% % SIR_sensitivities_IC.m % clear all global N % % Compute the sensitivities of the 3 parameter SIR model to the 2 initial conditions % with fixed parameters in the differential equation using the sensitivity equations % and complex-step derivative approximations. Reduce to a system of two differential % equations using the relation R(t) = N - S(t) - I(t). % Note: N=2 % % % Set parameters and initial conditions % S0 = 900; I0 = 100; R0 = 0; S_S0 = 1; I_S0 = 0; S_I0 = 0; I_I0 = 1; N = 1000; beta = 0.005; gamma = 0.3; mu = 0.1; params = [beta gamma mu]; tf = 15; dt = 0.1; t_vals = 0:dt:tf; Y0 = [S0; I0; S_S0; I_S0; S_I0; I_I0]; % % Integrate the coupled system using ode45.m. There are now N(p+1) coupled % differential equations comprised of the state and sensitivity equations % ode_options = odeset('RelTol',1e-8); [t,Y] = ode45(@SIR_rhs_IC,t_vals,Y0,ode_options,params); % % Extract the states and sensitivities. % S = Y(:,1); I = Y(:,2); S_S0_sen = Y(:,3); I_S0_sen = Y(:,4); S_I0_sen = Y(:,5); I_I0_sen = Y(:,6); % % Compute the sensitivities using complex-step derivative approximations. This % requires p=2 solutions of the ODE system. % clear Y0 h = 1e-16; S0_complex = complex(S0,h); Y0 = [S0_complex; I0]; [t,Y] = ode45(@SIR_rhs_complex,t_vals,Y0,ode_options,params); S_S0 = imag(Y(:,1))/h; I_S0 = imag(Y(:,2))/h; I0_complex = complex(I0,h); Y0 = [S0; I0_complex]; [t,Y] = ode45(@SIR_rhs_complex,t_vals,Y0,ode_options,params); S_I0 = imag(Y(:,1))/h; I_I0 = imag(Y(:,2))/h; % % Plot the 4 sensitivities as a function of time. % figure(1) plot(t,S_S0_sen,'-b',t,S_S0,'--r','linewidth',3) set(gca,'Fontsize',[22]); xlabel('Time (Days)') ylabel('S_{S_0}') legend('Sensitivity Eq','Complex-Step','Location','NorthEast') % print -depsc S_S0 figure(2) plot(t,I_S0_sen','-b',t,I_S0,'--r','linewidth',3) set(gca,'Fontsize',[22]); xlabel('Time (Days)') ylabel('I_{S_0}') legend('Sensitivity Eq','Complex-Step','Location','NorthEast') % print -depsc I_S0 figure(3) plot(t,S_I0_sen','-b',t,S_I0,'--r','linewidth',3) set(gca,'Fontsize',[22]); xlabel('Time (Days)') ylabel('S_{I_0}') legend('Sensitivity Eq','Complex-Step','Location','SouthEast') % print -depsc S_I0 figure(4) plot(t,I_I0_sen,'-b',t,I_I0,'--r','linewidth',3) set(gca,'Fontsize',[22]); xlabel('Time (Days)') ylabel('I_{I_0}') legend('Sensitivity Eq','Complex-Step','Location','NorthEast') % print -depsc I_I0