clear all N_MC = 1e+4; time = 12; dt = .01; tvals = dt:dt:time; Nt = length(tvals); alpha = 1; beta = 10; sigma_a = sqrt(1/48); sigma_b = sqrt(3); a1 = 3/4; a2 = 5/4; b1 = 7; b2 = 13; mean_true = beta*(sinh(sqrt(3)*sigma_a*tvals)./(sqrt(3)*sigma_a*tvals)).*exp(-alpha*tvals); factor1 = (beta^2 + sigma_b^2)*sinh(2*sqrt(3)*sigma_a*tvals)./(2*sqrt(3)*sigma_a*tvals); factor2 = - beta^2* (sinh(sqrt(3)*sigma_a*tvals).^2)./(3*sigma_a^2*tvals.^2); var_true = (factor1 + factor2).*exp(-2*alpha*tvals); mean_true = (40./tvals).*sinh(tvals/4).*exp(-tvals); var_true = ((206./tvals).*sinh(tvals/2) - (1600./tvals.^2).*(sinh(tvals/4).^2) ).*exp(-2*tvals); sd_true = sqrt(var_true); mean2p_true = mean_true + 2*sd_true; mean2m_true = mean_true - 2*sd_true; figure(1) plot(tvals,mean_true,'-b',tvals,mean2p_true,'-b',tvals,mean2m_true,'-b','linewidth',2) %plot(tvals,mean_true,'-b',tvals,mean2p_true,'-b',tvals,mean2m_true,'-b',tvals,0*tvals,'linewidth',2) set(gca,'Fontsize',[20]); xlabel('Time (s)') ylabel('Displacement (cm)') % legend('True Mean','True 2\sigma Interval','Location','NorthEast') % % Compute N_MC samples for alpha and beta % alpha_MC = a1 + (a2-a1)*rand(N_MC,1); beta_MC = b1 + (b2-b1)*rand(N_MC,1); for k=1:Nt MC = beta_MC.*exp(-alpha_MC*tvals(k)); MC_mean(k) = (1/N_MC)*sum(MC); tmp = 0; for j=1:N_MC tmp = tmp + (MC(j) - MC_mean(k))^2; end MC_sigma(k) = sqrt((1/(N_MC-1))*tmp); end figure(2) plot(tvals,mean_true,'-b',tvals,MC_mean,'--k'); figure(3) plot(tvals,sd_true,'-b',tvals,MC_sigma,'--k');