
Steps in Uncertainty Quantification

Note: Uncertainty quantification requires synergy between statistics, mathematics 
and application area. 
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Uncertainty Propagation
Setting:

• We assume that we have determined distributions for parameters

• e.g., Bayesian inference, prior experiments, expert opinion

Goal: Construct statistics for quantities of interest

• e.g., Expected viral load in HIV patient with 

appropriate uncertainty intervals

• Note: Often involves moderate to high-

dimensional integration 

Ṫ1 = �1 - d1T1 - (1 - ")k1VT1

Ṫ2 = �2 - d2T2 - (1 - f")k2VT2

Ṫ ⇤
1 = (1 - ")k1VT1 - �T ⇤

1 - m1ET ⇤
1

Ṫ ⇤
2 = (1 - f")k2VT2 - �T ⇤

2 - m2ET ⇤
2

V̇ = NT�(T ⇤
1 + T ⇤

2 )- cV - [(1 - ")⇢1k1T1 + (1 - f")⇢2k2T2]V

Ė = �E +
bE(T ⇤

1 + T ⇤
2 )

T ⇤
1 + T ⇤

2 + Kb
E -

dE(T ⇤
1 + T ⇤

2 )

T ⇤
1 + T ⇤

2 + Kd
E - �E E

E[V (t)] =
Z

R6
V (t , q)⇢(q)dq
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Forward Uncertainty Propagation: Linear Models

Linear Models: Analytic mean and variance relations

Example: Linear stress-strain relation 

⌥i = Eei + E2e
3
i + "i , i = 1, . . . , n

Let E,E2 and var(E), var(E2) denote parameter means and variance. Then

Model Statistics:

E[Eei + E2e
3
i ] = Eei + E2e

3
i

var[Eei + E2e
3
i ] = e2i var(E) + e6i var(E2) + 2e4i cov(E,E2)

Response Statistics: Assume measurement errors uncorrelated from model 
response.

E[⌥i] = Eei + E2e
3
i

var[⌥i] = e2i var(E) + e6i var(E2) + 2e4i cov(E,E2) + var("i)

Problem: Models are almost always nonlinearly parameterized
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Forward Uncertainty Propagation: Sampling Methods

Advantages:
• Applicable to nonlinear models.

• Parameters can be correlated and non-Gaussian.

• Straight-forward to apply and convergence rate is independent of number of 
parameters.

• Can directly incorporate both parameter and measurement uncertainties.

Disadvantages:

• Very slow convergence rate: 

• 100-fold more evaluations required to gain additional place of accuracy.

• This motivates numerical analysis techniques.

O‘ (1/
p
M) where M is the number of samples.

Strategy 1: Randomly sample from parameter and measurement error 
distributions and propagate through model to quantify response uncertainty.  
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Numerical Quadrature
Motivation: Computation of expected values requires approximation of integrals

E[u(t , x)] =
Z

Rp
u(t , x , q)⇢(q)dq

Numerical Quadrature:

Questions: 

• How do we choose the quadrature points and weights?

– E.g., Newton-Cotes; e.g., trapezoid rule

Z

Rp
f (q)⇢(q)dq ⇡

RX

r=1

f (qr)wr

a b

Z b

a
f (q)dq ⇡ h

2

"

f (a) + f (b) + 2
R-2X

r=1

f (qr)

#

qr = a + hr , h =
b - a
R - 1

E[V (t)] =
Z

R6
V (t , q)⇢(q)dq

Example: HIV model
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Numerical Quadrature
Motivation: Computation of expected values requires approximation of integrals

E[u(t , x)] =
Z

Rp
u(t , x , q)⇢(q)dq

Numerical Quadrature:

Questions: 

• How do we choose the quadrature points and weights?

– E.g., Newton-Cotes, Gaussian algorithms

Z

Rp
f (q)⇢(q)dq ⇡

RX

r=1

f (qr)wr

x
jxj−1 ba

xx x
xa b



Numerical Quadrature
Numerical Quadrature:

Questions: 

• Can we construct nested algorithms to improve efficiency?

– E.g., employ Clenshaw-Curtis points

Z

Rp
f (q)⇢(q)dq ⇡

RX

r=1

f (qr)wr
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0
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Numerical Quadrature
Questions: 

• How do we reduce required number of points while maintaining accuracy?

Tensored Grids: Exponential growth Sparse Grids: Same accuracy

p R` Sparse Grid R Tensored Grid R = (R`)p

2 9 29 81
5 9 241 59,049

10 9 1581 > 3⇥ 109

50 9 171,901 > 5⇥ 1047

100 9 1,353,801 > 2⇥ 1095
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Numerical Quadrature
Problem: 

• Accuracy of methods diminishes as parameter dimension p increases

• Suppose

• Tensor products:

• Quadrature errors:

Take R` points in each dimension so R = (R`)p total points

Newton-Cotes: E ⇠ O‘ (R-↵
` ) = O‘ (R-↵/p)

Gaussian: E ⇠ O‘ (e-�R`) = O‘
⇣

e
-� p

p
R

⌘

Sparse Grid: E ⇠ O‘
⇣
R-↵ log (R)(p-1)(↵+1)

⌘

f 2 C↵([0, 1]p)
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Numerical Quadrature
Problem: 

• Accuracy of methods diminishes as parameter dimension p increases

• Suppose

• Tensor products:

• Quadrature errors:

• Alternative: Monte Carlo quadrature  

Take R` points in each dimension so R = (R`)p total points

Newton-Cotes: E ⇠ O‘ (R-↵
` ) = O‘ (R-↵/p)

Gaussian: E ⇠ O‘ (e-�R`) = O‘
⇣

e
-� p

p
R

⌘

Sparse Grid: E ⇠ O‘
⇣
R-↵ log (R)(p-1)(↵+1)

⌘

f 2 C↵([0, 1]p)

Z

Rp
f (q)⇢(q)dq ⇡ 1

R

RX

r=1

f (qr) , E ⇠

✓
1p
R

◆

• Advantage: Errors independent of dimension p

• Disadvantage: Convergence is very slow!  79



Numerical Quadrature
Problem: 

• Accuracy of methods diminishes as parameter dimension p increases

• Suppose

• Tensor products:

• Quadrature errors:

• Alternative: Monte Carlo quadrature  

Take R` points in each dimension so R = (R`)p total points

Newton-Cotes: E ⇠ O‘ (R-↵
` ) = O‘ (R-↵/p)

Gaussian: E ⇠ O‘ (e-�R`) = O‘
⇣

e
-� p

p
R

⌘

Sparse Grid: E ⇠ O‘
⇣
R-↵ log (R)(p-1)(↵+1)

⌘

f 2 C↵([0, 1]p)

Z

Rp
f (q)⇢(q)dq ⇡ 1

R

RX

r=1

f (qr) , E ⇠

✓
1p
R

◆

• Advantage: Errors independent of dimension p

• Disadvantage: Convergence is very slow!  

Conclusion: For high enough 
dimension p, monkeys 
throwing darts will beat 
Gaussian and sparse grid 
techniques!
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Monte Carlo Sampling Techniques
Issues: 

• Very low accuracy and slow convergence

• Random sampling may not “randomly” cover space …

Samples from Uniform Distribution
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Monte Carlo Sampling Techniques
Issues: 
• Very low accuracy and slow convergence

• Random sampling may not “randomly” cover space …

Samples from Uniform Distribution Sobol’ Points

Sobol’ Sequence: Use a base of two to form successively finer uniform partitions 
of unit interval and reorder coordinates in each dimension.
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Quasi-Monte Carlo Sampling Techniques
Issues: 

• Very low accuracy and slow convergence

• Random sampling may not “randomly” cover space …

Samples from Uniform Distribution Sobol’ Points

Z

Rp
f (q)⇢(q)dq ⇡ 1

R

RX

r=1

f (qr) , E ⇠

✓
1p
R

◆
E ⇠ O‘

✓
(log R)p
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Monte Carlo Sampling Techniques
Example: Use Monte Carlo sampling to approximate area of circle

Quasi-Monte Carlo:

• SAMSI Program on Quasi-Monte Carlo and High Dimensional Sampling 
Methods in Applied Math in 2017-18

Strategy:

Ac

As
=

⇡r 2

4r 2 =
⇡

4

• Count M points in circle

• Randomly sample N points in square ) approximately N
⇡

4
in circle

) Ac =
⇡

4
As

) ⇡ ⇡ 4M
N
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MATLAB Example
Monte Carlo Quadrature:
• Run rand_points.m to observe uniformly sampled and Sobol’ points.

• Run pi_approx.m with different values of N to see if you observe convergence 
rate of 1/

p
N

Website:
• https://rsmith.math.ncsu.edu/DATAWORKS19/
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Confidence, Credible and Prediction Intervals
Note: 
• We now know how to compute the mean response for the QoI. 

• How do we compute appropriate intervals? 

Susceptible

Infectious

Recovered

dS

dt
= �N � �S � �IS , S(0) = S0

dI

dt
= �IS � (r + �)I , I(0) = I0

dR

dt
= rI � �R , R(0) = R0

SIR Model:
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Confidence, Credible and Prediction Intervals
Data: ⌥ = [⌥1, · · · ,⌥n] of iid random observations

90% Confidence Intervals 90% Credible Interval 

Confidence Interval (Frequentist): A 100⇥ (1� ↵)% confidence interval for a

Credible Interval (Bayesian): A 100⇥ (1� ↵) % credible interval is that having
probability at least 1� ↵ of containing q.

Strategy: Sample out of parameter density  ⇢Q(q)

fixed, unknown parameter q0 is a random interval [Lc(⌥), Uc(⌥)], having
probability at least 1� ↵ of covering q0 under the joint distribution of ⌥.
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Confidence, Credible and Prediction Intervals
Data: ⌥ = [⌥1, · · · ,⌥n] of iid random observations

Prediction Interval: A 100⇥ (1� ↵)% prediction interval for a future observable
⌥n+1 is a random interval [Lc(⌥), Uc(⌥)] having probability at least 1�↵ of
of containing ⌥n+1 under the joint distribution of (⌥,⌥n+1).

Example: Consider linear model 

⌥i = q0 + q1xi + "i , i = 1, · · · , n

Prediction 
interval

Credible 
interval
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Example: HIV Model

Parameter Chains and Densities:

Model: Ṫ1 = �1 - d1T1 - (1 - ")k1VT1

Ṫ2 = �2 - d2T2 - (1 - f")k2VT2

Ṫ ⇤
1 = (1 - ")k1VT1 - �T ⇤

1 - m1ET ⇤
1

Ṫ ⇤
2 = (1 - f")k2VT2 - �T ⇤

2 - m2ET ⇤
2

V̇ = NT�(T ⇤
1 + T ⇤

2 )- cV - [(1 - ")⇢1k1T1 + (1 - f")⇢2k2T2]V

Ė = �E +
bE(T ⇤

1 + T ⇤
2 )

T ⇤
1 + T ⇤

2 + Kb
E -

dE(T ⇤
1 + T ⇤

2 )

T ⇤
1 + T ⇤

2 + Kd
E - �E E

q = [bE , �, d1, k2, �1, Kb]



Propagation of Uncertainty – HIV Example
Parameter Densities:

Samples from Chain Data, Credible Intervals and 
Prediction Intervals

Non-Gaussian Credible and 
Prediction Intervals

Techniques:

• Sample from parameter and 
observation error densities to construct 
mean response, credible intervals, and 
prediction intervals for QoI.

• Slow convergence rate O‘ (1/
p

M)



Use of Prediction Intervals: Nuclear Power Plant Design

e.g., Dittus—Boelter Relation

Subchannel Code (COBRA-TF): numerous closure relations, ~70 parameters

i.e., [0, 0.046], [0, 1.6], [0,0.8]

Industry Standard: Employ conservative, uniform, bounds  

Bayesian Analysis: Employ conservative bounds as priors

Note: Substantial reduction in parameter uncertainty

Nu = 0.023Re0.8Pr0.4
Nu: Nusselt number
Re: Reynolds number
Pr : Prandtl number

2� ⇡ 0.0035 2� ⇡ 0.06 2� ⇡ 0.03
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Use of Prediction Intervals: Nuclear Power Plant Design
Strategy: Propagate parameter uncertainties through COBRA-TF to  

determine uncertainty in maximum fuel temperature

Notes: 

• Temperature uncertainty reduced 
from 40 degrees to 5 degrees 

• Can run plant 20 degrees hotter, 
which significantly improves efficiency

Ramification: Savings of 10 billion dollars per year for US power plants
Issues:

• We considered only one of many closure relations

• Nuclear regulatory commission takes years to change requirements and codes

Good News: We are now working with Westinghouse to reduce uncertainties. 
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MATLAB Example

SIR Model:

Susceptible

Infectious

Recovered

dS

dt
= �N � �S � �IS , S(0) = S0

dI

dt
= �IS � (r + �)I , I(0) = I0

dR

dt
= rI � �R , R(0) = R0

Note:
• Run either the 3 or 4 parameter model and compute the prediction intervals.

Website:

• https://rsmith.math.ncsu.edu/DATAWORKS19/
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