y)$
- Perform Bayesian inference for y
- Because model is "invariant" to $z=U(:, 2)^{T} q$, draw $\left\{z^{j}\right\} \sim N(0,1)$
- Transform to $q^{j}=U(:, 1) y^{j}+U(:, 2) z^{j}$ to obtain posterior densities for physical parameters

Bayesian Inference on Active Subspaces

Results: Inference based on active subspace

Global Sensitivity: For active subspace of dimension n, consider vector of activity scores

$$
\alpha_{i}(n)=\sum_{j=1}^{n} \lambda_{j} w_{i, j}^{2}, i=1, \ldots, p
$$

Present Example: Here $\mathrm{n}=1$ and $w_{1}^{2}=U(:, 1) . * U(:, 1)=\left[0.91^{2}, 0.39^{2}\right]$
Conclusion: First parameter is more influential and better informed during Bayesian inference.

Bayesian Inference on Active Subspaces

Example: Family of elliptic PDE's - Same as initialization example

$$
-\nabla_{s} \cdot\left(a(q, s, \ell) \nabla_{s} u(s, a(q, s, \ell))=1, s=[0,1]^{2}, \ell=1, \cdots, n\right.
$$

with the random field representations

$$
a(q, s, \ell)=a_{\min }+e^{\bar{a}(s, \ell)+\sum_{i=1}^{p} q_{k}^{\ell} \gamma_{i} \phi_{i}(s)}
$$

Quantity of interest: e.g., strain along edge at n levels

$$
f\left(\mathbf{q}^{1}, \ldots, \mathbf{q}^{n}\right) \approx \sum_{\ell=1}^{n} \frac{1}{\left|\Gamma_{2}\right|} \int_{\Gamma_{2}} u(q, s, \ell) d s
$$

Problem Dimensions:

- Parameter dimension: $p=91$
- Active subspace dimension: $\mathrm{n}=3$
- Finite element approximation

Bayesian Inference on Active Subspaces

Singular Values: Recall $\mathrm{n}=3$

Activity Scores: Quantify global sensitivity

Conclusion: Parameters 1, 38, 66 are most influential and will be primarily informed during Bayesian inference

Bayesian Inference on Active Subspaces

Recall: Parameters 1, 38, 66 are most influential and will be primarily informed during Bayesian inference

Note:

- Full space: 18 hours
- Reduced: 20 seconds

Bayesian Inference on Active Subspaces

Note:

- Chains for full space not converging well due to parameter nonidentifiability
- Hence full space inference is less reliable

Full Space

Active Subspace

Experimental Design for Nuclear Power Plant Analysis

 to calibrate low-fidelity code - e.g., CTF or CTFFuel.

- Necessitates efficient experimental design when calibrating surrogate models

Experimental Design-Based Hi2Lo Framework

High-Fidelity: STAR-CCM + or experimental data
Low-Fidelity: COBRA-TF (CTF) or statistical surrogate for code; e.g., GP

Low-Fidelity Stat Model

High-Fidelity Stat Model

Experimental Design-Based Hi2Lo Framework

Calibrate parameters of low-fidelity model: $d_{\ell}\left(\theta, \xi_{n}\right)$
\square Delayed Rejection Adaptive Metropolis (DRAM)
Choose new design ξ_{n} to reduce uncertainty in θ
\checkmark kNN Estimate of Mutual Information
Evaluate high-fidelity model at $\xi_{n}: \widetilde{d}_{n}=d_{h}\left(\xi_{n}\right)+\widetilde{\varepsilon}_{n}\left(\xi_{n}\right)$

Mutual Information

Bayesian Framework: Quantifies change in knowledge due to new data

$$
p\left(\theta \mid D_{n}\right)=\frac{p\left(D_{n} \mid \theta\right) p(\theta)}{p\left(D_{n}\right)}=\frac{p\left(\widetilde{d}_{n}, D_{n-1} \mid \theta\right) p(\theta)}{p\left(\widetilde{d}_{n}, D_{n-1}\right)} \quad D_{n-1}=\left\{\widetilde{d}_{1}, \widetilde{d}_{2}, \cdots, \widetilde{d}_{n-1}\right\}
$$

Goal: Provide framework to optimize information in \widetilde{d}_{n} based on design ξ_{n}

Strategy:

- Marginalize over set of unknown future observations to compute average amount of information provided by design ξ_{n} :

$$
I\left(\theta ; d_{n} \mid D_{n-1}, \xi_{n}\right)=\int_{\mathcal{D}} U\left(d_{n}, \xi_{n}\right) p\left(d_{n} \mid D_{n-1}, \xi_{n}\right) d d_{n}
$$

- Choose design condition that yields largest mutual information

$$
\xi_{n}^{*}=\arg \max _{\xi_{n} \in \equiv} I\left(\theta ; d_{n} \mid D_{n-1}, \xi_{n}\right)
$$

- Implementation: kth nearest neighbor (kNN) algorithm [Kraskov et al., 2004]

Example 2: Turbulent Mixing in (CTF)

Problem Setup:

- Design Variables in STAR-CCM+
- Initial pressure of fluid domain
- Initial temperature in fluid domain
- Inlet mass flow rate Design Step
- Average linear heat rate per rod
- Calibration Variable in COBRA-TF (CTF)
- BETA: Turbulent mixing factor

Computational Requirements:

- MI requires 5000 independent samples
- MCMC required 18,750 iterations
- This necessitated construction and verification of fast surrogate for CTF
- Gaussian process (GP) surrogate trained and verified for all 36 subchannels

Concluding Remarks

Notes:

- Parameter selection critical to isolate identifiable and influential parameters.
- Active subspace construction necessary for models with high-dimensional parameter spaces; e.g., 7700.
- Due to complexity of physical models, surrogate models typically required. Algorithms utilizing mutual information can maximize information gain when calibrating.
- Future research directions:
- Relax Gaussian constraints on priors when performing inference on active subspaces.
- Construction of surrogate models that conserve; e.g., mass, momentum and energy.
- Surrogate models for multi-physics problems.
- Prediction is very difficult, especially if it's about the future, Niels Bohr.

