% % % clear all % % Define time vector, the response y, and normally distributed noise. % per = 0.1; t = 0:0.01:2; t2 = 0:0.02:2; k = 22.1; km = k-per*k; kp = k+per*k; y = 2*sin(t*sqrt(k)); nt = length(t); nk = 20; sigma = 0.5; sigma2 = sigma^2; sigma_k = 1.1; sigma_k2 = sigma_k^2; kdist = km + 2*per*k*rand(nk,1); kdist_norm = k + sigma_k2*randn(nk,1); ve = sigma2*randn(1,nt); y_err = y + ve; for i=1:nk y_err_k(i,:) = 2*sin(t2*sqrt(kdist(i))); y_err_k_norm(i,:) = 2*sin(t2*sqrt(kdist_norm(i))); end % % Plot the signal and noise. % figure(1) plot(t,y,'-k',t,y_err,'xb','linewidth',3) axis([0 2 -2.5 2.5]) hold on plot(t,0*t,'-k','linewidth',3) hold off set(gca,'Fontsize',[20]); xlabel('Time (s)') ylabel('Displacement') %print -depsc fig5_6a figure(2) plot(t,y,'-k',t2,y_err_k,'xb','linewidth',3) axis([0 2 -2.5 2.5]) hold on plot(t,0*t,'-k','linewidth',3) hold off set(gca,'Fontsize',[20]); xlabel('Time (s)') ylabel('Displacement') %print -depsc fig5_6b figure(3) plot(t,y,'-k',t2,y_err_k_norm,'xb','linewidth',3) axis([0 2 -2.5 2.5]) hold on plot(t,0*t,'-k','linewidth',3) hold off set(gca,'Fontsize',[20]); xlabel('Time (s)') ylabel('Displacement')