Pressurized Water Reactors (PWR)

3-D Neutron Transport Equations:

$$\frac{1}{|v|} \frac{\partial \varphi}{\partial t} + \Omega \cdot \nabla \varphi + \Sigma_t(r, E) \varphi(r, E, \Omega, t)
= \int_{4\pi} d\Omega' \int_0^\infty dE' \Sigma_s(E' \to E, \Omega' \to \Omega) \varphi(r, E', \Omega', t)
+ \frac{\chi(E)}{4\pi} \int_{4\pi} d\Omega' \int_0^\infty dE' \nu(E') \Sigma_f(E') \varphi(r, E', \Omega', t)$$

Challenges:

 Linear in the state but function of 7 independent variables:

$$r = x, y, z; E; \Omega = \theta, \phi; t$$

- Very large number of inputs; e.g., 100,000; Active subspace construction is critical.
- ORNL Code SCALE: can take minutes to hours to run.

• SCALE TRITON has adjoint capabilities via TSUNAMI-2D and NEWT.

Active Subspaces

Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y = \exp(0.7q_1 + 0.3q_2)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

A Bit of History:

- Often attributed to Russi (2010).
- Concept same as *identifiable subspaces* from systems and control; e.g., Reid (1977).

• For linearly parameterized problems, active subspace given by SVD or QR; Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912). See 1993 *SIAM Review* paper by Stewart.

Active Subspaces

Note: Sensitivity analysis isolate *subsets* of influential parameters but ineffective for *subspaces* that are not aligned with coordinate axes.

Linearly Parameterized Problems: y = Aq, $y \in \mathbb{R}^n$, $q \in \mathbb{R}^p$, A is $n \times p$

Example:
$$y_i = q_2 x_i$$
, $i = 1, 2, 3$ $q = [q_1, q_2]$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 & x_1 \\ 0 & x_2 \\ 0 & x_3 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$

Here

$$extstyle extstyle extstyle NI(q) = \mathcal{N}(A) = c \left[egin{array}{c} 1 \ 0 \end{array}
ight] \; , \; c \in \mathbb{R} \; .$$

$$I(q) = \Re(A^T) = c \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, $c \in \mathbb{R}$

Null space of A

$$\mathcal{N}(A) = \{ q \in \mathbb{R}^p \, | \, Aq = 0 \}$$

Range

$$\Re(A^T) = \{b \in \mathbb{R}^p \mid b = A^T z \text{ for some } z \in \mathbb{R}^n\}$$

Note: $\mathcal{N}(\mathbf{A}^T \mathbf{A}) = \mathcal{N}(\mathbf{A})$, $\mathcal{R}(\mathbf{A}^T \mathbf{A}) = \mathcal{R}(\mathbf{A}^T)$

Good Reference: Ilse C.F. Ipsen, Numerical Matrix Analysis, SIAM, 2009

Active Subspaces

Example:
$$y = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$

Here

$$extstyle extstyle ext$$

$$I(q) = \mathcal{R}(A^T) = c \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $c \in \mathbb{R}$.

Deterministic Algorithms

Linearly Parameterized Problems: y = Aq, $y \in \mathbb{R}^n$, $q \in \mathbb{R}^p$, A is $n \times p$

Singular Value Decomposition (SVD):

$$A = U\Sigma V^T$$
 , $\Sigma = [S \ 0]$

and

$$U = [U_r \ U_{n-r}], \ U_r \in \mathbb{R}^{n \times r}, \ U_{n-r} \in \mathbb{R}^{n \times (n-r)}$$

$$V = [V_r \ V_{p-r}], \ V_r \in \mathbb{R}^{p \times r}, \ V_{p-r} \in \mathbb{R}^{p \times (p-r)}$$

Rank Revealing QR Decomposition: $A^TP=QR$

Problem: Neither is directly applicable when n or p are very large; e.g., millions.

Solution: Random range finding algorithms.

Random Range Finding Algorithms: Linear Problems

Algorithm: Halko, Martinsson and Tropp, SIAM Review, 2011

- 1. Choose ℓ random inputs q^i and compute outputs $y^i = Aq^i$ which are compiled in the $m \times \ell$ matrix Y.
- 2. Take a pivoted QR factorization Y = QR to construct a matrix Q whose columns form an orthonormal basis for the range of Y.

Example:

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \sin(2\pi t_1) & \cdots & \sin(2\pi p t_1) \\ \vdots & & \vdots \\ \sin(2\pi t_n) & \cdots & \sin(2\pi p t_n) \end{bmatrix} \begin{bmatrix} q_1 \\ \vdots \\ q_p \end{bmatrix}$$

Random Range Finding Algorithms: Linear Problems

Example: m = 101, p = 1000: Analytic value for rank is 49

Example: m = 101, p = 1,000,000: Random algorithm still viable

Active Subspaces for Nonlinearly Parameterized Problems

Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y = \exp(0.7q_1 + 0.3q_2)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

A Bit of History:

- Often attributed to Russi (2010).
- Concept same as *identifiable subspaces* from systems and control; e.g., Reid (1977).

• For linearly parameterized problems, active subspace given by SVD or QR; Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912). See 1993 *SIAM Review* paper by Stewart.

Gradient-Based Active Subspace Construction

Active Subspace: Consider

$$f = f(q)$$
 , $q \in \mathbb{Q} \subseteq \mathbb{R}^p$

and

$$\nabla_q f(q) = \left[\frac{\partial f}{\partial q_1}, \cdots, \frac{\partial f}{\partial q_p}\right]^T$$

Construct outer product

$$C = \int (\nabla_q f) (\nabla_q f)^T \rho dq$$

Partition eigenvalues: $C = W \wedge W^T$

 $\rho(q)$: Distribution of input parameters q

• E.g., see [Constantine, SIAM, 2015;

Question: How sensitive are results to distribution, which is typically not known?

$$\Lambda = \left[\begin{array}{cc} \Lambda_1 & \\ & \Lambda_2 \end{array} \right] , W = \left[W_1 & W_2 \right]$$

Rotated Coordinates:

$$y = W_1^T q \in \mathbb{R}^n$$
 and $z = W_2^T q \in \mathbb{R}^{p-n}$

Active Variables

Active Subspace: Range of eigenvectors in W_1

Gradient-Based Active Subspace Construction

Active Subspace: Construction based on random sampling

- 1. Draw M independent samples $\{q^j\}$ from ρ
- 2. Evaluate $\nabla_q f_j = \nabla_q f(q^j)$
- 3. Approximate outer product

$$C pprox \widetilde{C} = \frac{1}{M} \sum_{j=1}^{M} (\nabla_q f_j) (\nabla_q f_j)^T$$

Note:
$$\widetilde{C} = GG^T$$
 where $G = \frac{1}{\sqrt{M}}[\nabla_q f_1, ..., \nabla_q f_M]$

- 4. Take SVD of $G = W\sqrt{\Lambda}V^T$
 - Active subspace of dimension n is first n columns of W

One Goal: Develop efficient algorithm for codes that do not have adjoint capabilities

Note: Finite-difference approximations tempting but not effective for high-D

Strategy: Algorithm based on initialized adaptive Morris indices

Gradient-Based Active Subspace Construction

Example: Consider

$$y = e^{c_1 q_1 + c_2 q_2} = f(q)$$

SO

$$abla_q f(q) = \left[egin{array}{c} c_1 e^{c_1 q_1 + c_2 q_2} \ c_2 e^{c_1 q_1 + c_2 q_2} \end{array}
ight] = \left[egin{array}{c} c_1 f(q) \ c_2 f(q) \end{array}
ight]$$

For Q_1 , $Q_2 \sim \mathcal{U}(0, 1)$, we have

$$C = \int_{0}^{1} \int_{0}^{1} (\nabla_{q} f) (\nabla_{q} f)^{T} dq_{1} dq_{2}$$

$$= \int_{0}^{1} \int_{0}^{1} \begin{bmatrix} c_{1}^{2} f^{2}(q) & c_{1} c_{2} f^{2}(q) \\ c_{1} c_{2} f^{2}(q) & c_{2}^{2} f^{2}(q) \end{bmatrix} dq$$

$$= \begin{bmatrix} c_{1}^{2} & c_{1} c_{2} \\ c_{1} c_{2} & c_{2}^{2} \end{bmatrix} \cdot \frac{1}{4 c_{1} c_{2}} \left(e^{2c_{1}} - 1 \right) \left(e^{2c_{2}} - 1 \right)$$

$$= \begin{bmatrix} \frac{c_{1}}{4 c_{2}} & \frac{1}{4} \\ \frac{1}{4} & \frac{c_{2}}{4 c_{1}} \end{bmatrix} \cdot \left(e^{2c_{1}} - 1 \right) \left(e^{2c_{2}} - 1 \right)$$

Values: $c_1 = 0.7$, $c_2 = 0.3$

Analytic C:

$$C = \begin{bmatrix} 1.4652 & 0.6279 \\ 0.6279 & 0.2691 \end{bmatrix}$$

Monte Carlo Approx:

$$C pprox rac{1}{M} \sum_{j=1}^{M} \left(
abla_q f(q^j)
ight) \left(
abla_q f(q^j)
ight)^T$$

$$M = 10^4$$

$$C = \begin{bmatrix} 1.4532 & 0.6228 \\ 0.6228 & 0.2669 \end{bmatrix}$$

$$M = 10^6$$

$$C = \begin{bmatrix} 1.4654 & 0.6280 \\ 0.6280 & 0.2692 \end{bmatrix}$$

Morris Screening: Random Sampling of Approximated Derivatives

Example: Consider uniformly distributed parameters on $\Gamma = [0, 1]^p$

Elementary Effect:

$$d_i = rac{f(q^j + \Delta e_i) - f(q^j)}{\Delta}$$

Global Sensitivity Measures: r samples

$$\mu_{i}^{*} = \frac{1}{r} \sum_{j=1}^{r} |d_{i}^{j}(q)|$$

$$\sigma_{i}^{2} = \frac{1}{r} \sum_{j=1}^{r} (d_{i}^{j}(q) - \mu_{i})^{2}$$

$$\sigma_i^2 = \frac{1}{r-1} \sum_{j=1}^r \left(d_i^j(q) - \mu_i \right)^2$$
, $\mu_i = \frac{1}{r} \sum_{j=1}^r d_i^j(q)$

Adaptive Algorithm:

- Use SVD to adapt stepsizes and directions to reflect active subspace.
- Reduce dimension of differencing as active subspace is discovered.

Note: Gets us to moderate-D but initialization required for high-D

Initialization Algorithm

- 1. Inputs: ℓ iterations, h function evaluations per iteration
- 2. Sample w^1 from surface of unit sphere where approximately linear

For
$$j = 1, \dots, \ell$$

 $S = R^T R$

- 3. Sample $\{\tilde{v}_1^j, \dots, \tilde{v}_h^j\}$ from surface of sphere
- 4. Use Lagrange multiplier to determine

$$u_{\max}^j = a_0^+ w^j + \sum_{i=1}^n a_i^+ v_i^j$$
 , $v_i^1 = \tilde{v}_i^1$

that maximizes $g(u) = f(q^0 + R^{-1}u)$.

 $f(q^{0} + R^{-1}u)$ $f(q^{0} + R^{-1}u)$ Transform $(z - q^{0})^{T}S(z - q^{0}) = 1$ Sphere

Note: For h=1, maximizing great circle through W^1 , V^1

Example: Let $w^1 = Atlanta$, $v^1 = London$, and g(u) = 'QUIETness' of seatmate on flight

Initialization Algorithm

- 1. Inputs: ℓ iterations, h function evaluations per iteration
- 2. Sample w^1 from surface of unit sphere where approximately linear

For
$$j = 1, \dots, \ell$$

- 3. Sample $\{\tilde{v}_1^j, \dots, \tilde{v}_h^j\}$ from surface of sphere
- 4. Use Lagrange multiplier to determine

$$u_{\max}^{j} = a_{0}^{+} w^{j} + \sum_{i=1}^{h} a_{i}^{+} v_{i}^{j}, \ v_{i}^{1} = \tilde{v}_{i}^{1}$$

that maximizes $g(u) = f(q^0 + R^{-1}u)$.

Initialization Algorithm

- 1. Inputs: ℓ iterations, h function evaluations per iteration
- 2. Sample w^1 from surface of unit sphere where approximately linear

For
$$j = 1, ..., \ell$$

- 3. Sample $\{\tilde{v}_1^j, \dots, \tilde{v}_h^j\}$ from surface of sphere
- 4. Use Lagrange multiplier to determine

$$u_{\max}^{j} = a_{0}^{+} w^{j} + \sum_{i=1}^{h} a_{i}^{+} v_{i}^{j}, \ v_{i}^{1} = \tilde{v}_{i}^{1}$$

that maximizes $g(u) = f(q^0 + R^{-1}u)$.

Set $w^{j+1} = u_{max}^{j}$.

- 5. Take $C = [w^j, v_1^j, \dots, v_h^j]$ and set $P_{u_{\max}^j} = u_{\max}^j (u_{\max}^j)^T$
- 6. Let $C_{j\perp}=\left\lceil \operatorname{span}\left(C_{(j-1)\perp},(I_m-P_{u_{\max}^j}C)
 ight
 ceil$ and set $P_{C_{j\perp}}=C_{j\perp}(C_{j\perp}^TC_{j\perp})^{-1}C_{j\perp}^T$
- 7. Take $v_i^j = \frac{(I_m P_{C_{j\perp}})\tilde{v}_i^j}{\|(I_m P_{C_{i\perp}})\tilde{v}_i^j\|}$, i = 1, ..., h and repeat Ortho-complement

of *u*_{max}

Example: Initialization Algorithm to Approximate Gradient

Example: Family of elliptic PDE's

$$-\nabla_{s} \cdot (a(q, s, \ell)\nabla_{s}u(s, a(q, s, \ell)) = 1, \ s = [0, 1]^{2}, \ \ell = 1, \dots, n$$

with the random field representations

$$a(q, s, \ell) = a_{\min} + e^{\overline{a}(s, \ell) + \sum_{i=1}^{p} q_k^{\ell} \gamma_i \Phi_i(s)}$$

Quantity of interest: e.g., strain along edge at n levels

$$f\left(\mathbf{q}^{1},\ldots,\mathbf{q}^{n}\right)\approx\sum_{\ell=1}^{n}\frac{1}{|\Gamma_{2}|}\int_{\Gamma_{2}}u(q,s,\ell)ds$$

Problem Dimensions:

- Parameter dimension: p = 100
- Active subspace dimension: n = 1
- Finite element approximation

Example: Initialization Algorithm to Approximate Gradient

Results: Cosine of angle between 'analytic' and computed gradient

SCALE6.1: High-Dimensional Example

Setup: Cross-section computations SCALE6.1

Input Dimension: 7700

Output k_{eff}

N	Iateria	als	Reactions				
$^{234}_{92}U$	$^{10}_{5}{ m B}$	$^{31}_{15}P$	\sum_t	$n \rightarrow \gamma$			
$^{235}_{92}U$	$^{11}_{5}\mathrm{B}$	$_{25}^{55}\mathrm{Mn}$	Σ_e	$n \to p$			
$^{236}_{92}U$	$^{14}_{7}{ m N}$	₂₆ Fe	Σ_f	$n \to d$			
$^{238}_{92}U$	$^{15}_{7}{ m N}$	$^{116}_{50}{ m Sn}$	\sum_{c}	$n \to t$			
$^{1}_{1}\mathrm{H}$	$^{23}_{11}$ Na	$^{120}_{50}{ m Sn}$	$ar{ u}$	$n \to {}^3{\rm He}$			
¹⁶ ₈ O	$^{27}_{13}$ Al	$_{40}\mathrm{Zr}$	χ	$n \to \alpha$			
$_{6}$ C	$_{14}\mathrm{Si}$	$_{19}\mathrm{K}$	$n \to n'$	$n \to 2n$			

Note: We cannot efficiently approximate all directional derivatives required to approximate the gradient matrix. Requires efficient initialization algorithm.

SCALE6.1: High-Dimensional Example

Setup:

Input Dimension: 7700

SCALE Evaluations:

Gradient-Based: 1000

Initialized Adaptive Morris: 18,392

Projected Finite-Difference: 7,701,000

Note: Analytic eigenvalues: 0, 1

Active Subspace Dimensions:

For surrogate sampled off space

	Gap	PCA				Error Tolerance			
Method		0.75	0.90	0.95	0.99	10^{-3}	10^{-4}	10^{-5}	10^{-6}
Gradient-Based	1	2	6	9	24	1	13	90	233
Initialized AM	1	1	1	1	2	1	2	2	2

Notes: Computing converged adjoint solution is expensive and often not achieved

Example: $y = \exp(0.7q_1 + 0.3q_2)$

Full Space Inference:

- Parameters not jointly identifiable
- Result: Prior for 2nd parameter is minimally informed.
- Goal: Use active subspace to quantify parameter sensitivity and guide inference.

Example: $y = \exp(0.7q_1 + 0.3q_2)$

Active Subspace: For gradient matrix G, form SVD

$$G = U \Lambda V^T$$

Eigenvalue spectrum indicates 1-D active subspace with basis

$$U(:,1) = [0.91, 0.39]$$

Strategy: Inference based on active subspace

- For values $\{q^j\}_{j=1}^M$, compute $y^j = U(:,1)^T q^j$ and fit response surface g(y)
- Use DRAM to calibrate y
- Because model is "invariant" to $z = U(:, 2)^T q$, draw $\{z^j\} \sim N(0, 1)$
- Transform to $q^j = U(:,1)y^j + U(:,2)z^j$ to obtain posterior densities for physical parameters

Results: Inference based on active subspace

Global Sensitivity: For active subspace of dimension N, consider vector of activity scores

$$\alpha(N) = \sum_{j=1}^{N} \lambda_j w_j^2$$

Note: Here N = 1 and $w_j^2 = U(:, 1) \cdot *U(:, 1) = [0.91^2, 0.39^2]$

Conclusion: First parameter is more influential and better informed during Bayesian inference.

Example: Family of elliptic PDE's

$$-\nabla_{s} \cdot (a(q, s, \ell)\nabla_{s}u(s, a(q, s, \ell)) = 1, \ s = [0, 1]^{2}, \ \ell = 1, \dots, n$$

with the random field representations

$$a(q, s, \ell) = a_{\min} + e^{\overline{a}(s, \ell) + \sum_{i=1}^{p} q_k^{\ell} \gamma_i \Phi_i(s)}$$

Quantity of interest: e.g., strain along edge at N levels

$$f\left(\mathbf{q}^{1},\ldots,\mathbf{q}^{n}\right)\approx\sum_{\ell=1}^{n}\frac{1}{|\Gamma_{2}|}\int_{\Gamma_{2}}u(q,s,\ell)ds$$

- Parameter dimension: p = 91
- Active subspace dimension: N = 3
- Finite element space: 1372 triangular elements, 727 nodes

Singular Values: Recall N = 3

Activity Scores: Quantify global sensitivity

Conclusion: Parameters 1, 38, 66 are most influential and will be primarily informed during Bayesian inference

Recall: Parameters 1, 38, 66 are most influential and will be primarily informed during Bayesian inference

Note:

Full space: 18 hours

Reduced: 20 seconds

Note:

- Chains for full space not converging well due to parameter nonidentifiability
- Hence full space inference is less reliable

