Pressurized Water Reactors (PWR)

3-D Neutron Transport Equations:

$$
\begin{aligned}
& \frac{1}{|v|} \frac{\partial \varphi}{\partial t}+\Omega \cdot \nabla \varphi+\Sigma_{t}(r, E) \varphi(r, E, \Omega, t) \\
& \quad=\int_{4 \pi} d \Omega^{\prime} \int_{0}^{\infty} d E^{\prime} \Sigma_{s}\left(E^{\prime} \rightarrow E, \Omega^{\prime} \rightarrow \Omega\right) \varphi\left(r, E^{\prime}, \Omega^{\prime}, t\right) \\
& \quad+\frac{\chi(E)}{4 \pi} \int_{4 \pi} d \Omega^{\prime} \int_{0}^{\infty} d E^{\prime} \nu\left(E^{\prime}\right) \Sigma_{f}\left(E^{\prime}\right) \varphi\left(r, E^{\prime}, \Omega^{\prime}, t\right)
\end{aligned}
$$

- Linear in the state but function of 7 independent variables:

$$
r=x, y, z ; E ; \Omega=\theta, \phi ; t
$$

- Very large number of inputs; e.g., 100,000; Active subspace construction is critical.
- ORNL Code SCALE: can take minutes to hours to run. control assembly

Challenges:

hours to run.

- SCALE TRITON has adjoint capabilities via TSUNAMI-2D and NEWT.

Active Subspaces

Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y=\exp \left(0.7 q_{1}+0.3 q_{2}\right)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

A Bit of History:

- Often attributed to Russi (2010).
- Concept same as identifiable subspaces from systems and control; e.g., Reid (1977).

- For linearly parameterized problems, active subspace given by SVD or QR; Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912). See 1993 SIAM Review paper by Stewart.

Active Subspaces

Note: Sensitivity analysis isolate subsets of influential parameters but ineffective for subspaces that are not aligned with coordinate axes.

Linearly Parameterized Problems: $y=A q, y \in \mathbb{R}^{n}, q \in \mathbb{R}^{p}, A$ is $n \times p$
Example: $y_{i}=q_{2} x_{i}, i=1,2,3$

$$
\begin{aligned}
& q=\left[q_{1}, q_{2}\right] \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{ll}
0 & x_{1} \\
0 & x_{2} \\
0 & x_{3}
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]}
\end{aligned}
$$

Here

$$
\begin{array}{ll}
N I(q)=\mathcal{N}(A)=c\left[\begin{array}{l}
1 \\
0
\end{array}\right], c \in \mathbb{R} & \text { Null space of } A \\
& \mathcal{N}(A)=\left\{q \in \mathbb{R}^{p} \mid A q=0\right\} \\
I(q)=\mathcal{R}\left(A^{T}\right)=c\left[\begin{array}{l}
0 \\
1
\end{array}\right], c \in \mathbb{R} \quad \begin{array}{l}
\text { Range } \\
\\
\end{array} \mathcal{R}\left(A^{T}\right)=\left\{b \in \mathbb{R}^{p} \mid b=A^{T} z \text { for some } z \in \mathbb{R}^{n}\right\}
\end{array}
$$

Note: $\mathcal{N}\left(A^{T} A\right)=\mathcal{N}(A), \mathcal{R}\left(A^{T} A\right)=\mathcal{R}\left(A^{T}\right)$
Good Reference: Ilse C.F. Ipsen, Numerical Matrix Analysis, SIAM, 2009

Active Subspaces

Example: $y=\left[\begin{array}{ll}2 & 1\end{array}\right]\left[\begin{array}{l}q_{1} \\ q_{2}\end{array}\right]$
Here

$$
\begin{aligned}
& N I(q)=\mathcal{N}(A)=c\left[\begin{array}{r}
-\frac{1}{2} \\
1
\end{array}\right], c \in \mathbb{R} \\
& I(q)=\mathcal{R}\left(A^{T}\right)=c\left[\begin{array}{l}
2 \\
1
\end{array}\right], c \in \mathbb{R} .
\end{aligned}
$$

Deterministic Algorithms

Linearly Parameterized Problems: $y=A q, y \in \mathbb{R}^{n} \quad, q \in \mathbb{R}^{p} \quad, A$ is $n \times p$
Singular Value Decomposition (SVD):

$$
\begin{aligned}
& A=U \Sigma V^{T} \quad, \Sigma=\left[\begin{array}{ll}
S & 0
\end{array}\right] \\
& S=\left[\begin{array}{llll}
\sigma_{1} & & & \\
& \ddots & & \\
& & \sigma_{r} & \\
& & & 0
\end{array}\right] \quad, \sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{r} \geqslant \varepsilon
\end{aligned}
$$

and

$$
\begin{aligned}
& U=\left[\begin{array}{ll}
U_{r} & U_{n-r}
\end{array}\right], U_{r} \in \mathbb{R}^{n \times r}, U_{n-r} \in \mathbb{R}^{n \times(n-r)} \\
& V=\left[\begin{array}{ll}
V_{r} & V_{p-r}
\end{array}\right], V_{r} \in \mathbb{R}^{p \times r}, V_{p-r} \in \mathbb{R}^{p \times(p-r)}
\end{aligned}
$$

Rank Revealing QR Decomposition: $A^{T} P=Q R$
Problem: Neither is directly applicable when n or p are very large; e.g., millions.
Solution: Random range finding algorithms.

Random Range Finding Algorithms: Linear Problems

Algorithm: Halko, Martinsson and Tropp, SIAM Review, 2011

1. Choose ℓ random inputs q^{i} and compute outputs $y^{i}=A q^{i}$ which are compiled in the $m \times \ell$ matrix Y.
2. Take a pivoted QR factorization $Y=Q R$ to construct a matrix Q whose columns form an orthonormal basis for the range of Y.

Example:

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{ccc}
\sin \left(2 \pi t_{1}\right) & \cdots & \sin \left(2 \pi p t_{1}\right) \\
\vdots & & \vdots \\
\sin \left(2 \pi t_{n}\right) & \cdots & \sin \left(2 \pi p t_{n}\right)
\end{array}\right]\left[\begin{array}{c}
q_{1} \\
\vdots \\
q_{p}
\end{array}\right]
$$

Random Range Finding Algorithms: Linear Problems

Example: $m=101, p=1000$: Analytic value for rank is 49

Absolute Difference Between Singular Values
Example: $m=101, p=1,000,000$: Random algorithm still viable

Active Subspaces for Nonlinearly Parameterized Problems

Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

Example: $y=\exp \left(0.7 q_{1}+0.3 q_{2}\right)$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

A Bit of History:

- Often attributed to Russi (2010).
- Concept same as identifiable subspaces from systems and control; e.g., Reid (1977).

- For linearly parameterized problems, active subspace given by SVD or QR; Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912). See 1993 SIAM Review paper by Stewart.

Gradient-Based Active Subspace Construction

Active Subspace: Consider

$$
f=f(q), q \in \mathcal{Q} \subseteq \mathbb{R}^{p}
$$

and

- E.g., see [Constantine, SIAM, 2015; Stoyanov \& Webster, IJUQ, 2015]

$$
\nabla_{q} f(q)=\left[\frac{\partial f}{\partial q_{1}}, \cdots, \frac{\partial f}{\partial q_{p}}\right]^{T}
$$

Construct outer product

$$
\left.C=\int\left(\nabla_{q} f\right)\left(\nabla_{q} f\right)^{\top} \rho d q\right)^{\rho}
$$

$\rho(q)$: Distribution of input parameters q
Question: How sensitive are results to distribution, which is typically not known?

$$
\Lambda=\left[\begin{array}{ll}
\Lambda_{1} & \\
& \Lambda_{2}
\end{array}\right], W=\left[\begin{array}{ll}
W_{1} & W_{2}
\end{array}\right]
$$

Rotated Coordinates:

$$
y_{\Sigma}=W_{1}^{T} q \in \mathbb{R}^{n} \quad \text { and } \quad z=W_{2}^{T} q \in \mathbb{R}^{p-n}
$$

Active Variables
Active Subspace: Range of eigenvectors in W_{1}

Gradient-Based Active Subspace Construction

Active Subspace: Construction based on random sampling

1. Draw M independent samples $\left\{q^{j}\right\}$ from ρ
2. Evaluate $\nabla_{q} f_{j}=\nabla_{q} f\left(q^{j}\right)$
3. Approximate outer product

$$
C \approx \widetilde{C}=\frac{1}{M} \sum_{j=1}^{M}\left(\nabla_{q} f_{j}\right)\left(\nabla_{q} f_{j}\right)^{T}
$$

Note: $\widetilde{C}=G G^{T}$ where $G=\frac{1}{\sqrt{M}}\left[\nabla_{q} f_{1}, \ldots, \nabla_{q} f_{M}\right]$
4. Take SVD of $G=W \sqrt{\Lambda} V^{T}$

- Active subspace of dimension n is first n columns of W

One Goal: Develop efficient algorithm for codes that do not have adjoint capabilities
Note: Finite-difference approximations tempting but not effective for high-D
Strategy: Algorithm based on initialized adaptive Morris indices

Gradient-Based Active Subspace Construction

Example: Consider

$$
y=e^{c_{1} q_{1}+c_{2} q_{2}}=f(q)
$$

so

$$
\nabla_{q} f(q)=\left[\begin{array}{l}
c_{1} e^{c_{1} q_{1}+c_{2} q_{2}} \\
c_{2} e^{c_{1} q_{1}+c_{2} q_{2}}
\end{array}\right]=\left[\begin{array}{l}
c_{1} f(q) \\
c_{2} f(q)
\end{array}\right]
$$

For $Q_{1}, Q_{2} \sim \mathcal{U}(0,1)$, we have

$$
\begin{aligned}
C & =\int_{0}^{1} \int_{0}^{1}\left(\nabla_{q} f\right)\left(\nabla_{q} f\right)^{\top} d q_{1} d q_{2} \\
& =\int_{0}^{1} \int_{0}^{1}\left[\begin{array}{cc}
c_{1}^{2} f^{2}(q) & c_{1} c_{2} f^{2}(q) \\
c_{1} c_{2} f^{2}(q) & c_{2}^{2} f^{2}(q)
\end{array}\right] d q \\
& =\left[\begin{array}{cc}
c_{1}^{2} & c_{1} c_{2} \\
c_{1} c_{2} & c_{2}^{2}
\end{array}\right] \cdot \frac{1}{4 c_{1} c_{2}}\left(e^{2 c_{1}}-1\right)\left(e^{2 c_{2}}-1\right) \\
& =\left[\begin{array}{cc}
\frac{c_{1}}{4 c_{2}} & \frac{1}{4} \\
\frac{1}{4} & \frac{c_{2}}{4 c_{1}}
\end{array}\right] \cdot\left(e^{2 c_{1}}-1\right)\left(e^{2 c_{2}}-1\right)
\end{aligned}
$$

Values: $c_{1}=0.7, c_{2}=0.3$
Analytic C:

$$
C=\left[\begin{array}{ll}
1.4652 & 0.6279 \\
0.6279 & 0.2691
\end{array}\right]
$$

Monte Carlo Approx:

$$
\begin{gathered}
C \approx \frac{1}{M} \sum_{j=1}^{M}\left(\nabla_{q} f\left(q^{j}\right)\right)\left(\nabla_{q} f\left(q^{j}\right)\right)^{T} \\
M=10^{4} \\
C=\left[\begin{array}{cc}
1.4532 & 0.6228 \\
0.6228 & 0.2669
\end{array}\right] \\
M=10^{6} \\
C=\left[\begin{array}{cc}
1.4654 & 0.6280 \\
0.6280 & 0.2692
\end{array}\right]
\end{gathered}
$$

Morris Screening: Random Sampling of Approximated Derivatives

Example: Consider uniformly distributed parameters on $\Gamma=[0,1]^{p}$

Elementary Effect:

$$
d_{i}=\frac{f\left(q^{j}+\Delta e_{i}\right)-f\left(q^{j}\right)}{\Delta}
$$

Global Sensitivity Measures: r samples

$$
\begin{aligned}
& \mu_{i}^{*}=\frac{1}{r} \sum_{j=1}^{r}\left|d_{i}^{j}(q)\right| \\
& \sigma_{i}^{2}=\frac{1}{r-1} \sum_{j=1}^{r}\left(d_{i}^{j}(q)-\mu_{i}\right)^{2} \quad, \quad \mu_{i}=\frac{1}{r} \sum_{j=1}^{r} d_{i}^{j}(q)
\end{aligned}
$$

Note: Gets us to moderate-D but initialization required for high-D
Adaptive Algorithm:

- Use SVD to adapt stepsizes and directions to reflect active subspace.
- Reduce dimension of differencing as active subspace is discovered.

Initialization Algorithm

1. Inputs: ℓ iterations, h function evaluations per iteration
2. Sample w^{1} from surface of unit sphere where approximately linear

For $j=1, \ldots, \ell$
3. Sample $\left\{\tilde{v}_{1}^{j}, \ldots, \tilde{v}_{h}^{j}\right\}$ from surface of sphere
4. Use Lagrange multiplier to determine

$$
u_{\max }^{j}=a_{0}^{+} w^{j}+\sum_{i=1}^{h} a_{i}^{+} v_{i}^{j}, v_{i}^{1}=\tilde{v}_{i}^{1}
$$

that maximizes $g(u)=f\left(q^{0}+R^{-1} u\right)$.

Note: For $\mathrm{h}=1$, maximizing great circle through w^{1}, v^{1}

Example: Let $w^{1}=$ Atlanta,

$$
v^{1}=\text { London, and }
$$

$$
g(u)=\text { 'QUIETness' of }
$$ seatmate on flight

Initialization Algorithm

1. Inputs: ℓ iterations, h function evaluations per iteration
2. Sample w^{1} from surface of unit sphere where approximately linear

For $j=1, \ldots, \ell$
3. Sample $\left\{\tilde{v}_{1}^{j}, \ldots, \tilde{v}_{h}^{j}\right\}$ from surface of sphere
4. Use Lagrange multiplier to determine

$$
u_{\max }^{j}=a_{0}^{+} w^{j}+\sum_{i=1}^{n} a_{i}^{+} v_{i}^{j}, v_{i}^{1}=\tilde{v}_{i}^{1}
$$

that maximizes $g(u)=f\left(q^{0}+R^{-1} u\right)$.

Initialization Algorithm

1. Inputs: ℓ iterations, h function evaluations per iteration
2. Sample w^{1} from surface of unit sphere where approximately linear

For $j=1, \ldots, \ell$
3. Sample $\left\{\tilde{v}_{1}^{j}, \ldots, \tilde{v}_{h}^{j}\right\}$ from surface of sphere
4. Use Lagrange multiplier to determine

$$
u_{\max }^{j}=a_{0}^{+} w^{j}+\sum_{i=1}^{n} a_{i}^{+} v_{i}^{j}, v_{i}^{1}=\tilde{v}_{i}^{1}
$$

that maximizes $g(u)=f\left(q^{0}+R^{-1} u\right)$.
Set $w^{j+1}=u_{\text {max }}^{j}$.

5. Take $C=\left[w^{j}, v_{1}^{j}, \ldots, v_{h}^{j}\right]$ and set $P_{u_{\text {max }}^{j}}=u_{\text {max }}^{j}\left(u_{\max }^{j}\right)^{T}$
6. Let $C_{j \perp}=\left[\operatorname{span}\left(C_{(j-1) \perp},\left(I_{m}-P_{u_{\max }} C\right)\right]\right.$ and set $P_{C_{j \perp}}=C_{j \perp}\left(C_{j \perp}^{\top} C_{j \perp}\right)^{-1} C_{j \perp}^{\top}$
7. Take $v_{i}^{j}=\frac{\left(I_{m}-P_{C_{j \perp}}\right) \tilde{v}_{i}^{j}}{\left\|\left(I_{m}-P_{c_{j \perp}}\right) \tilde{v}_{i}^{j}\right\|}, i=1, \ldots, h$ and repeat

Ortho-complement of $u_{\text {max }}$

Example: Initialization Algorithm to Approximate Gradient

Example: Family of elliptic PDE's

$$
-\nabla_{s} \cdot\left(a(q, s, \ell) \nabla_{s} u(s, a(q, s, \ell))=1, s=[0,1]^{2}, \ell=1, \cdots, n\right.
$$

with the random field representations

$$
a(q, s, \ell)=a_{\text {min }}+e^{\bar{a}(s, \ell)+\sum_{i=1}^{p} q_{k}^{\ell} \gamma_{i} \phi_{i}(s)}
$$

Quantity of interest: e.g., strain along edge at n levels

$$
f\left(\mathbf{q}^{1}, \ldots, \mathbf{q}^{n}\right) \approx \sum_{\ell=1}^{n} \frac{1}{\left|\Gamma_{2}\right|} \int_{\Gamma_{2}} u(q, s, \ell) d s
$$

Problem Dimensions:

- Parameter dimension: $p=100$

- Active subspace dimension: $\mathrm{n}=1$
- Finite element approximation

Example: Initialization Algorithm to Approximate Gradient

Results: Cosine of angle between 'analytic' and computed gradient

$h=1$

Recall: $\mathrm{p}=100$
Note: Convergence within $h \cdot \ell$ iterations

SCALE6.1: High-Dimensional Example

Setup: Cross-section computations SCALE6.1

- Input Dimension: 7700
- Output $k_{\text {eff }}$

Materials			Reactions	
${ }_{92}^{234} \mathrm{U}$	${ }_{5}^{10} \mathrm{~B}$	${ }_{15}^{31} \mathrm{P}$	Σ_{t}	$n \rightarrow \gamma$
${ }_{92}^{235} \mathrm{U}$	${ }_{5}^{11} \mathrm{~B}$	${ }_{25}^{55} \mathrm{Mn}$	Σ_{e}	$n \rightarrow p$
${ }_{25}^{236} \mathrm{U}$	${ }_{9}^{14} \mathrm{~N}$	${ }_{26} \mathrm{Fe}$	Σ_{f}	$n \rightarrow d$
${ }_{92}^{238} \mathrm{U}$	${ }_{9}^{15} \mathrm{~N}$	${ }_{7}^{116} \mathrm{Sn}$	Σ_{c}	$n \rightarrow t$
${ }_{92}^{1} \mathrm{H}$	${ }_{11}^{23} \mathrm{Na}$	${ }_{120}^{120} \mathrm{Sn}$	$\bar{\nu}$	$n \rightarrow{ }^{3} \mathrm{He}$
${ }_{8}^{16} \mathrm{O}$	${ }_{13}^{27} \mathrm{Al}$	${ }_{40} \mathrm{Zr}$	χ	$n \rightarrow \alpha$
${ }_{6} \mathrm{C}$		${ }_{14} \mathrm{Si}$	${ }_{19} \mathrm{~K}$	$n \rightarrow n^{\prime}$
		$n \rightarrow 2 n$		

PWR Quarter Fuel Lattice

Note: We cannot efficiently approximate all directional derivatives required to approximate the gradient matrix. Requires efficient initialization algorithm.

SCALE6.1: High-Dimensional Example

Setup:

- Input Dimension: 7700

SCALE Evaluations:

- Gradient-Based: 1000
- Initialized Adaptive Morris: 18,392
- Projected Finite-Difference: 7,701,000

Note: Analytic eigenvalues: 0,1

For surrogate sampled off space

Active Subspace Dimensions:

	Gap	PCA				Error Tolerance			
Method		0.75	0.90	0.95	0.99	10^{-3}	10^{-4}	10^{-5}	10^{-6}
Gradient-Based	1	2	6	9	24	1	13	90	233
Initialized AM	1	1	1	1	2	1	2	2	2

Notes: Computing converged adjoint solution is expensive and often not achieved

Bayesian Inference on Active Subspaces

Example: $y=\exp \left(0.7 q_{1}+0.3 q_{2}\right)$

Full Space Inference:

- Parameters not jointly identifiable
- Result: Prior for $2^{\text {nd }}$ parameter is minimally informed.
- Goal: Use active subspace to quantify parameter
 sensitivity and guide inference.

Bayesian Inference on Active Subspaces

Example: $y=\exp \left(0.7 q_{1}+0.3 q_{2}\right)$
Active Subspace: For gradient matrix G, form SVD

$$
G=U \wedge V^{\top}
$$

Eigenvalue spectrum indicates 1-D active subspace with basis

$$
U(:, 1)=[0.91,0.39]
$$

Strategy: Inference based on active subspace

- For values $\left\{q^{j}\right\}_{j=1}^{M}$, compute $y^{j}=U(:, 1)^{T} q^{j}$ and fit response surface $g(y)$
- Use DRAM to calibrate y
- Because model is "invariant" to $z=U(:, 2)^{T} q$, draw $\left\{z^{j}\right\} \sim N(0,1)$
- Transform to $q^{j}=U(:, 1) y^{j}+U(:, 2) z^{j}$ to obtain posterior densities for physical parameters

Bayesian Inference on Active Subspaces

Results: Inference based on active subspace

Global Sensitivity: For active subspace of dimension N, consider vector of activity scores

$$
\alpha(N)=\sum_{j=1}^{N} \lambda_{j} w_{j}^{2}
$$

Note: Here $N=1$ and $w_{j}^{2}=U(:, 1) . * U(:, 1)=\left[0.91^{2}, 0.39^{2}\right]$
Conclusion: First parameter is more influential and better informed during Bayesian inference.

Bayesian Inference on Active Subspaces

Example: Family of elliptic PDE's

$$
-\nabla_{s} \cdot\left(a(q, s, \ell) \nabla_{s} u(s, a(q, s, \ell))=1, s=[0,1]^{2}, \ell=1, \cdots, n\right.
$$

with the random field representations

$$
a(q, s, \ell)=a_{\min }+e^{\bar{a}(s, \ell)+\sum_{i=1}^{p} q_{k}^{\ell} \gamma_{i} \phi_{i}(s)}
$$

Quantity of interest: e.g., strain along edge at N levels

$$
f\left(\mathbf{q}^{1}, \ldots, \mathbf{q}^{n}\right) \approx \sum_{\ell=1}^{n} \frac{1}{\left|\Gamma_{2}\right|} \int_{\Gamma_{2}} u(q, s, \ell) d s
$$

Problem Dimensions:

- Parameter dimension: $p=91$

- Active subspace dimension: $\mathrm{N}=3$
- Finite element space: 1372 triangular elements, 727 nodes

Bayesian Inference on Active Subspaces

Singular Values: Recall $N=3$

Activity Scores: Quantify global sensitivity

Conclusion: Parameters 1, 38, 66 are most influential and will be primarily informed during Bayesian inference

Bayesian Inference on Active Subspaces

Recall: Parameters 1, 38, 66 are most influential and will be primarily informed during Bayesian inference

Note:

- Full space: 18 hours
- Reduced: 20 seconds

Bayesian Inference on Active Subspaces

Note:

- Chains for full space not converging well due to parameter nonidentifiability
- Hence full space inference is less reliable

Full Space

