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Course Structure
Overview: 9:00 – 5:00

1. Introduction: Motivating examples
2. Overview of terminology and inverse problems
3. Bayesian inference

4. Forward uncertainty propagation
5. Sensitivity analysis and active subspaces
6. Surrogate model construction

7. Model discrepancy

Website:
• https://rsmith.math.ncsu.edu/DATAWORKS19/
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Modeling Strategy
General Strategy: Conservation of stuff

Continuity Equation:

Density:

Rate of Flow:
More Generally:

�(t , x) �(t , x +�x)
@(⇢�x)

@t
= �(t , x)- �(t , x +�x)

) lim
�x!0
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�(t , x)- �(t , x +�x)
�x

) @⇢
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+
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= 0

�(t , x) - Stuff per second
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@t
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@�

@x
= Sources - Sinks

⇢(t , x) - Stuff per unit length or volume

@(⇢�x)
dt

x x +�x

x +�xx
dStuff

dt
= Stuff in - Stuff out + Stuff created - Stuff destroyed
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Example 1: Weather Models
Challenges:
• Coupling between temperature, pressure 
gradients, precipitation, aerosol, etc.;
• Models and inputs contain uncertainties;
• Numerical grids necessarily larger than 
many phenomena; e.g., clouds
• Sensors positions may be uncertain; 
e.g., weather balloons, ocean buoys.

Goal:
• Assimilate data to quantify uncertain 
initial conditions and parameters;
• Make predictions with quantified 
uncertainties.



Equations of Atmospheric Physics
Conservation Relations:

Constitutive Closure Relations: e.g., 

where 

Mass

Momentum

Energy

Water

Aerosol

@⇢

@t
+r · (⇢v) = 0

@v
@t

= -v ·rv -
1
⇢
rp - gk̂ - 2⌦⇥ v

⇢cV
@T
@t

+ pr · v = -r · F +r · (krT ) + ⇢q̇(T , p, ⇢)

p = ⇢RT

@mj

@t
= -v ·rmj + Smj (T , mj ,�j , ⇢) , j = 1, 2, 3,

@�j

@t
= -v ·r�j + S�j (T ,�j , ⇢) , j = 1, · · · , J,

Sm2 = S1 + S2 + S3 - S4

S1 = ⇢̄(m2 - m⇤
2)

2

1.2 ⇥ 10-4 +

✓
1.569 ⇥ 10-12 nr

d0(m2 - m⇤
2)

◆�-1

@⇢

@t
+

@�

@x
= Sources - Sinks

5



Ensemble Predictions
Ensemble Predictions:

Cone of Uncertainty:
00 UTC on August 26, 2005 12 UTC on August 26, 2005
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Ensemble Predictions
Ensemble Predictions:

Cone of Uncertainty:
00 UTC on August 26, 2005 12 UTC on August 26, 2005

General Questions:
• What is expected rainfall on March 20?

• What are high and low temperatures?

• What is predicted average snow fall?

• Note: Quantities are statistical in nature.
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Example 2: Quantum-Informed Continuum Models

Lead Titanate Zirconate (PZT)

DFT Electronic Structure Simulation 

Helmholtz Energy

 (P) = ↵1P2 + ↵11P4 + ↵111P6

UQ and SA Issues:

• Is 6th order term required to accurately 
characterize material behavior?

• Note: Determines molecular structure

Objectives:

• Employ density function theory (DFT) to 
construct/calibrate continuum energy relations.

– e.g., Helmholtz energy
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Quantum-Informed Continuum Models

DFT Electronic Structure Simulation 

Broad Objective:

• Use UQ/SA to help bridge scales 
from quantum to system

Lead Titanate Zirconate (PZT)
 (P) = ↵1P2 + ↵11P4 + ↵111P6

UQ and SA Issues:

• Is 6th order term required to accurately 
characterize material behavior?

• Note: Determines molecular structure

Objectives:

• Employ density function theory (DFT) to 
construct/calibrate continuum energy relations.

– e.g., Helmholtz energy

Helmholtz Energy

Note:

• Linearly parameterized
9



Example 3: Pressurized Water Reactors (PWR)

Models:
• Involve neutron transport, thermal-hydraulics, chemistry.

• Inherently multi-scale, multi-physics.

CRUD Measurements: Consist of low resolution images at limited number of locations.



Example: Pressurized Water Reactors (PWR)
3-D Neutron Transport Equations: 

Challenges:
• Very large number of inputs; e.g., 100,000; 
Active subspace construction critical.

• ORNL Code SCALE: Can take hours to run.

• Time-dependent surrogate models must 
accommodate PDE structure.

• Numerical errors often difficult to quantify.

• Predicting future requires extrapolatory or out-
of-data predictions; one must address model 
discrepancy to construct validation intervals.

1
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Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid 

Challenges: 
• Codes can have 15-30 closure relations and up to 75 parameters.

• Codes and closure relations often ”borrowed” from other physical phenomena; 
e.g., single phase fluids, airflow over a car (CFD code STAR-CCM+)

• Calibration necessary and closure relations can conflict. 

• Inference of random fields requires high- (infinite-) dimensional theory.

Notes:
• Similar relations for gas 

and bubbly phases

• Surrogate models must 
conserve mass, energy, 
and momentum

@
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Example: Pressurized Water Reactors (PWR)
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Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid 

Notes:
• Similar relations for gas 

and bubbly phases

• Surrogate models must 
conserve mass, energy, 
and momentum

@

@t
(↵f⇢f ) +r · (↵f⇢f vf ) = -�

↵f⇢f
@vf

@t
+ ↵f⇢f vf ·rvf +r · �R

f + ↵fr · �+ ↵frpf

= -F R - F + �(vf - vg)/2 + ↵f⇢f g
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Example: Pressurized Water Reactors (PWR)

Example:  Shearon Harris outside Raleigh

UQ Questions:

• What is peak operating temperature?

• What is expected level of CRUD buildup?

• What is risk associated with operating 
regime?

• What is expected profit for new design?

@⇢

@t
+

@�
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= Sources - Sinks



Example 4: SIR Model for Disease Dynamics
SIR Model:

Susceptible

Infectious

Recovered

Note:

Parameters: Response:

dS
dt

= �N - �S - �kIS , S(0) = S0

dI
dt

= �kIS - (r + �)I , I(0) = I0

dR
dt

= rI - �R , R(0) = R0

y =

Z 5

0
R(t , q)dt

• �: Infection coefficient
• k : Interaction coefficient
• r : Recovery rate
• �: Birth/death rate

Parameters q = [�, k , r , �] not uniquely determined by data

Note: Presently employed cholera models have similar form; example this 
afternoon.
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SIR Disease Example
SIR Model:

Susceptible

Infectious

Recovered

dS
dt

= �N - �S - �kIS , S(0) = S0

dI
dt

= �kIS - (r + �)I , I(0) = I0

dR
dt

= rI - �R , R(0) = R0

Typical Realization:
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SIR Disease Example
SIR Model:

dS
dt

= �N - �S - �kIS , S(0) = S0

dI
dt

= �kIS - (r + �)I , I(0) = I0

dR
dt

= rI - �R , R(0) = R0

UQ Goal: Predict I(t) with uncertainty 
intervals: 

Problem: Cannot uniquely infer 
parameters 

Solution:
• Active subspaces

• Identifiability analysis

• Sensitivity analysis

• Design of experiments 16



Example 5: HIV Model for Characterization and Control Regimes
HIV Model:

Compartments: 

Notes: 21 parameters 
[Adams, Banks et al., 2005, 
2007] 

Notation: 

Ṫ1 = �1 - d1T1 - (1 - ")k1VT1

Ṫ2 = �2 - d2T2 - (1 - f")k2VT2

Ṫ ⇤
1 = (1 - ")k1VT1 - �T ⇤

1 - m1ET ⇤
1

Ṫ ⇤
2 = (1 - f")k2VT2 - �T ⇤

2 - m2ET ⇤
2

V̇ = NT�(T ⇤
1 + T ⇤

2 )- cV - [(1 - ")⇢1k1T1 + (1 - f")⇢2k2T2]V

Ė = �E +
bE(T ⇤

1 + T ⇤
2 )

T ⇤
1 + T ⇤

2 + Kb
E -

dE(T ⇤
1 + T ⇤

2 )

T ⇤
1 + T ⇤

2 + Kd
E - �E E Ė ⌘ dE

dt



Example: HIV Model for Characterization and Treatment Regimes
HIV Model: Several sources of uncertainty including viral measurement techniques
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Figure 2: Patient 6 CD4+ T-cell and viral load data, including censor points (lines at L̄1 =
400, L̄2 = 50) for viral load, and periods of on-therapy (solid lines on axis) and periods of oÆ-
therapy (dashed line on axis).

Of the 45 patients considered in this paper, sixteen (those numbered 2, 4, 5, 6, 9, 10, 13, 14, 15,
23, 24, 26, 27, 33, 46, and 47) spend 30–70% time oÆ treatment. Of these only patients 9, 15, and
47 do not spend appreciable time oÆ treatment during the early half of their observation period.

Due to the linear range limits described above, the clinical viral load assays eÆectively have
lower and upper limits of quantification. The upper limit is typically readily handled by repeatedly
diluting the sample until the resulting viral load measurement is in range and then scaling. The
lower limit, or left censoring point, however, directly influences the observed data. When a data
point is left-censored (below the lower limit of quantification), the only available knowledge is that
the true measurement is between zero and the limit of quantification L̄? for the assay. Those at
hand have two limits of quantification, L̄1 = 400 copies/ml for the standard and L̄2 = 50 copies/ml
for the ultra-sensitive assay. These are illustrated in sample data from patient 6 shown in Figure
2, where censored data points are those appearing identically on the horizontal censoring lines
L̄1 = 400, L̄2 = 50. A statistical methodology for handling this type of censored data is described
below in Section 3.2.

The observation times and intervals vary substantially between patients. The sample data in
Figure 2 also reveal that observations of viral load and CD4 may not have been made at the
same time points, so in general for patient number j we have CD4+ T-cell data pairs (tij1 , yij

1 ), i =
1, . . . , N j

1 and (potentially diÆerent) viral RNA data pairs (tij2 , yij
2 ), i = 1, . . . , N j

2 .

6

Example: Upper and lower limits to assay sensitivity 

UQ Questions: 
• What are the uncertainties in parameters that cannot be directly measured?

• What is optimal treatment regime that is “safe” for patient?

• What is expected viral load? Issue: very often requires high-dimensional 
integration!

• e.g., E[V (t)] =
Z

R21
V (t , q)⇢(q)dq

Experimental results are believed by everyone, except for the person who ran the 
experiment, source anonymous, quoted by Max Gunzburger, Florida State University. 



2. Challenge: Terminology and Notation
Terminology:

• Inputs: Parameters, initial conditions, boundary conditions, exogenous forces; 
e.g., parameters in HIV models, initial conditions in weather models.

• Outputs or Responses: Quantities that we experimentally or numerically measure; 
e.g., viral load, outlet temperature in reactor.

• Quantities of Interest (QoI): Statistical quantity that we want to compute; e.g., 
average CRUD buildup, expected profit for a given design.

Input Notation: Can vary even within disciplines!

• Math Control Community:

• Math Reduced-Order Community:

• Statistics: 

• Nuclear Engineering:

• Active subspace community: 

Note: Same variability in notation for outputs and quantities of interest 

q = [q1, ... , qp]

p = [p1, ... , pq]

✓ = [✓1, ... , ✓d ]

↵ = [↵1, ... ,↵k ]

x = [x1, ... , xp]
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First Challenge: Terminology and Notation
Terminology:

• Linearly parameterized problems: e.g., portfolio model

§ Rare in applications except constitutive relations and image processing

• Nonlinearly parameterized problems: typical case

§ Differs from linear or nonlinear in state; e.g., spring model 

y = c1q1 + c2q2

Inputs: q = [k, y0]

Response: Displacement y(t) = y0 cos(
p
k · t)

Note:
• Linear state dependence

• Nonlinear parameter dependence

Notation: ẏ ⌘ dy

dt
, ÿ ⌘ d2y

dt2

)
ÿ(t) + ky(t) = 0

y(0) = y0 ,
dy

dt
(0) = 0

d2y(t)

dt2
+ ky(t) = 0

y(0) = y0 ,
dy

dt
(0) = 0
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Uncertainty Quantification
I have always done uncertainty quantification.  The difference now is that it is 
capitalized. Bill Browning, Applied Mathematics Incorporated.

Note: The field of “Uncertainty Quantification” has grown rapidly over the last 20 
years.  How is “Capital UQ” different from what statisticians do extremely well every 
day? 

• E.g., When I proposed a course on “Uncertainty Quantification” in Mathematics, 
I had to carefully justify its existence to Statistics.

• Statistics students are now starting to take the course.
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Uncertainty Quantification

I have always done uncertainty quantification.  The difference now is that it is 
capitalized. Bill Browning, Applied Mathematics Incorporated.

Note: The field of “Uncertainty Quantification” has grown rapidly over the last 20 
years.  How is “Capital UQ” different from what statisticians do extremely well every 
day? 

• E.g., When I proposed a course on “Uncertainty Quantification” in Mathematics, 
I had to carefully justify its existence to Statistics.

• Statistics students are now starting to take the course.

My Definition of “Capital UQ”: The synergy between statistics, applied mathematics 
and domain sciences required to quantify uncertainties in inputs and QoI when 
models are too computationally complex to permit sole reliance on sampling-based 
methods.”

• Involves orthogonal polynomial techniques, sparse grids, high-D (infinite-D) 
approximation theory, randomized linear algebra … and a lot of statistics!

No one trusts a model except the man who wrote it; everyone trusts an observation 
except the man who made it, Harlow Shapely.
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Steps in Uncertainty Quantification

Note: Uncertainty quantification requires synergy between statistics, mathematics 
and application area. 

Input Representation

Surrogate Models

Sparse Grids

Local Sensitivity Analysis Global Sensitivity Analysis

Sparse Grids

Parameter Selection

Model Calibration

Uncertainty Propagation

Model Discrepancy

Stochastic Spectral Methods

23



Model Calibration
Sources of Uncertainty:

• Model

• Parameters

• Sensor measurements 

• Initial conditions

Strategy:
• Quantify uncertainty in parameters

• Propagate uncertainty through model

Parameters: Reduced set

Point Estimates: Ordinary least squares 

Note: Scaling critical since parameter values vary by 8 orders of magnitude.

Example: HIV model
Ṫ1 = �1 - d1T1 - (1 - ")k1VT1

Ṫ2 = �2 - d2T2 - (1 - f")k2VT2

Ṫ ⇤
1 = (1 - ")k1VT1 - �T ⇤

1 - m1ET ⇤
1

Ṫ ⇤
2 = (1 - f")k2VT2 - �T ⇤

2 - m2ET ⇤
2

V̇ = NT�(T ⇤
1 + T ⇤

2 )- cV - [(1 - ")⇢1k1T1 + (1 - f")⇢2k2T2]V

Ė = �E +
bE(T ⇤

1 + T ⇤
2 )

T ⇤
1 + T ⇤

2 + Kb
E -

dE(T ⇤
1 + T ⇤

2 )

T ⇤
1 + T ⇤

2 + Kd
E - �E E

q = [bE , �, d1, k2, �1, Kb]

q0 = arg min
q

1
2

NX

j=1

[�j - f (tj , q)]2
tj

�j

f (t , q)

t



Model Calibration and Predictions
Optimization Results: 

Data and Prediction of Immune Effector Response E:

Note: Point estimates but no 
quantification of uncertainty in:

• Model

• Parameters
• Data

Goals: 
• Replace point estimates with 

distributions.

• Construct credible and prediction 
intervals.

• Natural in a Bayesian framework

bE � d1 k2 �1 Kb

0.30 0.68 9.1 ⇥ 10-3 1.22 ⇥ 10-4 9.95 ⇥ 103 88.5



Objectives for Uncertainty Quantification

UQ Goals: Quantify parameter and 
response uncertainties

Example: Helmholtz energy

Common Assumption: "i ⇠ N(0,�2)

Statistical Model: Describes 
observation process

 (P, q) = ↵1P2 + ↵11P4 , q = [↵1,↵11]
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Strategy 1: Perform Experiments

UQ Goals: Quantify parameter and 
response uncertainties

Example: Helmholtz energy

Common Assumption:

Statistical Model: Describes 
observation process

Strategy 1: Perform experiments; e.g., 1 

 (P, q) = ↵1P2 + ↵11P4 , q = [↵1,↵11]
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"i ⇠ N(0,�2)
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UQ Goals: Quantify parameter and 
response uncertainties

Example: Helmholtz energy

Common Assumption: "i ⇠ N(0,�2)

Statistical Model: Describes 
observation process

Strategy 1: Perform experiments; e.g., 2 

 (P, q) = ↵1P2 + ↵11P4 , q = [↵1,↵11]
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Strategy 1: Perform Experiments
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UQ Goals: Quantify parameter and 
response uncertainties

Example: Helmholtz energy

Common Assumption: "i ⇠ N(0,�2)

Statistical Model: Describes 
observation process

Strategy 1: Perform experiments; e.g., 3 

 (P, q) = ↵1P2 + ↵11P4 , q = [↵1,↵11]
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Strategy 1: Perform Experiments
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UQ Goals: Quantify parameter and 
response uncertainties

Example: Helmholtz energy

Common Assumption: "i ⇠ N(0,�2)

Statistical Model: Describes 
observation process

Strategy 1: Perform many experiments; e.g., 1000 

 (P, q) = ↵1P2 + ↵11P4 , q = [↵1,↵11]
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UQ Goals: Quantify parameter and 
response uncertainties

Example: Helmholtz energy

Common Assumption: "i ⇠ N(0,�2)

Statistical Model: Describes 
observation process

Strategy 1: Perform many experiments; e.g., 1000 

 (P, q) = ↵1P2 + ↵11P4 , q = [↵1,↵11]
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Strategy 1: Perform Experiments
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UQ Goals: Quantify parameter and 
response uncertainties

Example: Helmholtz energy

Common Assumption: "i ⇠ N(0,�2)

Statistical Model: Describes 
observation process

Strategy 1: Perform many experiments; e.g., 1000 

 (P, q) = ↵1P2 + ↵11P4 , q = [↵1,↵11]
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n = 81
�i =  (Pi , q) + "i , i = 1, ... , n

Problem: Often cannot 
perform required number 
of experiments or high-
fidelity simulations.

Solution: Statistical 
inference 

Strategy 1: Perform Experiments
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3. Statistical Inference
Goal: The goal in statistical inference is to make conclusions about a 
phenomenon based on observed data.

Frequentist: Observations made in the past are analyzed with a specified 
model.  Result is regarded as confidence about state of real world.

• Probabilities defined as frequencies with which an event occurs if experiment 
is repeated several times.

• Parameter Estimation: 

o Relies on estimators derived from different data sets and a specific sampling 
distribution.

o Parameters may be unknown but are fixed and deterministic.

Bayesian: Interpretation of probability is subjective and can be updated with 
new data.

• Parameter Estimation: Parameters are considered to be random variables 
having associated densities.
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Frequentist Techniques for Model Calibration

Example: Consider the height-weight data from the 1975 World Almanac and 
Book of Facts

Height 
(in)

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

Weight 
(lbs)

115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

Consider the model



Linear Regression
Consider

Example:

35



Linear Regression
Statistical Model:

Assumptions:

Examples:
iid errors

Not independentNot identically distributed

t



Linear Regression
Statistical Model:

Assumptions:

Goals:

Terminology:
• Estimator: Random variable having associated sampling distributions
• Estimate: Realization so real number 
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Least Squares Problem
Minimize

Note: 

where

Least Squares Estimate: 

Least Squares Estimator: 
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Parameter Estimator Properties

Estimator Mean:

Estimator Covariance:
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Example
Example:  Consider the height-weight data from the 1975 World Almanac and Book 
of Facts

Height 
(in)

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

Weight 
(lbs)

115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

Consider the model
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Example
Least Square Estimate:

Here

Variance Estimate: 

Parameter Covariance Estimate:

Note: This yields variances and standard deviations for parameter estimates
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Polarization Example
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Data υStatistical Model: For i = 1, …, n

= ↵1P2
i + ↵11P4

i + "i

�i =  (Pi , q) + "i "i ⇠ N(0,�2) n = 81

= +�i P2
i P4

i
↵1
↵11

"i
)

) � = Xq + "

-405 -400 -395 -390 -385 -380
α1

740

750

760

770

780

790

α
11

↵1

↵
11

Statistical Quantities:

q = (X T X )-1X T�

V = �2(X T X )-1 =


8.8 -17.4

-17.4 37.6

�
var(↵1)

var(↵11)cov(↵1,↵11)

Note: Covariance matrix incorporates “geometry” 

Goal: Employ Bayesian inference for UQ 42



Statistical Inference
Goal: The goal in statistical inference is to make conclusions about a 
phenomenon based on observed data.

Frequentist: Observations made in the past are analyzed with a specified 
model.  Result is regarded as confidence about state of real world.

• Probabilities defined as frequencies with which an event occurs if experiment 
is repeated several times.

• Parameter Estimation: 

o Relies on estimators derived from different data sets and a specific sampling 
distribution.

o Parameters may be unknown but are fixed and deterministic.

Bayesian: Interpretation of probability is subjective and can be updated with 
new data.

• Parameter Estimation: Parameters are considered to be random variables 
having associated densities.
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e

Bayesian Inference: More General Model
Example: Displacement-force relation (Hooke’s Law)

Parameter: Stiffness E

Strategy: Use model fit to data to update prior information 

Prior Information

Information Provided 
by Model and Data

Updated Information

Non-normalized Bayes’ Relation:

ModelData

s
(M

Pa
)si = Eei + "i , i = 1, ... , N

"i ⇠ N(0,�2)

⇡0(E) e-
PN

i=1[si-Eei ]2/2�2 ⇡(E |s)

⇡(E |s) = e-
PN

i=1[si-Eei ]2/2�2
⇡0(E) 44



Bayesian Inference
Bayes� Relation: Specifies posterior in terms of likelihood and prior

• Prior Distribution: Quantifies prior knowledge of parameter values

• Likelihood: Probability of observing a data given set of parameter values.

• Posterior Distribution: Conditional distribution of parameters given observed data.

Problem: Can require high-dimensional integration

• e.g., HIV Model: p = 6 - 23!

• Solution: Sampling-based Markov Chain Monte Carlo (MCMC) algorithms.

• Metropolis algorithms first used by nuclear physicists during Manhattan Project 
in 1940’s to understand particle movement underlying first atomic bomb.

Posterior 
Distribution

Normalization Constant

Prior Distribution

Likelihood: e-
PN

i=1[si-Eei ]2/2�2 , q = E
� = [s1, ... , sN ]

⇡(q|�) =
⇡(�|q)⇡0(q)R

Rp ⇡(�|q)⇡0(q)dq
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Bayesian Model Calibration
Bayesian Model Calibration: 

• Parameters assumed to be random variables

Bayes’ Relation:

P (A|B) =
P (B|A)P (A)

P (B)

Example: Coin Flip

⇡(q|�) = ⇡(�|q)⇡0(q)R
Rp ⇡(�|q)⇡0(q)dq

⌥i(!) =

⇢
0 , ! = T

1 , ! = H

Likelihood:

Posterior with Noninformative Prior:

⇡(q|�) = qN1(1� q)N0

R 1
0 qN1(1� q)N0dq

=
(N + 1)!

N0!N1!
qN1(1� q)N0

⇡0(q) = 1

⇡(�|q) =
NY

i=1

q�i (1 - q)1-�i

= qN1(1 - q)N0



Bayesian Model Calibration

Bayesian Model Calibration: 

• Parameters considered to be random 
variables with associated densities. 

Problem: 

•Often requires high dimensional integration;

o e.g., p = 23 for HIV model

o p = hundreds to thousands for some models

Strategies: 

• Sampling methods

• Sparse grid quadrature techniques

⇡(q|�) = ⇡(�|q)⇡0(q)R
Rp ⇡(�|q)⇡0(q)dq



Markov Chain Monte Carlo Methods

Intuition: 

|q)

* q*qqk−1

SSq

qqk−1

/ (p

q

Strategy: 

of posterior distribution

• Compute r(q⇤|qk-1) = ⇡(�|q⇤)⇡0(q⇤)
⇡(�|qk-1)⇡0(qk-1)

⇤ If r > 1, accept with probability ↵ = 1

⇤ If r < 1, accept with probability ↵ = r

Consider flat prior ⇡0(q) = 1 and Gaussian observation model

⇡(�|q) =
1

(2⇡�2)n/2 e-SSq/2�2
SSq =

NX

i=1

[�i - f (ti , q)]2

• Sample values from proposal distribution J(q⇤|qk-1) that reflects geometry
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Delayed Rejection Adaptive Metropolis (DRAM)
Algorithm: [Haario et al., 2006] – MATLAB, Python, R

Example: Helmholtz energy

= ↵1P2
i + ↵11P4

i + "i

�i =  (Pi , q) + "i "i ⇠ N(0,�2)
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Delayed Rejection Adaptive Metropolis (DRAM)
Algorithm: [Haario et al., 2006] – MATLAB, PythonAlgorithm: [Haario et al., 2006] – MATLAB, Python, R

Example: Helmholtz energy

= ↵1P2
i + ↵11P4

i + "i

�i =  (Pi , q) + "i "i ⇠ N(0,�2)

Example: Helmholtz energy

1. Determine q0 = arg min
q

NX

i=1

[�i - (Pi , q)]2]
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Delayed Rejection Adaptive Metropolis (DRAM)
Algorithm: [Haario et al., 2006] – MATLAB, Python

-405 -400 -395 -390 -385 -380
α1
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α
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↵
11

Algorithm: [Haario et al., 2006] – MATLAB, Python, R

Example: Helmholtz energy

= ↵1P2
i + ↵11P4

i + "i

�i =  (Pi , q) + "i "i ⇠ N(0,�2)

Recall: Covariance V incorporates geometry

Example: Helmholtz energy

q⇤
qk-1

1. Determine q0 = arg min
q

NX

i=1

[�i - (Pi , q)]2]

2. For k = 1, ... , M
(a) Construct candidate q⇤ ⇠ N(qk-1, V )



Delayed Rejection Adaptive Metropolis (DRAM)
Algorithm: [Haario et al., 2006] – MATLAB, Python
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Algorithm: [Haario et al., 2006] – MATLAB, Python, R

Example: Helmholtz energy

= ↵1P2
i + ↵11P4

i + "i

�i =  (Pi , q) + "i "i ⇠ N(0,�2)

Recall: Covariance V incorporates geometry

Example: Helmholtz energy

q⇤
qk-1

1. Determine q0 = arg min
q

NX

i=1

[�i - (Pi , q)]2]

2. For k = 1, ... , M
(a) Construct candidate q⇤ ⇠ N(qk-1, V )

(b) Compute likelihood

SSq⇤ =
NX

i=1

�i - (Pi , q⇤)]2

⇡(�|q) =
1

(2⇡�2)n/2 e-SSq/2�2

(c) Accept q⇤ with probability dictated by likelihood



Delayed Rejection Adaptive Metropolis (DRAM)
Algorithm: [Haario et al., 2006] – MATLAB, Python, R

1. Determine q0 = arg min
q

NX

i=1

[�i - (Pi , q)]2]

2. For k = 1, ... , M
(a) Construct candidate q⇤ ⇠ N(qk-1, V )

(b) Compute likelihood

SSq⇤ =
NX

i=1

�i - (Pi , q⇤)]2

⇡(�|q) =
1

(2⇡�2)n/2 e-SSq/2�2

(c) Accept q⇤ with probability dictated by likelihood
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Delayed Rejection Adaptive Metropolis (DRAM)
Algorithm: [Haario et al., 2006] – MATLAB, Python, R

1. Determine q0 = arg min
q

NX

i=1

[�i - (Pi , q)]2]

2. For k = 1, ... , M
(a) Construct candidate q⇤ ⇠ N(qk-1, V )

(b) Compute likelihood

SSq⇤ =
NX

i=1

�i - (Pi , q⇤)]2

⇡(�|q) =
1

(2⇡�2)n/2 e-SSq/2�2

(c) Accept q⇤ with probability dictated by likelihood
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Delayed Rejection Adaptive Metropolis (DRAM)
Algorithm: [Haario et al., 2006] – MATLAB, Python, R

1. Determine q0 = arg min
q

NX

i=1

[�i - (Pi , q)]2]

2. For k = 1, ... , M
(a) Construct candidate q⇤ ⇠ N(qk-1, V )

(b) Compute likelihood

SSq⇤ =
NX

i=1

�i - (Pi , q⇤)]2

⇡(�|q) =
1

(2⇡�2)n/2 e-SSq/2�2

(c) Accept q⇤ with probability dictated by likelihood
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Delayed Rejection Adaptive Metropolis (DRAM)
Algorithm: [Haario et al., 2006] – MATLAB, Python, R

1. Determine q0 = arg min
q

NX

i=1

[�i - (Pi , q)]2]

2. For k = 1, ... , M
(a) Construct candidate q⇤ ⇠ N(qk-1, V )

(b) Compute likelihood

SSq⇤ =
NX

i=1

�i - (Pi , q⇤)]2

⇡(�|q) =
1

(2⇡�2)n/2 e-SSq/2�2

(c) Accept q⇤ with probability dictated by likelihood
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Delayed Rejection Adaptive Metropolis (DRAM)
Algorithm: [Haario et al., 2006] – MATLAB, Python, R

1. Determine q0 = arg min
q

NX

i=1

[�i - (Pi , q)]2]

2. For k = 1, ... , M
(a) Construct candidate q⇤ ⇠ N(qk-1, V )

(b) Compute likelihood

SSq⇤ =
NX

i=1

�i - (Pi , q⇤)]2

⇡(�|q) =
1

(2⇡�2)n/2 e-SSq/2�2

(c) Accept q⇤ with probability dictated by likelihood
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Delayed Rejection Adaptive Metropolis (DRAM)
Algorithm: [Haario et al., 2006] – MATLAB, Python, R

1. Determine q0 = arg min
q

NX

i=1

[�i - (Pi , q)]2]

2. For k = 1, ... , M
(a) Construct candidate q⇤ ⇠ N(qk-1, V )

(b) Compute likelihood

SSq⇤ =
NX

i=1

�i - (Pi , q⇤)]2

⇡(�|q) =
1

(2⇡�2)n/2 e-SSq/2�2

(c) Accept q⇤ with probability dictated by likelihood

Note: 
• Delayed Rejection: 
Shrink proposal:

• Adaptive Metropolis:  
Update proposal as 
samples are accepted

�V



Delayed Rejection Adaptive Metropolis (DRAM)

Example: Helmholtz energy with 3 parameters

 (P, q) = ↵1P2 + ↵11P4 + ↵111P6

0 1000 2000 3000 4000 5000
Chain Iteration

-420

-400

-380

-360

-340

Chain for ↵1 with 5000 samples

Marginal density for ↵1

Note: Similar results for 

↵11

↵1

↵
11

-420 -400 -380 -360 -340
0

0.01

0.02

0.03

0.04

↵1

↵1

Pairwise Plots: Quantify correlation 

↵11 and ↵111
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Bayesian Model Calibration – HIV Example

Parameter Chains and Densities:

Model: Verification: Why do we trust results??

• Compare results from different 
algorithms; e.g., DRAM and Gibbs

Ṫ1 = �1 - d1T1 - (1 - ")k1VT1

Ṫ2 = �2 - d2T2 - (1 - f")k2VT2

Ṫ ⇤
1 = (1 - ")k1VT1 - �T ⇤

1 - m1ET ⇤
1

Ṫ ⇤
2 = (1 - f")k2VT2 - �T ⇤

2 - m2ET ⇤
2

V̇ = NT�(T ⇤
1 + T ⇤

2 )- cV - [(1 - ")⇢1k1T1 + (1 - f")⇢2k2T2]V

Ė = �E +
bE(T ⇤

1 + T ⇤
2 )

T ⇤
1 + T ⇤

2 + Kb
E -

dE(T ⇤
1 + T ⇤

2 )

T ⇤
1 + T ⇤

2 + Kd
E - �E E

q = [bE , �, d1, k2, �1, Kb]



Bayesian Inference: Advantages and Disadvantages 

Advantages:
• Advantageous over frequentist inference when data is limited.

• Directly provides parameter densities, which can subsequently be propagated to 
construct response uncertainties.

• Can be used to infer non-identifiable parameters if priors are tight.

• Provides natural framework for experimental design.

Disadvantages:
• More computationally intense than frequentist inference.

• Can be difficult to confirm that chains have burned-in or converged.  
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Delayed Rejection Adaptive Metropolis (DRAM)

Websites:
• https://rsmith.math.ncsu.edu/UQ_TIA/CHAPTER8/index_chapter8.html

• http://helios.fmi.fi/~lainema/mcmc/

62
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Delayed Rejection Adaptive Metropolis (DRAM)
We fit the Monod model

to observations
x (mg / L COD):  28    55    83    110   138   225   375

y (1 / h):       0.053 0.060 0.112 0.105 0.099 0.122 0.125

First clear some variables from possible previous runs.
clear data model options

Next, create a data structure for the observations and control variables. Typically one 
could make a structure data that contains fields xdata and ydata.

data.xdata = [28    55    83    110   138   225   375]';   % x (mg / L COD)

data.ydata = [0.053 0.060 0.112 0.105 0.099 0.122 0.125]'; % y (1 / h)

Construct model
modelfun = @(x,theta) theta(1)*x./(theta(2)+x); 

ssfun = @(theta,data) sum((data.ydata-modelfun(data.xdata,theta)).^2);

model.ssfun = ssfun; 

model.sigma2 = 0.01^2;

y = ✓1
1

✓2 + 1
+ ✏ , ✏ ⇠ N(0, I�2)
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Delayed Rejection Adaptive Metropolis (DRAM)
Input parameters

params = { 

{'theta1', tmin(1), 0}

{'theta2', tmin(2), 0} };

and set options
options.nsimu = 4000; 

options.updatesigma = 1; 

options.qcov = tcov; 

Run code
[res,chain,s2chain] = mcmcrun(model,data,params,options);
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Delayed Rejection Adaptive Metropolis (DRAM)

Plot results

figure(2); clf 

mcmcplot(chain,[],res,'chainpanel');

figure(3); clf 

mcmcplot(chain,[],res,'pairs');

Examples: 
• Several available in MCMC_EXAMPLES

• ODE solver illustrated in algae example
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Delayed Rejection Adaptive Metropolis (DRAM)
Construct credible and prediction intervals

figure(5); clf 
out = mcmcpred(res,chain,[],x,modelfun); 
mcmcpredplot(out);
hold on 
plot(data.xdata,data.ydata,'s'); % add data points to the plot 
xlabel('x [mg/L COD]'); 
ylabel('y [1/h]'); 
hold off 
title('Predictive envelopes of the model')



DRAM for SIR Example
SIR Model:

dS

dt
= �N � �S � �kIS , S(0) = S0

dI

dt
= �kIS � (r + �)I , I(0) = I0

dR

dt
= rI � �R , R(0) = R0

Susceptible

Infectious

Recovered

Note: Parameter set q = [�, k, r, �] is not identifiable

Website
• http://helios.fmi.fi/~lainema/mcmc/

• http://www4.ncsu.edu/~rsmith/
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DRAM for SIR Example: Results



SIR Example
3 Parameter SIR Model:

Susceptible

Infectious

Recovered

dS

dt
= �N � �S � �IS , S(0) = S0

dI

dt
= �IS � (r + �)I , I(0) = I0

dR

dt
= rI � �R , R(0) = R0

Note:

• Run the posted 4 parameter code and experiment with the chain length.

• Now run the 3 parameter model and compare your results.

Website:
• https://rsmith.math.ncsu.edu/DATAWORKS19/
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