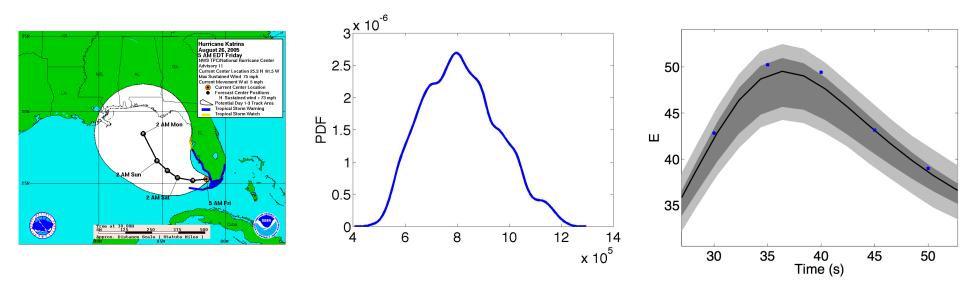
Uncertainty Quantification

Ralph C. Smith

Department of Mathematics North Carolina State University



Essentially, all models are wrong, but some are useful, George E.P. Box, Industrial Statistician.

Support: DOE Consortium for Advanced Simulation of LWR (CASL) NNSA Consortium for Nonproliferation Enabling Capabilities (CNEC) NSF Data-Enabled Science and Engineering of Atomic Structure (SEAS) NSF Collaborative Research CDS&E 1 Air Force Office of Scientific Research (AFOSR)

Course Structure

Overview: 9:00 - 5:30

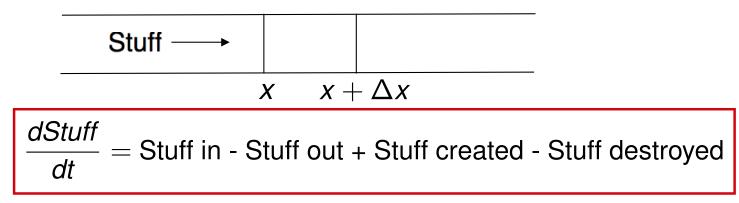
- 1. Introduction: Motivating examples
- 2. Overview of terminology and inverse problems
- 3. Bayesian inference
- 4. Forward uncertainty propagation
- 5. Sensitivity analysis and active subspaces
- 6. Surrogate model construction
- 7. Model discrepancy

Website:

http://www4.ncsu.edu/~rsmith/DATAWORKS18/

Modeling Strategy

General Strategy: Conservation of stuff



Continuity Equation:

$$\frac{\partial(\rho\Delta x)}{\partial t} = \phi(t, x) - \phi(t, x + \Delta x)$$

$$\Rightarrow \lim_{\Delta x \to 0} \frac{\partial \rho}{\partial t} = \lim_{\Delta x \to 0} \frac{\phi(t, x) - \phi(t, x + \Delta x)}{\Delta x}$$

$$\frac{\phi(t, x)}{dt} \begin{vmatrix} \frac{\partial(\rho\Delta x)}{dt} & \phi(t, x + \Delta x) \\ x & x + \Delta x \end{vmatrix}$$

$$\Rightarrow \frac{\partial \rho}{\partial t} + \frac{\partial \phi}{\partial x} = 0$$

Density: $\rho(t, x)$ - Stuff per unit length or volume

Rate of Flow: $\phi(t, x)$ - Stuff per second

More Generally:

$$\Rightarrow \frac{\partial \rho}{\partial t} + \frac{\partial \phi}{\partial x} = \text{Sources - Sinks}$$

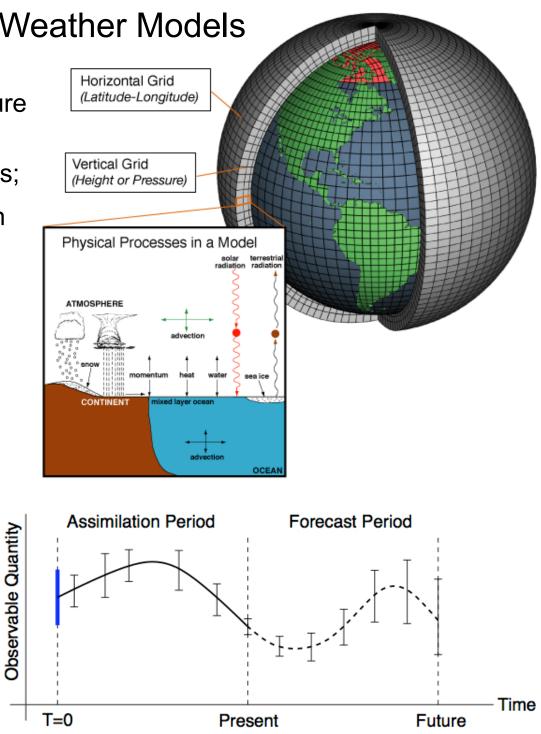
Example 1: Weather Models

Challenges:

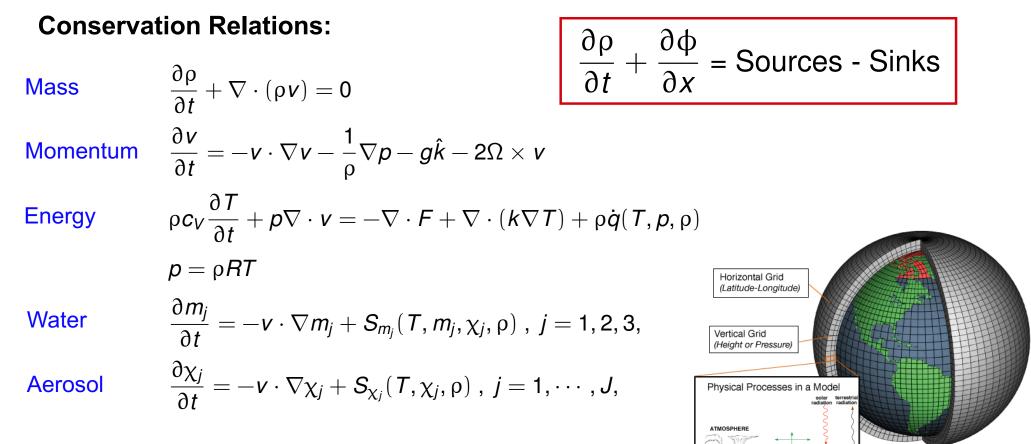
- Coupling between temperature, pressure gradients, precipitation, aerosol, etc.;
- Models and inputs contain uncertainties;
- Numerical grids necessarily larger than many phenomena; e.g., clouds
- Sensors positions may be uncertain; e.g., weather balloons, ocean buoys.

Goal:

- Assimilate data to quantify uncertain initial conditions and parameters;
- Make predictions with quantified uncertainties.



Equations of Atmospheric Physics



Constitutive Closure Relations: e.g.,

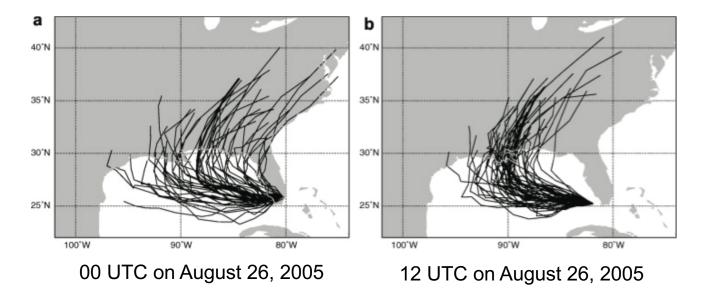
$$S_{m_2} = S_1 + S_2 + S_3 - S_4$$

where

5

Ensemble Predictions

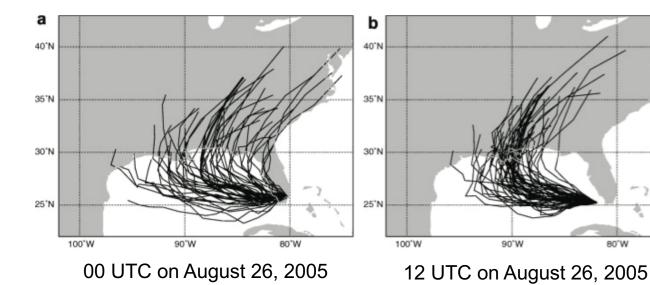
Ensemble Predictions:



Cone of Uncertainty:

Ensemble Predictions

Ensemble Predictions:



Cone of Uncertainty:

General Questions:

What is expected rainfall on March 20?

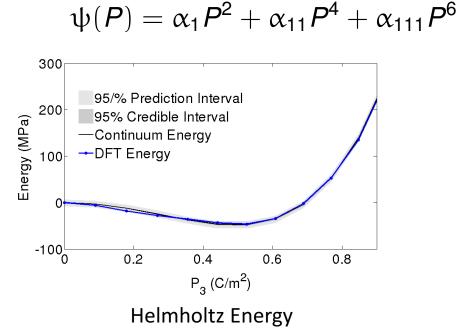
80°W

- What are high and low temperatures?
- What is predicted average snow fall?
- Note: Quantities are statistical in nature.

Example 2: Quantum-Informed Continuum Models

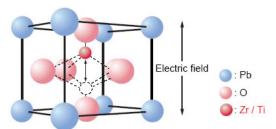
Objectives:

- Employ density function theory (DFT) to construct/calibrate continuum energy relations.
 - e.g., Helmholtz energy

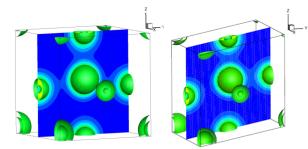


UQ and SA Issues:

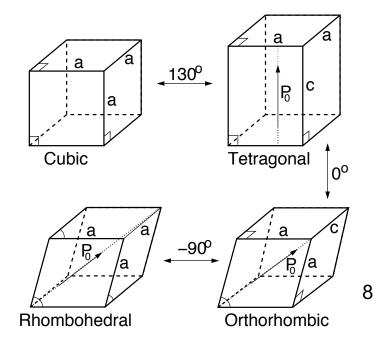
- Is 6th order term required to accurately characterize material behavior?
- Note: Determines molecular structure



Lead Titanate Zirconate (PZT)



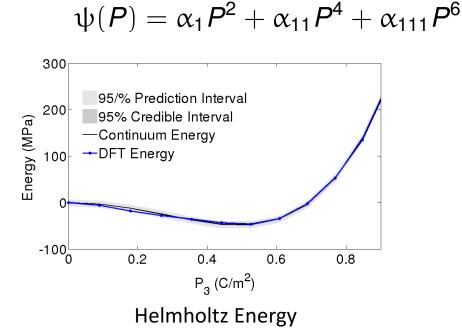
DFT Electronic Structure Simulation



Quantum-Informed Continuum Models

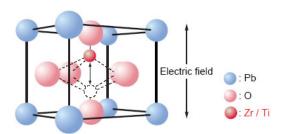
Objectives:

- Employ density function theory (DFT) to construct/calibrate continuum energy relations.
 - e.g., Helmholtz energy

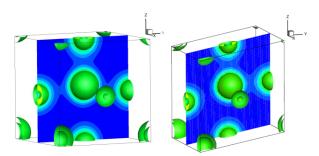


UQ and SA Issues:

- Is 6th order term required to accurately characterize material behavior?
- Note: Determines molecular structure



Lead Titanate Zirconate (PZT)



DFT Electronic Structure Simulation

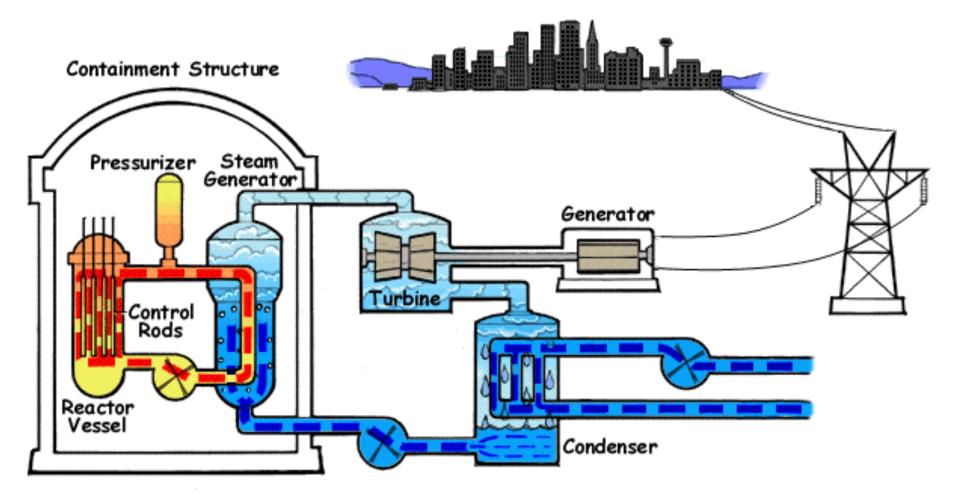
Broad Objective:

• Use UQ/SA to help bridge scales from quantum to system

Note:

Linearly parameterized

Example 3: Pressurized Water Reactors (PWR)



Models:

- Involve neutron transport, thermal-hydraulics, chemistry.
- Inherently multi-scale, multi-physics.

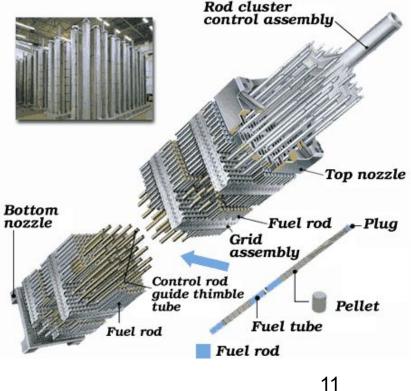
CRUD Measurements: Consist of low resolution images at limited number of locations.

Example: Pressurized Water Reactors (PWR)

3-D Neutron Transport Equations:

Challenges:

- Very large number of inputs; e.g., 100,000; Active subspace construction critical.
- ORNL Code SCALE: Can take hours to run.
- Time-dependent surrogate models must accommodate PDE structure.
- Numerical errors often difficult to quantify.
- Predicting future requires extrapolatory or outof-data predictions; one must address model discrepancy to construct validation intervals.



20

34

Example: Pressurized Water Reactors (PWR)

Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid

$$\begin{split} \frac{\partial}{\partial t} (\alpha_{f} \rho_{f}) &+ \nabla \cdot (\alpha_{f} \rho_{f} v_{f}) = -\Gamma \\ \alpha_{f} \rho_{f} \frac{\partial v_{f}}{\partial t} &+ \alpha_{f} \rho_{f} v_{f} \cdot \nabla v_{f} + \nabla \cdot \sigma_{f}^{R} + \alpha_{f} \nabla \cdot \sigma + \alpha_{f} \nabla \rho_{f} \\ &= -F^{R} - F + \Gamma(v_{f} - v_{g})/2 + \alpha_{f} \rho_{f} g \\ \frac{\partial}{\partial t} (\alpha_{f} \rho_{f} e_{f}) &+ \nabla \cdot (\alpha_{f} \rho_{f} e_{f} v_{f} + Th) = (T_{g} - T_{f})H + T_{f} \Delta_{f} \\ &- T_{g} (H - \alpha_{g} \nabla \cdot h) + h \cdot \nabla T - \Gamma[e_{f} + T_{f}(s^{*} - s_{f})] \\ &- \rho_{f} \left(\frac{\partial \alpha_{f}}{\partial t} + \nabla \cdot (\alpha_{f} v_{f}) + \frac{\Gamma}{\rho_{f}} \right) \end{split}$$

$\frac{\partial \rho}{\partial t} + \frac{\partial \phi}{\partial x} = \text{Sources - Sinks}$

Notes:

- Similar relations for gas and bubbly phases
- Surrogate models must conserve mass, energy, and momentum

Challenges:

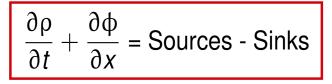
- Codes can have 15-30 closure relations and up to 75 parameters.
- Codes and closure relations often "borrowed" from other physical phenomena; e.g., single phase fluids, airflow over a car (CFD code STAR-CCM+)
- Calibration necessary and closure relations can conflict.
- Inference of random fields requires high- (infinite-) dimensional theory.

Example: Pressurized Water Reactors (PWR)

Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid

$$\begin{split} \frac{\partial}{\partial t} (\alpha_{f} \rho_{f}) + \nabla \cdot (\alpha_{f} \rho_{f} v_{f}) &= -\Gamma \\ \alpha_{f} \rho_{f} \frac{\partial v_{f}}{\partial t} + \alpha_{f} \rho_{f} v_{f} \cdot \nabla v_{f} + \nabla \cdot \sigma_{f}^{R} + \alpha_{f} \nabla \cdot \sigma + \alpha_{f} \nabla \rho_{f} \\ &= -F^{R} - F + \Gamma(v_{f} - v_{g})/2 + \alpha_{f} \rho_{f} g \\ \frac{\partial}{\partial t} (\alpha_{f} \rho_{f} e_{f}) + \nabla \cdot (\alpha_{f} \rho_{f} e_{f} v_{f} + Th) &= (T_{g} - T_{f})H + T_{f} \Delta_{f} \\ &- T_{g} (H - \alpha_{g} \nabla \cdot h) + h \cdot \nabla T - \Gamma[e_{f} + T_{f}(s^{*} - s_{f})] \\ &- \rho_{f} \left(\frac{\partial \alpha_{f}}{\partial t} + \nabla \cdot (\alpha_{f} v_{f}) + \frac{\Gamma}{\rho_{f}} \right) \end{split}$$

Example: Shearon Harris outside Raleigh



Notes:

- Similar relations for gas and bubbly phases
- Surrogate models must conserve mass, energy, and momentum

UQ Questions:

- What is peak operating temperature?
- What is expected level of CRUD buildup?
- What is risk associated with operating regime?
- What is expected profit for new design?

Example 4: SIR Model for Disease Dynamics SIR Model:

$$\frac{dS}{dt} = \delta N - \delta S - \underline{\gamma k} I S \quad , \ S(0) = S_0 \qquad \text{Susceptible}$$
$$\frac{dI}{dt} = \underline{\gamma k} I S - (r + \delta) I \quad , \ I(0) = I_0 \qquad \text{Infectious}$$
$$\frac{dR}{dt} = rI - \delta R \qquad , \ R(0) = R_0 \qquad \text{Recovered}$$

Parameters:

Response:

 $y = \int_{0}^{5} R(t,q) dt$

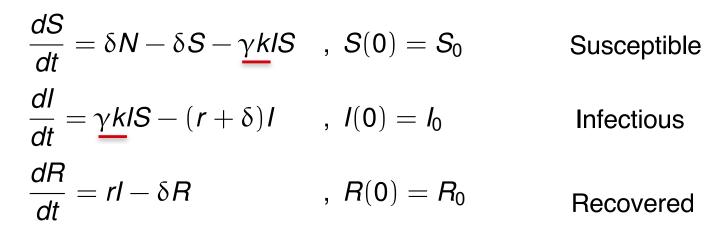
- γ : Infection coefficient
- k: Interaction coefficient
- *r*: Recovery rate
- δ: Birth/death rate

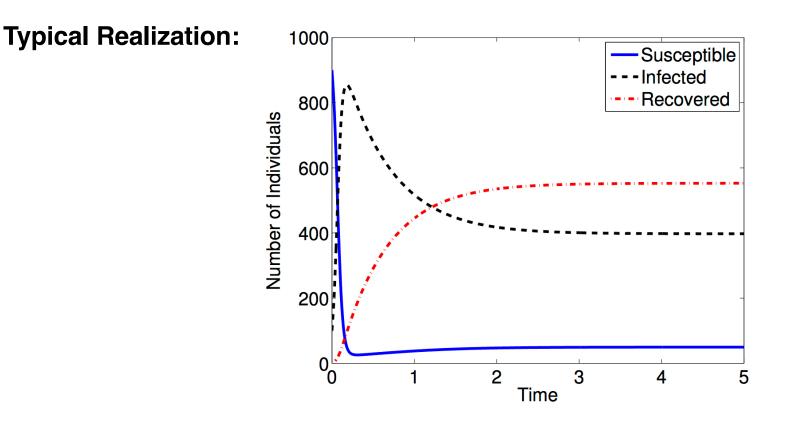
Note: Parameters $q = [\gamma, k, r, \delta]$ not uniquely determined by data

Note: Presently employed cholera models have similar form; example this afternoon.

SIR Disease Example

SIR Model:





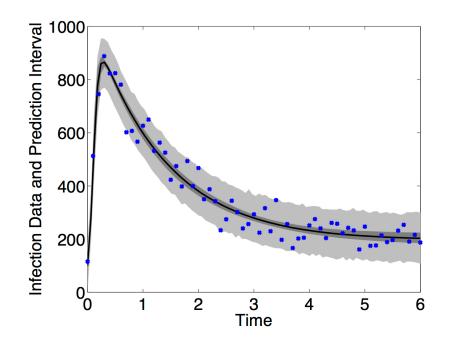
15

SIR Disease Example

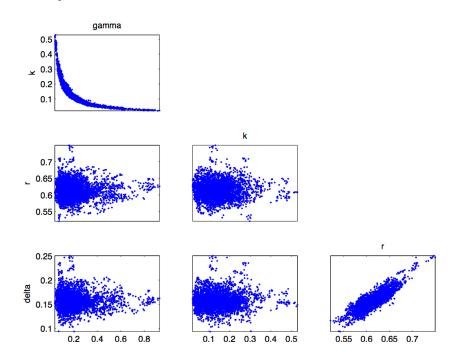
SIR Model:

$$\frac{dS}{dt} = \delta N - \delta S - \underline{\gamma k} I S \quad , \ S(0) = S_0$$
$$\frac{dI}{dt} = \underline{\gamma k} I S - (r + \delta) I \quad , \ I(0) = I_0$$
$$\frac{dR}{dt} = rI - \delta R \quad , \ R(0) = R_0$$

UQ Goal: Predict I(t) with uncertainty intervals:



Problem: Cannot uniquely infer parameters

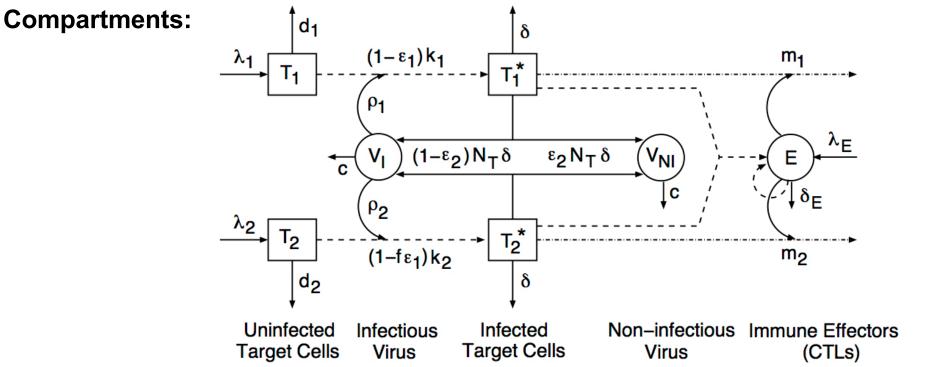


Solution:

- Active subspaces
- Identifiability analysis
- Sensitivity analysis
- Design of experiments

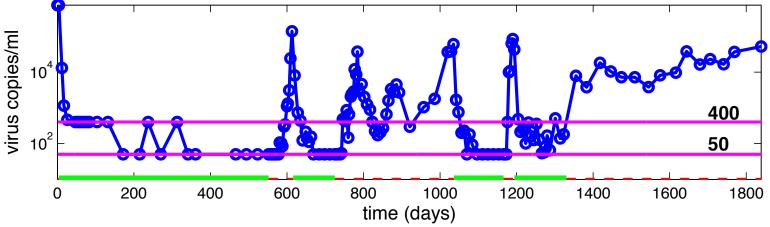
Example 5: HIV Model for Characterization and Control Regimes

HIV Model: $\dot{T}_1 = \lambda_1 - d_1 T_1 - (1 - \varepsilon)k_1 V T_1$ [Adams, Banks et al., 2005, $\dot{T}_2 = \lambda_2 - d_2 T_2 - (1 - f\varepsilon)k_2 V T_2$ [Adams, Banks et al., 2005, 2007] $\dot{T}_1^* = (1 - \varepsilon)k_1 V T_1 - \delta T_1^* - m_1 E T_1^*$ $\dot{T}_2^* = (1 - f\varepsilon)k_2 V T_2 - \delta T_2^* - m_2 E T_2^*$ $\dot{V} = N_T \delta(T_1^* + T_2^*) - cV - [(1 - \varepsilon)\rho_1 k_1 T_1 + (1 - f\varepsilon)\rho_2 k_2 T_2] V$ $\dot{E} = \lambda_E + \frac{b_E(T_1^* + T_2^*)}{T_1^* + T_2^* + K_b} E - \frac{d_E(T_1^* + T_2^*)}{T_1^* + T_2^* + K_d} E - \delta_E E$ Notation: $\dot{E} \equiv \frac{dE}{dt}$



Example: HIV Model for Characterization and Treatment Regimes

HIV Model: Several sources of uncertainty including viral measurement techniques **Example:** Upper and lower limits to assay sensitivity



UQ Questions:

- What are the uncertainties in parameters that cannot be directly measured?
- What is optimal treatment regime that is "safe" for patient?
- What is expected viral load? Issue: very often requires high-dimensional integration!

• e.g.,
$$\mathbb{E}[V(t)] = \int_{\mathbb{R}^{21}} V(t,q) \rho(q) dq$$

Experimental results are believed by everyone, except for the person who ran the experiment, source anonymous, quoted by Max Gunzburger, Florida State University.

2. Challenge: Terminology and Notation

Terminology:

- Inputs: Parameters, initial conditions, boundary conditions, exogenous forces; e.g., parameters in HIV models, initial conditions in weather models.
- Outputs or Responses: Quantities that we experimentally or numerically measure; e.g., viral load, outlet temperature in reactor.
- Quantities of Interest (QoI): Statistical quantity that we want to compute; e.g., average CRUD buildup, expected profit for a given design.

Input Notation: Can vary even within disciplines!

- Math Control Community: $q = [q_1, ..., q_p]$
- Math Reduced-Order Community: $p = [p_1, ..., p_q]$
- Statistics: $\theta = [\theta_1, \dots, \theta_d]$
- Nuclear Engineering: $\alpha = [\alpha_1, ..., \alpha_k]$
- Active subspace community: $x = [x_1, ..., x_p]$

Note: Same variability in notation for outputs and quantities of interest

First Challenge: Terminology and Notation

Terminology:

- Linearly parameterized problems: e.g., portfolio model $y = c_1q_1 + c_2q_2$
 - Rare in applications except constitutive relations and image processing
- Nonlinearly parameterized problems: typical case
 - Differs from linear or nonlinear in state; e.g., spring model

$$\frac{d^2y(t)}{dt^2} + ky(t) = 0$$

$$y(0) = y_0 , \frac{dy}{dt}(0) = 0$$
Inputs: $q = [k, y_0]$
Response: Displacement $y(t) = y_0 \cos(\sqrt{k} \cdot t)$

$$k \quad m=1 \quad \underline{y(t)}$$
Notation: $\dot{y} \equiv \frac{dy}{dt} , \ \ddot{y} \equiv \frac{d^2y}{dt^2}$

$$\ddot{y}(t) + ky(t) = 0$$

$$\Rightarrow \quad \dot{y}(0) = y_0 , \ \frac{dy}{dt}(0) = 0$$

Note:

- Linear state dependence
- Nonlinear parameter dependence

20

Uncertainty Quantification

I have always done uncertainty quantification. The difference now is that it is capitalized. Bill Browning, Applied Mathematics Incorporated.

Note: The field of "Uncertainty Quantification" has grown rapidly over the last 20 years. How is "Capital UQ" different from what statisticians do extremely well every day?

- E.g., When I proposed a course on "Uncertainty Quantification" in Mathematics, I had to carefully justify its existence to Statistics.
- Statistics students are now starting to take the course.

Uncertainty Quantification

I have always done uncertainty quantification. The difference now is that it is capitalized. Bill Browning, Applied Mathematics Incorporated.

Note: The field of "Uncertainty Quantification" has grown rapidly over the last 20 years. How is "Capital UQ" different from what statisticians do extremely well every day?

- E.g., When I proposed a course on "Uncertainty Quantification" in Mathematics, I had to carefully justify its existence to Statistics.
- Statistics students are now starting to take the course.

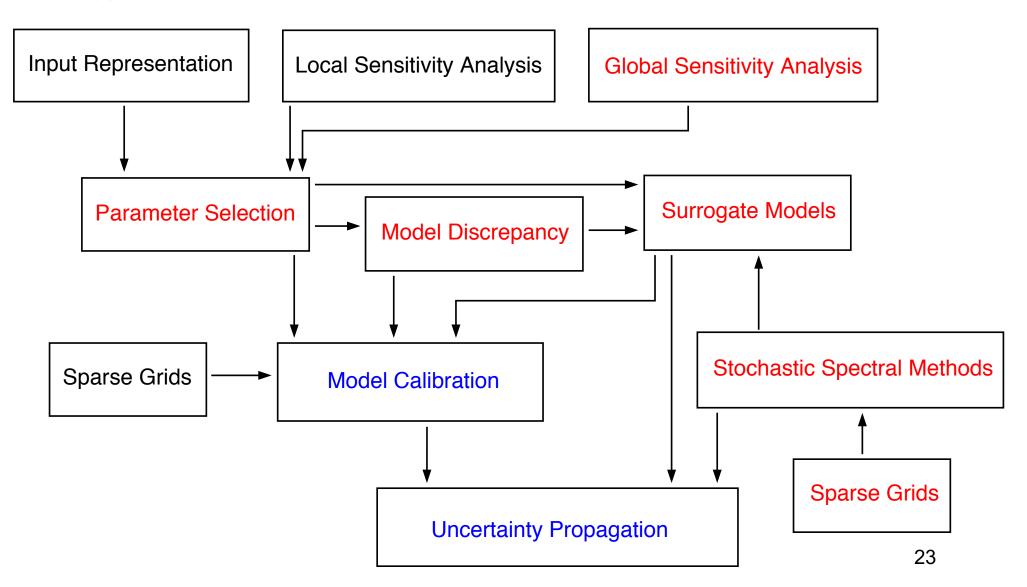
My Definition of "Capital UQ": The synergy between statistics, applied mathematics and domain sciences required to quantify uncertainties in inputs and QoI when models are too computationally complex to permit sole reliance on sampling-based methods."

• Involves orthogonal polynomial techniques, sparse grids, high-D (infinite-D) approximation theory, randomized linear algebra ... and a lot of statistics!

No one trusts a model except the man who wrote it; everyone trusts an observation except the man who made it, Harlow Shapely.

Steps in Uncertainty Quantification

Note: Uncertainty quantification requires synergy between statistics, mathematics and application area.



Model Calibration

Sources of Uncertainty:

- Model
- Parameters
- Sensor measurements
- Initial conditions

Parameters: Reduced set

$$q = [b_E, \delta, d_1, k_2, \lambda_1, K_b]$$

Strategy:

- Quantify uncertainty in parameters
- Propagate uncertainty through model

Example: HIV model $\dot{T}_1 = \lambda_1 - d_1 T_1 - (1 - \varepsilon) k_1 V T_1$ $\dot{T}_2 = \lambda_2 - d_2 T_2 - (1 - f\varepsilon) k_2 V T_2$ $\dot{T}_1^* = (1 - \varepsilon) k_1 V T_1 - \delta T_1^* - m_1 E T_1^*$ $\dot{T}_2^* = (1 - f\varepsilon)k_2VT_2 - \delta T_2^* - m_2ET_2^*$ $\dot{V} = N_T \delta(T_1^* + T_2^*) - cV - [(1 - \varepsilon)\rho_1 k_1 T_1 + (1 - f\varepsilon)\rho_2 k_2 T_2]V$ $\dot{E} = \lambda_E + \frac{b_E(T_1^* + T_2^*)}{T_1^* + T_2^* + K_b} E - \frac{d_E(T_1^* + T_2^*)}{T_1^* + T_2^* + K_d} E - \delta_E E$ f(t,q)

Point Estimates: Ordinary least squares

$$q^{0} = \arg\min_{q} \frac{1}{2} \sum_{j=1}^{N} [\upsilon_{j} - f(t_{j}, q)]^{2}$$

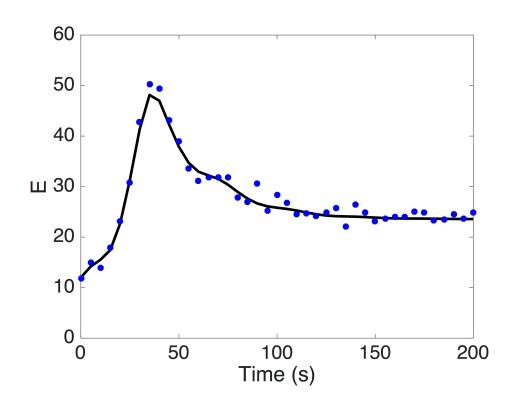
Note: Scaling critical since parameter values vary by 8 orders of magnitude.

Model Calibration and Predictions

Optimization Results:

b _E	δ	<i>d</i> ₁	k ₂	λ_1	K _b
0.30	0.68	$9.1 imes 10^{-3}$	$1.22 imes 10^{-4}$	$9.95 imes 10^{3}$	88.5

Data and Prediction of Immune Effector Response E:



Note: Point estimates but no quantification of uncertainty in:

- Model
- Parameters
- Data

Goals:

- Replace point estimates with distributions.
- Construct credible and prediction intervals.
- Natural in a Bayesian framework

Objectives for Uncertainty Quantification

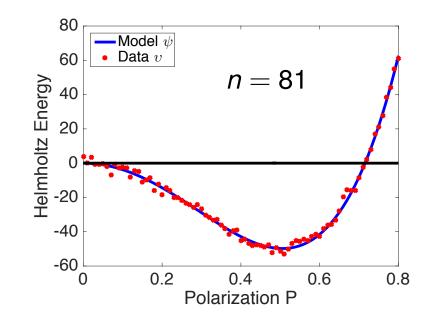
Example: Helmholtz energy $\psi(P,q) = \alpha_1 P^2 + \alpha_{11} P^4$, $q = [\alpha_1, \alpha_{11}]$

Statistical Model: Describes observation process

$$\upsilon_i = \psi(P_i, q) + \varepsilon_i$$
, $i = 1, ..., n$

Common Assumption: $\varepsilon_i \sim N(0, \sigma^2)$

UQ Goals: Quantify parameter and response uncertainties



80

60

40

20

-20

-40

-60

0

Helmholtz Energy

Model ψ Data v

0.2

n = 81

0.4

Polarization P

0.6

0.8

Example: Helmholtz energy $\psi(P,q) = \alpha_1 P^2 + \alpha_{11} P^4$, $q = [\alpha_1, \alpha_{11}]$

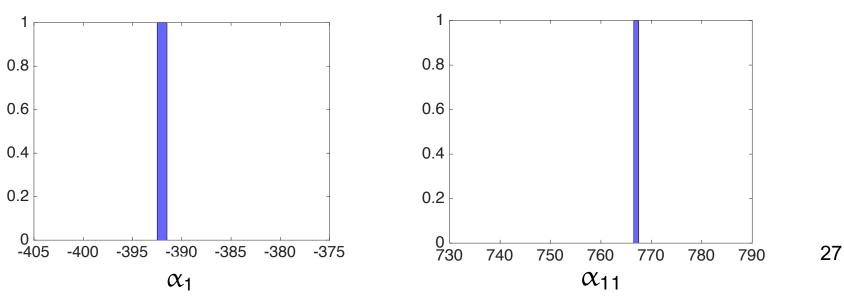
Statistical Model: Describes observation process

$$\upsilon_i = \psi(P_i, q) + \varepsilon_i$$
, $i = 1, ..., n$

Common Assumption: $\varepsilon_i \sim N(0, \sigma^2)$

UQ Goals: Quantify parameter and response uncertainties

Strategy 1: Perform experiments; e.g., 1



Example: Helmholtz energy $\psi(P,q) = \alpha_1 P^2 + \alpha_{11} P^4$, $q = [\alpha_1, \alpha_{11}]$

Statistical Model: Describes observation process

$$v_i = \psi(P_i, q) + \varepsilon_i$$
, $i = 1, ..., n$

Common Assumption: $\varepsilon_i \sim N(0, \sigma^2)$

UQ Goals: Quantify parameter and response uncertainties

0.8

0.6

0.4

0.2

0

-405

Strategy 1: Perform experiments; e.g., 2

-390

 α_1

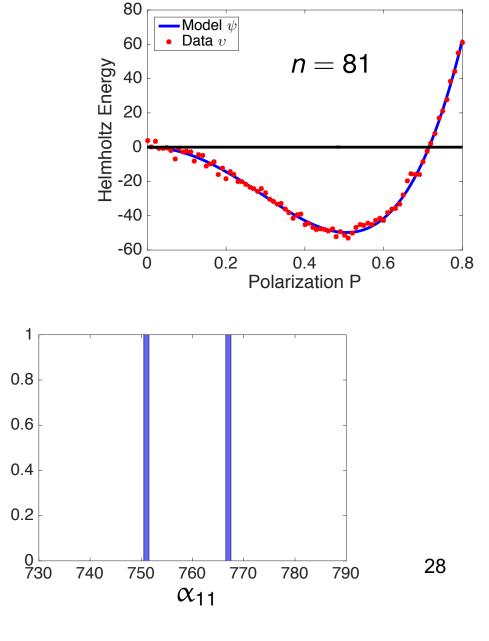
-395

-400

-385

-380

-375



Example: Helmholtz energy $\psi(P,q) = \alpha_1 P^2 + \alpha_{11} P^4$, $q = [\alpha_1, \alpha_{11}]$

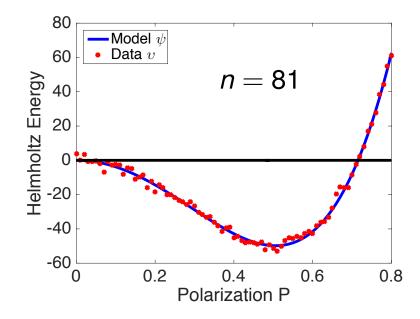
Statistical Model: Describes observation process

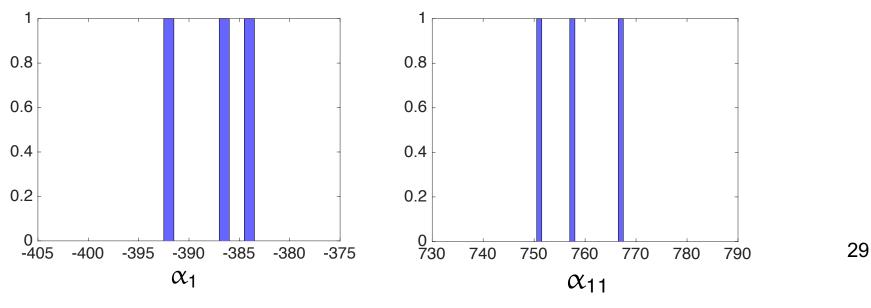
$$v_i = \psi(P_i, q) + \varepsilon_i$$
, $i = 1, ..., n$

Common Assumption: $\varepsilon_i \sim N(0, \sigma^2)$

UQ Goals: Quantify parameter and response uncertainties

Strategy 1: Perform experiments; e.g., 3





Example: Helmholtz energy $\psi(P,q) = \alpha_1 P^2 + \alpha_{11} P^4$, $q = [\alpha_1, \alpha_{11}]$

Statistical Model: Describes observation process

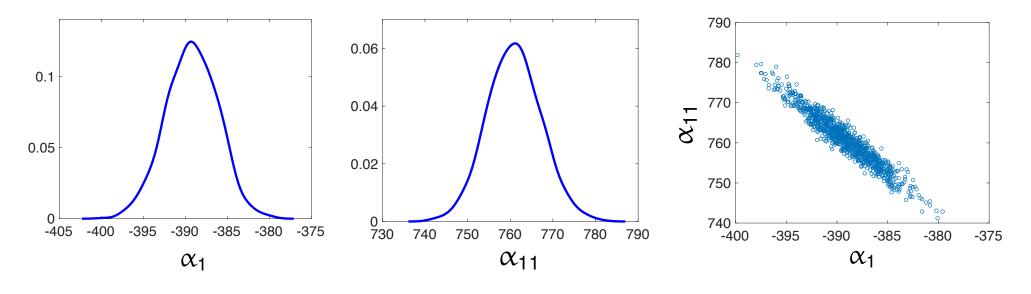
$$v_i = \psi(P_i, q) + \varepsilon_i$$
, $i = 1, ..., n$

Common Assumption: $\varepsilon_i \sim N(0, \sigma^2)$

UQ Goals: Quantify parameter and response uncertainties

80 Model ψ Data v 60 n = 81Helmholtz Energy 40 20 -20 -40 -60 0.2 0.6 0.8 0 0.4 Polarization P

Strategy 1: Perform many experiments; e.g., 1000



Example: Helmholtz energy $\psi(P,q) = \alpha_1 P^2 + \alpha_{11} P^4$, $q = [\alpha_1, \alpha_{11}]$

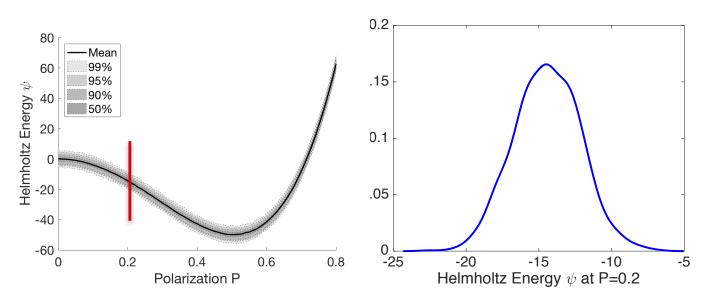
Statistical Model: Describes observation process

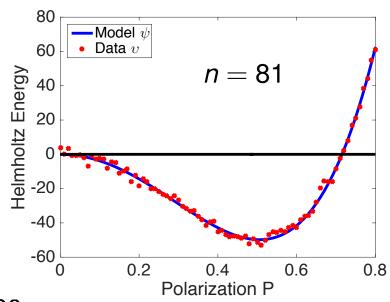
$$v_i = \psi(P_i, q) + \varepsilon_i$$
, $i = 1, ..., n$

Common Assumption: $\varepsilon_i \sim N(0, \sigma^2)$

UQ Goals: Quantify parameter and response uncertainties

Strategy 1: Perform many experiments; e.g., 1000





Example: Helmholtz energy $\psi(P, q) = \alpha_1 P^2 + \alpha_{11} P^4$, $q = [\alpha_1, \alpha_{11}]$

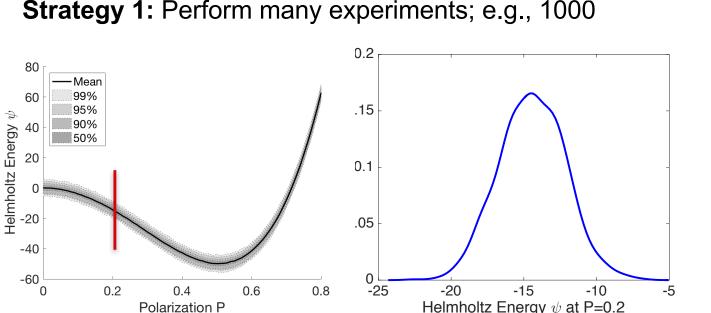
Statistical Model: Describes observation process

$$v_i = \psi(P_i, q) + \varepsilon_i$$
, $i = 1, ..., n$

Common Assumption: $\varepsilon_i \sim N(0, \sigma^2)$

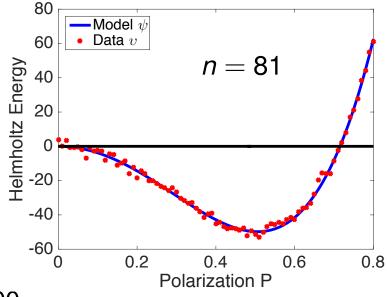
UQ Goals: Quantify parameter and response uncertainties

Strategy 1: Perform many experiments; e.g., 1000



Problem: Often cannot perform required number of experiments or highfidelity simulations.

Solution: Statistical inference



3. Statistical Inference

Goal: The goal in statistical inference is to make conclusions about a phenomenon based on observed data.

Frequentist: Observations made in the past are analyzed with a specified model. Result is regarded as confidence about state of real world.

• Probabilities defined as frequencies with which an event occurs if experiment is repeated several times.

• Parameter Estimation:

o Relies on estimators derived from different data sets and a specific sampling distribution.

o Parameters may be unknown but are fixed and deterministic.

Bayesian: Interpretation of probability is subjective and can be updated with new data.

• Parameter Estimation: Parameters are considered to be random variables having associated densities.

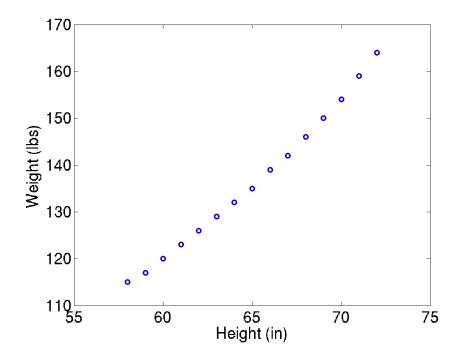
Frequentist Techniques for Model Calibration

Example: Consider the height-weight data from the 1975 World Almanac and Book of Facts

Height (in)	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
Weight (lbs)	115	117	120	123	126	129	132	135	139	142	146	150	154	159	164

Consider the model

$$\Upsilon_i = q_1 + q_2(x_i/12) + q_3(x_i/12)^2 + \varepsilon_i$$



Linear Regression

Consider

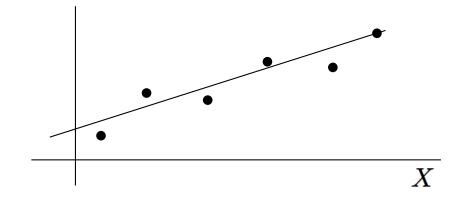
 $\Upsilon = Xq_0 + \varepsilon$

where

$$\Upsilon = \begin{bmatrix} \Upsilon_{1} \\ \vdots \\ \Upsilon_{n} \end{bmatrix}, X = \begin{bmatrix} X_{11} & \cdots & X_{1p} \\ \vdots & & \vdots \\ X_{n1} & \cdots & X_{np} \end{bmatrix}, q_{0} = \begin{bmatrix} q_{1} \\ \vdots \\ q_{p} \end{bmatrix}, \varepsilon = \begin{bmatrix} \varepsilon_{1} \\ \vdots \\ \varepsilon_{n} \end{bmatrix}$$

Observations Design Matrix Unknown Errors
Parameters

Example: $\Upsilon_i = (q_0 + q_1 X_i) + \varepsilon_i$, $i = 1, \cdots, n$



Linear Regression

Statistical Model:

 $\Upsilon = Xq_0 + \varepsilon$

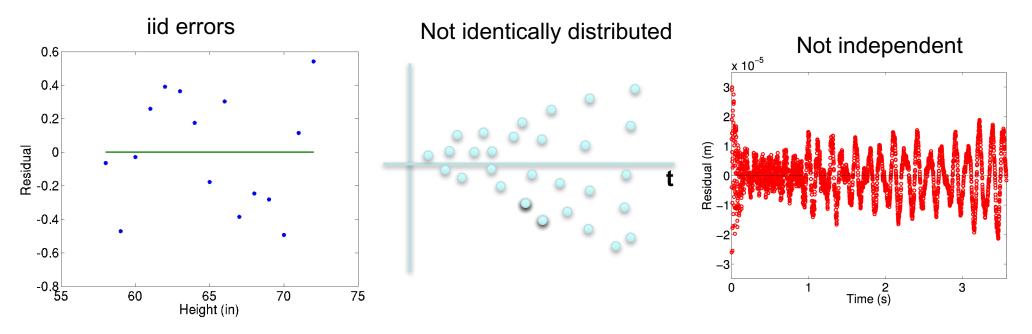
Assumptions:

(i) $\mathbb{E}(\varepsilon_i) = 0$

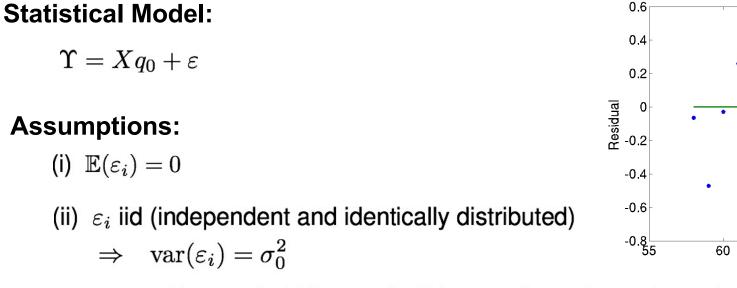
(ii) ε_i iid (independent and identically distributed)

$$\Rightarrow \quad \operatorname{var}(\varepsilon_i) = \sigma_0^2 \\ \mathbb{E}[(\varepsilon_i - \mathbb{E}(\varepsilon_i))(\varepsilon_j - \mathbb{E}(\varepsilon_j))] = \operatorname{cov}(\varepsilon_i, \varepsilon_j) = 0 \text{ for } i \neq j$$

Examples:



Linear Regression



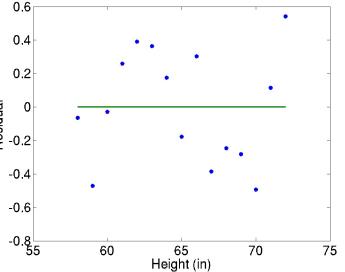
$$\mathbb{E}[(\varepsilon_i - \mathbb{E}(\varepsilon_i))(\varepsilon_j - \mathbb{E}(\varepsilon_j))] = \operatorname{cov}(\varepsilon_i, \varepsilon_j) = 0 \text{ for } i \neq j$$

Goals:

- (1) Construct a 'good' estimator \hat{q} for q.
- (2) Construct an estimator $\hat{\sigma}^2$ for σ_0^2 .

Terminology:

- Estimator: Random variable having associated sampling distributions
- Estimate: Realization so real number



Least Squares Problem

Minimize

$$\mathcal{J}(q) = (\Upsilon - Xq)^T (\Upsilon - Xq)$$

Note:

$$\nabla_q \mathcal{J} = 2[\nabla_q (\Upsilon - Xq)^T][\Upsilon - Xq] = 0$$

where

$$abla_q (\Upsilon - Xq)^T = -
abla_q q^T X^T = -X^T$$

Least Squares Estimator: $\hat{q}_{OLS} = (X^T X)^{-1} X^T \Upsilon$

Least Squares Estimate: $q_{OLS} = (X^T X)^{-1} X^T v$

Parameter Estimator Properties

Estimator Mean:

Estimator Covariance: Let $A = (X^T X)^{-1} X^T$

$$\begin{split} V(\hat{q}) &= & \mathbb{E}[(\hat{q} - q_0)(\hat{q} - q_0)^T] \\ &= & \mathbb{E}[(q_0 + A\varepsilon - q_0)(q_0 + A\varepsilon - q_0)^T] \text{, since } \hat{q} = A\Upsilon = A(Xq_0 + \varepsilon) \\ &= & A\mathbb{E}(\varepsilon\varepsilon^T)A^T \\ &= & \sigma_0^2(X^TX)^{-1} \end{split}$$

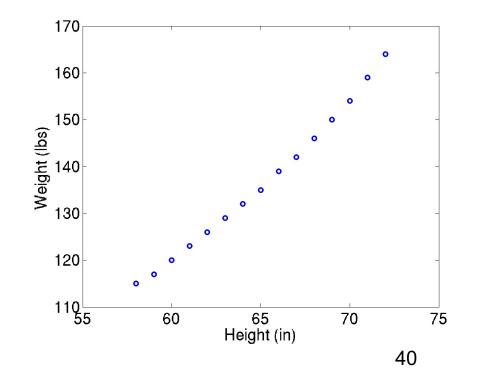
Example

Example: Consider the height-weight data from the 1975 World Almanac and Book of Facts

Height (in)	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
Weight (lbs)	115	117	120	123	126	129	132	135	139	142	146	150	154	159	164

Consider the model

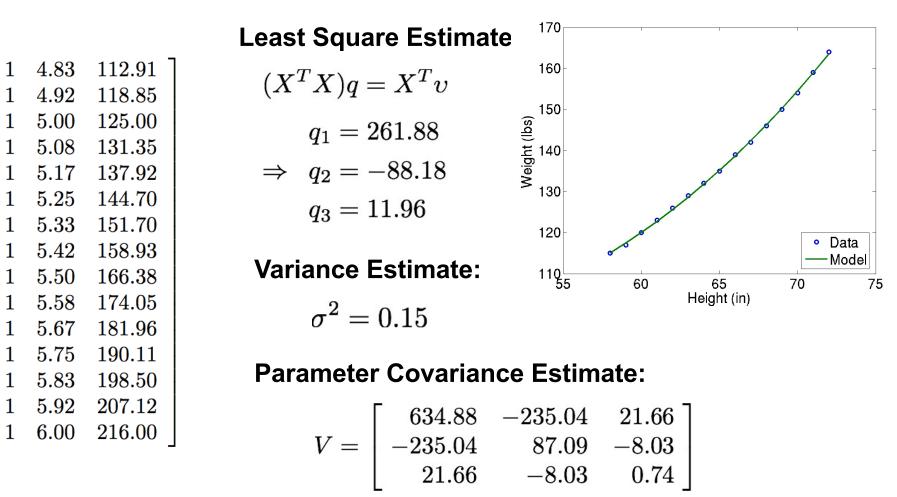
$$\Upsilon_i = q_1 + q_2(x_i/12) + q_3(x_i/12)^2 + \varepsilon_i$$



Example

Here

X =



Note: This yields variances and standard deviations for parameter estimates

$$q_{1} = 261.88 \pm 50.39 \qquad q_{1} \in [211.48, 312.27]$$

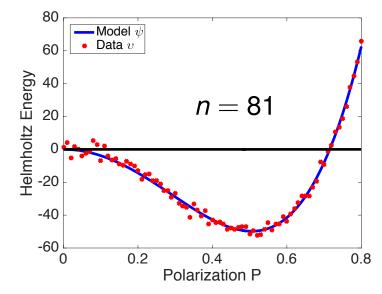
$$q_{2} = -88.18 \pm 18.66 \quad \Rightarrow \quad q_{2} \in [-106.84, -69.51]$$

$$q_{3} = 11.96 \pm 1.72 \qquad q_{3} \in [10.24, 13.68].$$

$$41$$

Polarization Example

Statistical Model: For i = 1, ..., n $\upsilon_{i} = \psi(P_{i}, q) + \varepsilon_{i} \leftarrow \varepsilon_{i} \sim N(0, \sigma^{2})$ $= \alpha_{1}P_{i}^{2} + \alpha_{11}P_{i}^{4} + \varepsilon_{i}$ $\Rightarrow \left[\upsilon_{i}\right] = \left[P_{i}^{2} P_{i}^{4}\right] \left[\alpha_{11} \atop \alpha_{11}\right] + \left[\varepsilon_{i}\right]$ $\Rightarrow \upsilon = Xq + \varepsilon$



Statistical Quantities:

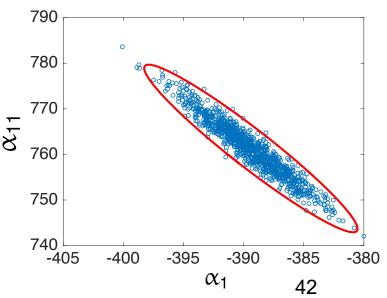
$$q = (X^{T}X)^{-1}X^{T}\upsilon$$

$$V = \underline{\sigma^{2}}(X^{T}X)^{-1} = \begin{bmatrix} 8.8 & -17.4 \\ -17.4 & 37.6 \end{bmatrix}$$

$$\operatorname{cov}(\alpha_{1}, \alpha_{11})$$

$$\operatorname{var}(\alpha_{11})$$

Note: Covariance matrix incorporates "geometry" **Goal:** Employ Bayesian inference for UQ



Statistical Inference

Goal: The goal in statistical inference is to make conclusions about a phenomenon based on observed data.

Frequentist: Observations made in the past are analyzed with a specified model. Result is regarded as confidence about state of real world.

• Probabilities defined as frequencies with which an event occurs if experiment is repeated several times.

• Parameter Estimation:

o Relies on estimators derived from different data sets and a specific sampling distribution.

o Parameters may be unknown but are fixed and deterministic.

Bayesian: Interpretation of probability is subjective and can be updated with new data.

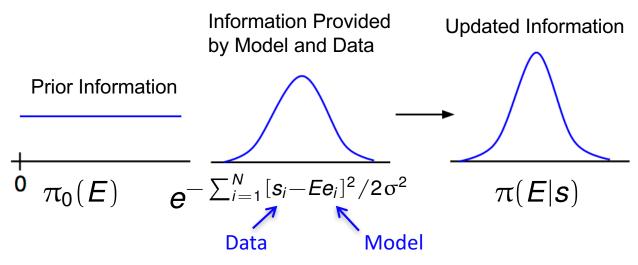
• Parameter Estimation: Parameters are considered to be random variables having associated densities.

Bayesian Inference: More General Model

$$m{s}_i = m{E}m{e}_i + m{arepsilon}_i$$
, $i = 1, ..., N$
 $\hat{igsilon}_{m{arepsilon}_i} \sim N(0, \sigma^2)$

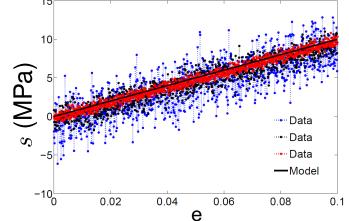
Parameter: Stiffness E

Strategy: Use model fit to data to update prior information

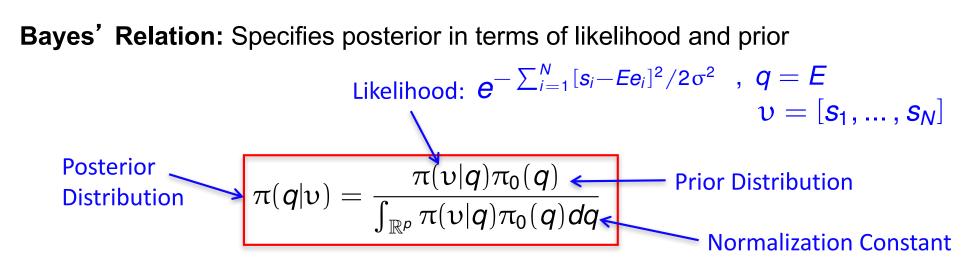


Non-normalized Bayes' Relation:

$$\pi(E|s) = e^{-\sum_{i=1}^{N} [s_i - Ee_i]^2 / 2\sigma^2} \pi_0(E)$$
44



Bayesian Inference



- Prior Distribution: Quantifies prior knowledge of parameter values
- Likelihood: Probability of observing a data given set of parameter values.
- Posterior Distribution: Conditional distribution of parameters given observed data.

Problem: Can require high-dimensional integration

- e.g., HIV Model: p = 6 23!
- Solution: Sampling-based Markov Chain Monte Carlo (MCMC) algorithms.
- Metropolis algorithms first used by nuclear physicists during Manhattan Project in 1940's to understand particle movement underlying first atomic bomb.

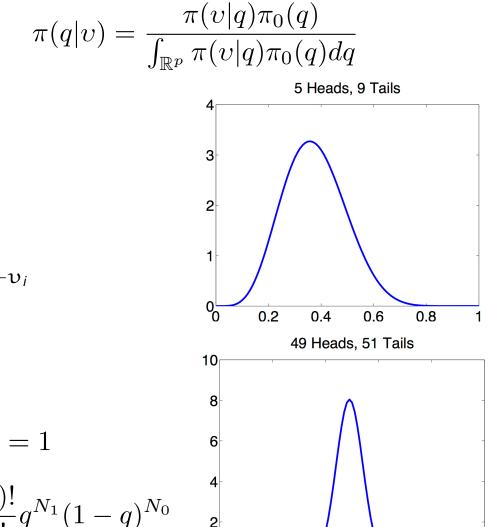
Bayesian Model Calibration

Bayes' Relation:

Bayesian Model Calibration:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

• Parameters assumed to be random variables



0^L0

0.2

0.4

0.6

0.8

1

Example: Coin Flip

$$\Upsilon_i(\omega) = \left\{ \begin{array}{cc} 0 & , & \omega = T \\ 1 & , & \omega = H \end{array} \right.$$

Likelihood:

$$egin{aligned} \pi(arphi|m{q}) &= \prod_{i=1}^{N} m{q}^{arphi_i} (1-m{q})^{1-arphi} \ &= m{q}^{N_1} (1-m{q})^{N_0} \end{aligned}$$

Posterior with Noninformative Prior: $\pi_0(q) = 1$

$$\pi(q|\upsilon) = \frac{q^{N_1}(1-q)^{N_0}}{\int_0^1 q^{N_1}(1-q)^{N_0} dq} = \frac{(N+1)!}{N_0!N_1!} q^{N_1}(1-q)^{N_0} dq$$

Bayesian Model Calibration

Bayesian Model Calibration:

• Parameters considered to be random variables with associated densities.

$$\pi(q|\upsilon) = \frac{\pi(\upsilon|q)\pi_0(q)}{\int_{\mathbb{R}^p} \pi(\upsilon|q)\pi_0(q)dq}$$

Problem:

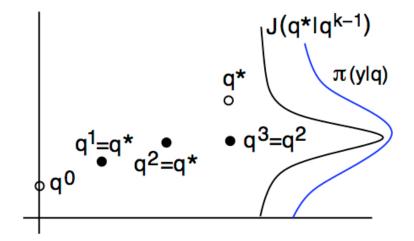
•Often requires high dimensional integration;

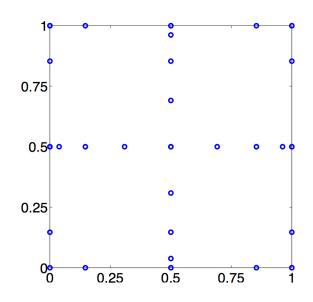
 \circ e.g., p = 23 for HIV model

p = hundreds to thousands for some models

Strategies:

- Sampling methods
- Sparse grid quadrature techniques



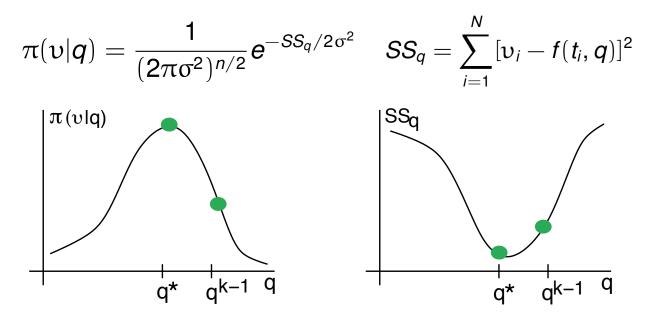


Markov Chain Monte Carlo Methods

Strategy:

- Sample values from proposal distribution $J(q^*|q^{k-1})$ that reflects geometry of posterior distribution
- Compute $r(q^*|q^{k-1}) = \frac{\pi(\upsilon|q^*)\pi_0(q^*)}{\pi(\upsilon|q^{k-1})\pi_0(q^{k-1})}$
 - * If $r \ge 1$, accept with probability $\alpha = 1$
 - * If r < 1, accept with probability $\alpha = r$

Intuition: Consider flat prior $\pi_0(q) = 1$ and Gaussian observation model



Delayed Rejection Adaptive Metropolis (DRAM) Algorithm: [Haario et al., 2006] – MATLAB, Python, R

Example: Helmholtz energy

$$\upsilon_{i} = \psi(P_{i}, q) + \varepsilon_{i} \leftarrow \varepsilon_{i} \sim N(0, \sigma^{2})$$
$$= \alpha_{1}P_{i}^{2} + \alpha_{11}P_{i}^{4} + \varepsilon_{i}$$

Algorithm: [Haario et al., 2006] – MATLAB, Python, R

1. Determine
$$q^0 = \arg \min_{q} \sum_{i=1}^{N} [\upsilon_i - \psi(P_i, q)]^2$$

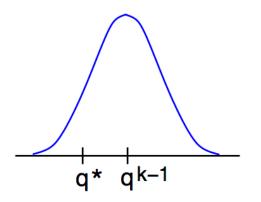
Example: Helmholtz energy

$$\upsilon_{i} = \psi(P_{i}, q) + \varepsilon_{i} \leftarrow \varepsilon_{i} \sim N(0, \sigma^{2})$$
$$= \alpha_{1}P_{i}^{2} + \alpha_{11}P_{i}^{4} + \varepsilon_{i}$$

Algorithm: [Haario et al., 2006] – MATLAB, Python, R

1. Determine $q^0 = \arg \min_{q} \sum_{i=1}^{N} [v_i - \psi(P_i, q)]^2]$ 2. For k = 1, ..., M

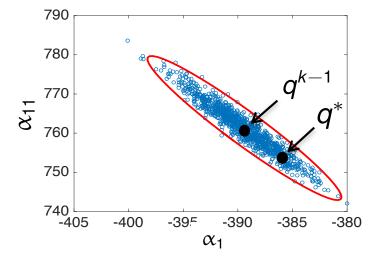
(a) Construct candidate $q^* \sim N(q^{k-1}, V)$



Example: Helmholtz energy

$$\upsilon_{i} = \psi(P_{i}, q) + \varepsilon_{i} \leftarrow \varepsilon_{i} \sim N(0, \sigma^{2})$$
$$= \alpha_{1}P_{i}^{2} + \alpha_{11}P_{i}^{4} + \varepsilon_{i}$$

Recall: Covariance V incorporates geometry



Delayed Rejection Adaptive Metropolis (DRAM) Algorithm: [Haario et al., 2006] – MATLAB, Python, R 1. Determine $q^0 = \arg \min_{q} \sum_{i=1}^{n} [v_i - \psi(P_i, q)]^2]$ 2. For *k* = 1, ..., *M* (a) Construct candidate $q^* \sim N(q^{k-1}, V)$ ġk−1 q* (b) Compute likelihood $\pi(v|q)$ SSa $SS_{q^*} = \sum_{i=1}^{n} \upsilon_i - \psi(P_i, q^*)]^2$ $\pi(\upsilon|q) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-SS_q/2\sigma^2}$ qk−1 q q* ġ* qk-1 (c) Accept q^* with probability dictated by likelihood 790 **Example:** Helmholtz energy 780 $v_i = \psi(P_i, q) + \varepsilon_i \leftarrow \varepsilon_i \sim N(0, \sigma^2)$ 770 α_{11} 760

750

740 └─ -405

-400

-395

-390

 α_1

-385

-380

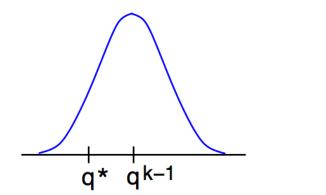
 $= \alpha_1 P_i^2 + \alpha_{11} P_i^4 + \varepsilon_i$

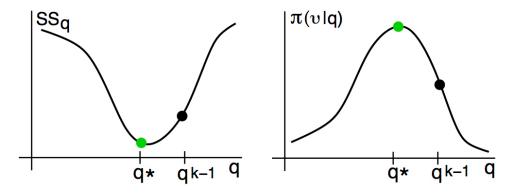
Recall: Covariance V incorporates geometry

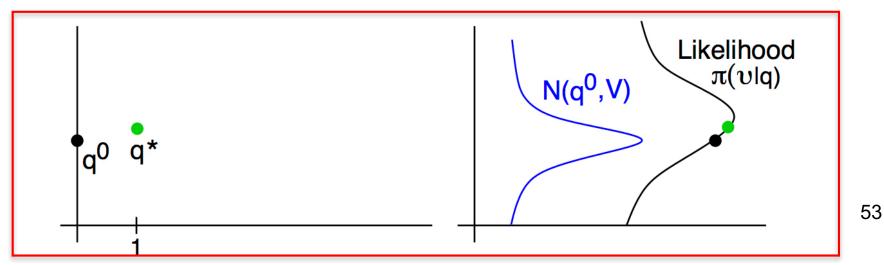
Algorithm: [Haario et al., 2006] – MATLAB, Python, R

- 1. Determine $q^0 = \arg \min_{q} \sum_{i=1}^{N} [v_i \psi(P_i, q)]^2$ 2. For k = 1, ..., M
 - (a) Construct candidate $q^* \sim N(q^{k-1}, V)$
 - (b) Compute likelihood

$$SS_{q^{*}} = \sum_{i=1}^{N} \upsilon_{i} - \psi(P_{i}, q^{*})]^{2}$$
$$\pi(\upsilon|q) = \frac{1}{(2\pi\sigma^{2})^{n/2}} e^{-SS_{q}/2\sigma^{2}}$$







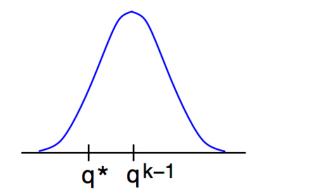
Algorithm: [Haario et al., 2006] – MATLAB, Python, R

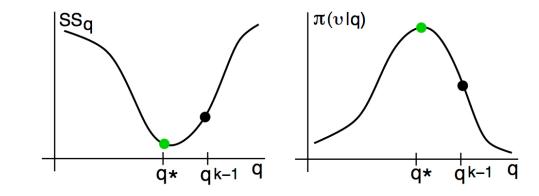
1. Determine
$$q^0 = \arg \min_{q} \sum_{i=1}^{N} [v_i - \psi(P_i, q)]^2$$

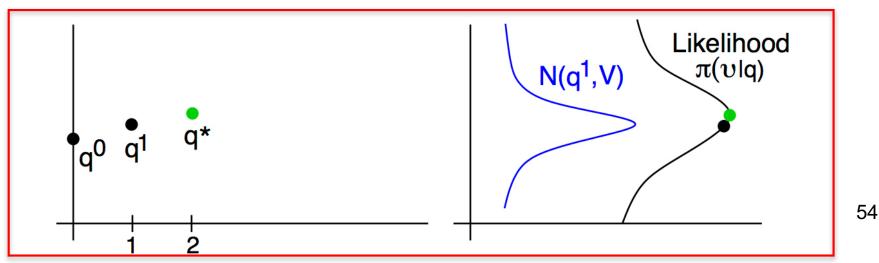
2. For $k = 1, ..., M$

- (a) Construct candidate $q^* \sim N(q^{k-1}, V)$
- (b) Compute likelihood

$$SS_{q^{*}} = \sum_{i=1}^{N} \upsilon_{i} - \psi(P_{i}, q^{*})]^{2}$$
$$\pi(\upsilon|q) = \frac{1}{(2\pi\sigma^{2})^{n/2}} e^{-SS_{q}/2\sigma^{2}}$$







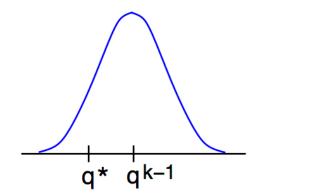
Algorithm: [Haario et al., 2006] – MATLAB, Python, R

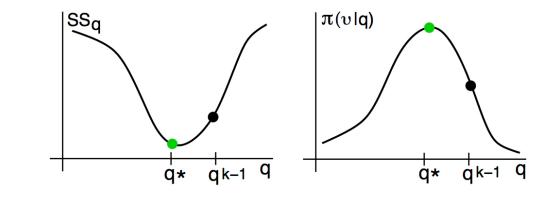
1. Determine
$$q^0 = \arg \min_{q} \sum_{i=1}^{N} [v_i - \psi(P_i, q)]^2$$

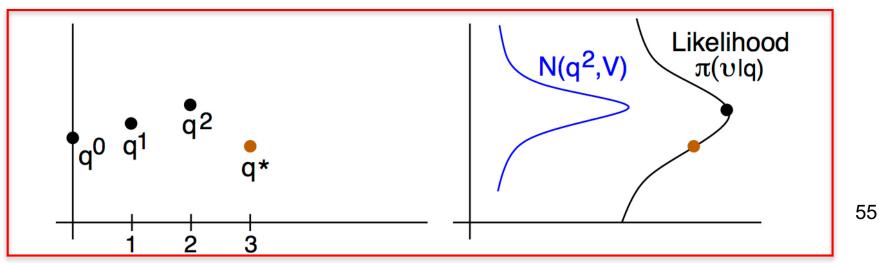
2. For $k = 1, ..., M$

- (a) Construct candidate $q^* \sim N(q^{k-1}, V)$
- (b) Compute likelihood

$$SS_{q^{*}} = \sum_{i=1}^{N} v_{i} - \psi(P_{i}, q^{*})]^{2}$$
$$\pi(v|q) = \frac{1}{(2\pi\sigma^{2})^{n/2}} e^{-SS_{q}/2\sigma^{2}}$$







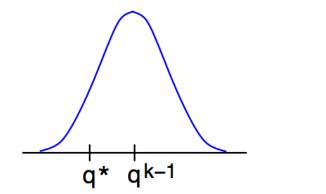
Algorithm: [Haario et al., 2006] – MATLAB, Python, R

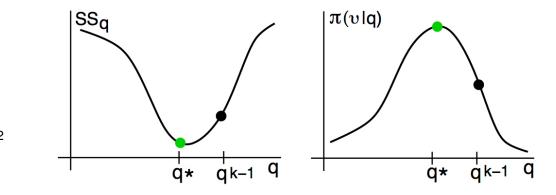
1. Determine
$$q^0 = \arg \min_{q} \sum_{i=1}^{N} [v_i - \psi(P_i, q)]^2$$

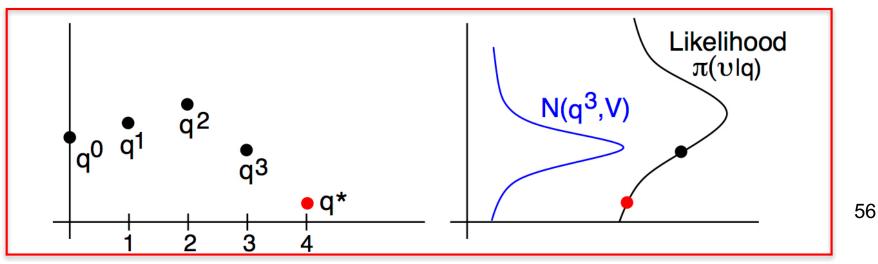
2. For $k = 1, ..., M$

- (a) Construct candidate $q^* \sim N(q^{k-1}, V)$
- (b) Compute likelihood

$$SS_{q^{*}} = \sum_{i=1}^{N} \upsilon_{i} - \psi(P_{i}, q^{*})]^{2}$$
$$\pi(\upsilon|q) = \frac{1}{(2\pi\sigma^{2})^{n/2}} e^{-SS_{q}/2\sigma^{2}}$$







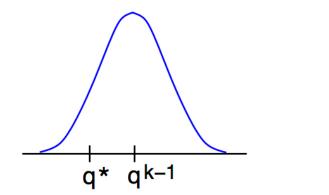
Algorithm: [Haario et al., 2006] – MATLAB, Python, R

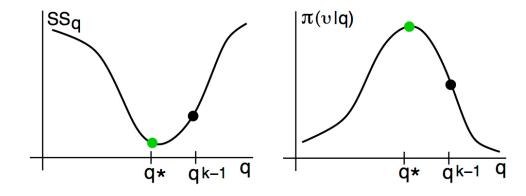
1. Determine
$$q^0 = \arg \min_{q} \sum_{i=1}^{N} [v_i - \psi(P_i, q)]^2$$

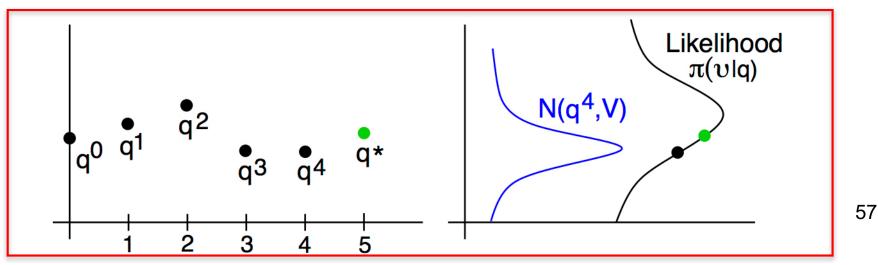
2. For $k = 1, ..., M$

- (a) Construct candidate $q^* \sim N(q^{k-1}, V)$
- (b) Compute likelihood

$$SS_{q^{*}} = \sum_{i=1}^{N} \upsilon_{i} - \psi(P_{i}, q^{*})]^{2}$$
$$\pi(\upsilon|q) = \frac{1}{(2\pi\sigma^{2})^{n/2}} e^{-SS_{q}/2\sigma^{2}}$$



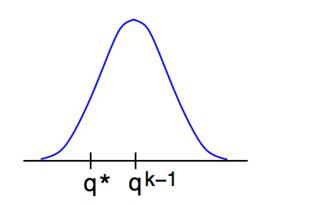


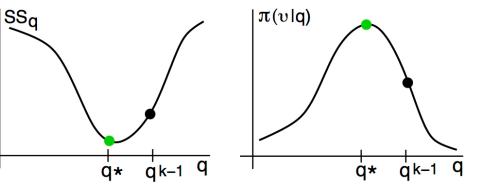


Algorithm: [Haario et al., 2006] – MATLAB, Python, R

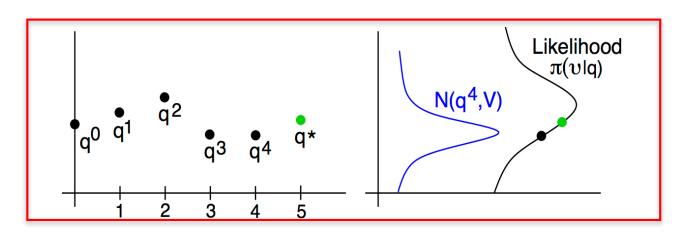
- 1. Determine $q^0 = \arg \min_{q} \sum_{i=1}^{N} [v_i \psi(P_i, q)]^2]$ 2. For k = 1, ..., M
 - (a) Construct candidate $q^* \sim N(q^{k-1}, V)$
 - (b) Compute likelihood

$$SS_{q^*} = \sum_{i=1}^{N} \upsilon_i - \psi(P_i, q^*)]^2$$
$$\pi(\upsilon|q) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-SS_q/2\sigma^2}$$





(c) Accept q^* with probability dictated by likelihood



Note:

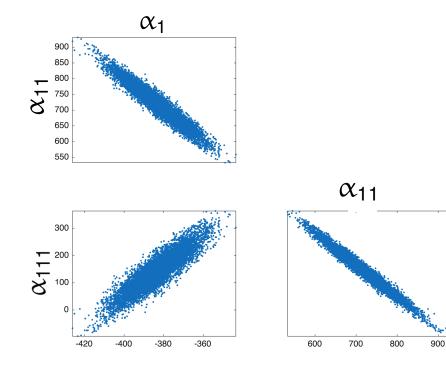
- Delayed Rejection: Shrink proposal: γV
- Adaptive Metropolis:
 Update proposal as samples are accepted

Example: Helmholtz energy with 3 parameters

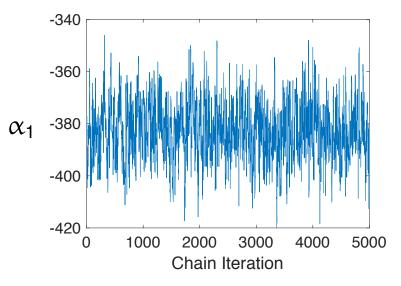
$$\psi(P,q) = \underline{\alpha_1}P^2 + \underline{\alpha_{11}}P^4 + \underline{\alpha_{111}}P^6$$

Note: Similar results for α_{11} and α_{111}

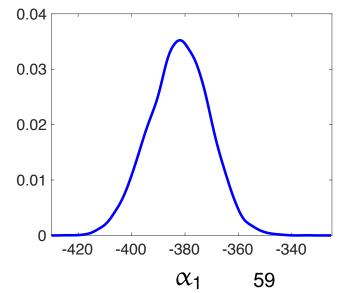
Pairwise Plots: Quantify correlation



Chain for α_1 with 5000 samples



Marginal density for α_1



Bayesian Model Calibration – HIV Example

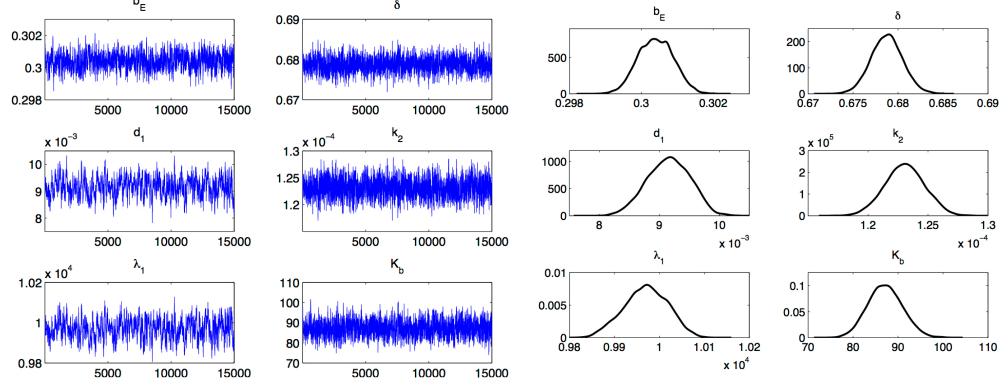
Model:
$$\dot{T}_1 = \lambda_1 - d_1 T_1 - (1 - \varepsilon)k_1 V T_1$$

 $\dot{T}_2 = \lambda_2 - d_2 T_2 - (1 - f\varepsilon)k_2 V T_2$
 $\dot{T}_1^* = (1 - \varepsilon)k_1 V T_1 - \delta T_1^* - m_1 E T_1^*$
 $\dot{T}_2^* = (1 - f\varepsilon)k_2 V T_2 - \delta T_2^* - m_2 E T_2^*$
 $\dot{V} = N_T \delta(T_1^* + T_2^*) - cV - [(1 - \varepsilon)\rho_1 k_1 T_1 + (1 - f\varepsilon)\rho_2 k_2 T_2] V$
 $\dot{E} = \lambda_E + \frac{b_E(T_1^* + T_2^*)}{T_1^* + T_2^* + K_b} E - \frac{d_E(T_1^* + T_2^*)}{T_1^* + T_2^* + K_b} E - \delta_E E$

Verification: Why do we trust results??

• Compare results from different algorithms; e.g., DRAM and Gibbs

Parameter Chains and Densities: $q = [b_E, \delta, d_1, k_2, \lambda_1, K_b]$



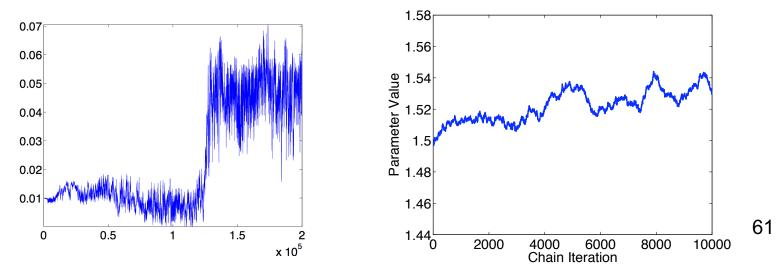
Bayesian Inference: Advantages and Disadvantages

Advantages:

- Advantageous over frequentist inference when data is limited.
- Directly provides parameter densities, which can subsequently be propagated to construct response uncertainties.
- Can be used to infer non-identifiable parameters if priors are tight.
- Provides natural framework for experimental design.

Disadvantages:

- More computationally intense than frequentist inference.
- Can be difficult to confirm that chains have burned-in or converged.



Websites:

- http://www4.ncsu.edu/~rsmith/UQ_TIA/CHAPTER8/index_chapter8.html
- http://helios.fmi.fi/~lainema/mcmc/

We fit the Monod model

$$y = \theta_1 \frac{1}{\theta_2 + 1} + \epsilon \quad , \quad \epsilon \sim N(0, I\sigma^2)$$

to observations

x (mg/LCOD): 28 55 83 110 138 225 375

y (1 / h): 0.053 0.060 0.112 0.105 0.099 0.122 0.125

First clear some variables from possible previous runs.

clear data model options

Next, create a data structure for the observations and control variables. Typically one could make a structure data that contains fields xdata and ydata.

```
data.xdata = [28 55 83 110 138 225 375]'; % x (mg / L COD)
```

```
data.ydata = [0.053 0.060 0.112 0.105 0.099 0.122 0.125]'; % y (1 / h)
```

Construct model

```
modelfun = @(x,theta) theta(1)*x./(theta(2)+x);
```

ssfun = @(theta,data) sum((data.ydata-modelfun(data.xdata,theta)).^2);

model.ssfun = ssfun;

model.sigma2 = 0.01^2;

Input parameters

params = {

```
{'theta1', tmin(1), 0}
```

```
{'theta2', tmin(2), 0} };
```

and set options

```
options.nsimu = 4000;
```

```
options.updatesigma = 1;
```

```
options.qcov = tcov;
```

Run code

[res,chain,s2chain] = mcmcrun(model,data,params,options);

000	MCMC status					
	Generating chain, eta: 0:00	:04				
i:1900 adaptin	g (19.42,23.00,0.00)	Cancel				

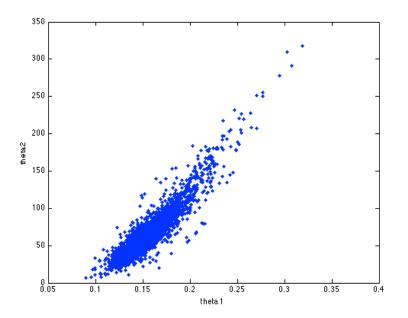
Plot results

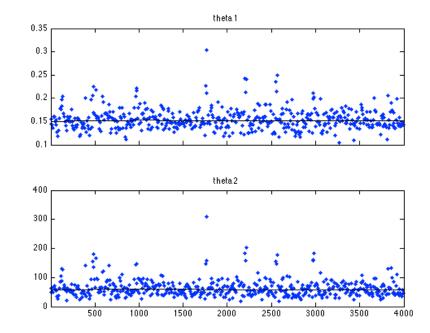
figure(2); clf

mcmcplot(chain,[],res,'chainpanel');

figure(3); clf

mcmcplot(chain,[],res,'pairs');





Examples:

- Several available in MCMC_EXAMPLES
- ODE solver illustrated in algae example

Construct credible and prediction intervals

figure(5); clf

```
out = mcmcpred(res,chain,[],x,modelfun);
```

mcmcpredplot(out);

hold on

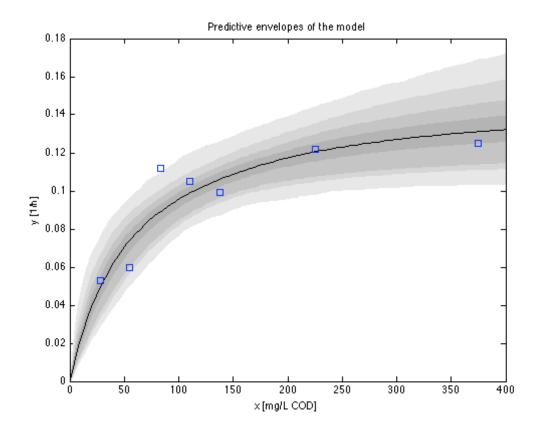
plot(data.xdata,data.ydata,'s'); % add data points to the plot

xlabel('x [mg/L COD]');

ylabel('y [1/h]');

hold off

title('Predictive envelopes of the model')



DRAM for SIR Example

SIR Model:

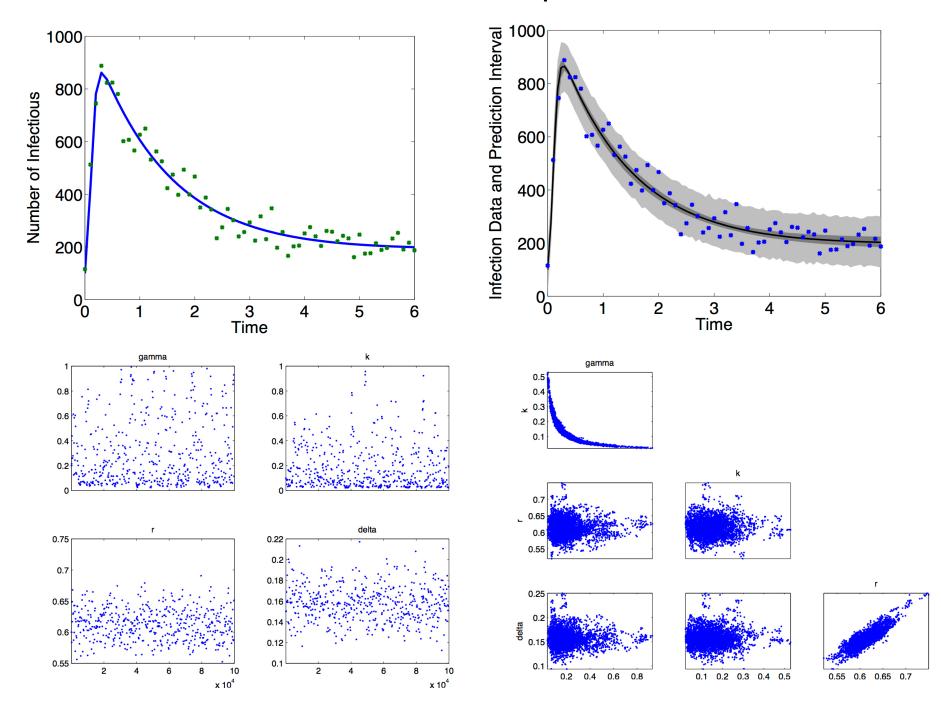
$$\begin{split} \frac{dS}{dt} &= \delta N - \delta S - \gamma k I S \quad , \ S(0) = S_0 \qquad & \text{Susceptible} \\ \frac{dI}{dt} &= \gamma k I S - (r + \delta) I \quad , \ I(0) = I_0 \qquad & \text{Infectious} \\ \frac{dR}{dt} &= r I - \delta R \qquad & , \ R(0) = R_0 \qquad & \text{Recovered} \end{split}$$

Note: Parameter set $q = [\gamma, k, r, \delta]$ is not identifiable

Website

- http://helios.fmi.fi/~lainema/mcmc/
- http://www4.ncsu.edu/~rsmith/

DRAM for SIR Example: Results



3 Parameter SIR Model:

$$\begin{split} \frac{dS}{dt} &= \delta N - \delta S - \gamma IS \quad , \ S(0) = S_0 \quad \text{Susceptible} \\ \frac{dI}{dt} &= \gamma IS - (r+\delta)I \quad , \ I(0) = I_0 \quad \text{Infectious} \\ \frac{dR}{dt} &= rI - \delta R \quad & , \ R(0) = R_0 \quad \text{Recovered} \end{split}$$

Note:

- Run the posted 4 parameter code and experiment with the chain length.
- Now run the 3 parameter model and compare your results.

Website:

http://www4.ncsu.edu/~rsmith/DATAWORKS18/